CN103367185A - 一种采用转移法制作碳纳米管柔性微凸点的方法 - Google Patents

一种采用转移法制作碳纳米管柔性微凸点的方法 Download PDF

Info

Publication number
CN103367185A
CN103367185A CN2013103171892A CN201310317189A CN103367185A CN 103367185 A CN103367185 A CN 103367185A CN 2013103171892 A CN2013103171892 A CN 2013103171892A CN 201310317189 A CN201310317189 A CN 201310317189A CN 103367185 A CN103367185 A CN 103367185A
Authority
CN
China
Prior art keywords
carbon nano
tube
tube bundle
flexible
semiconductor base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103171892A
Other languages
English (en)
Other versions
CN103367185B (zh
Inventor
戴风伟
曹立强
周静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Advanced Packaging Co Ltd
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201310317189.2A priority Critical patent/CN103367185B/zh
Publication of CN103367185A publication Critical patent/CN103367185A/zh
Application granted granted Critical
Publication of CN103367185B publication Critical patent/CN103367185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明揭示了一种用于微电子封装中的碳纳米管柔性凸点的制作方法。本发明中碳纳米管柔性凸点的制作方法是通过低温转移的方式把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上制作成柔性微凸点。由于碳纳米管束具有一定的弹性和柔韧性,因此,利用碳纳米管束制作微凸点可以一定程度上缓解互连中热应力引起的失效问题。同时由于碳纳米管具有优秀的电学性能,如超高的电导率和超过109A/cm2的电流密度,因此,利用碳纳米管作为微凸点不但具有良好的电传输性能,而且还可以解决金属凸点的电迁移问题。本发明具有操作简单,兼容半导体工艺。

Description

一种采用转移法制作碳纳米管柔性微凸点的方法
技术领域
本发明涉及微电子封装技术、微凸点技术,特别地,本发明涉及一种碳纳米管柔性凸点的制备方法。
背景技术
倒装焊技术是一种能很方便他实现芯片与芯片之间电气及机械连接的混合集成技术。这种技术首先在两个需要互连的芯片上制作互连引线凸点,然后在专用的倒装焊设备中对准、熔融或粘结这些凸点,形成互连。倒装焊封装技术具有精度高、形成的混合集成芯片占用体积小、输入输出密度高、互连线短、引线寄生参数小等优点,大大改善了封装后器件的电性能和高频性能。近年来,倒装焊中的凸点技术发展迅速,先后出现了焊料凸点,铟凸点,金凸点以及铜凸点等金属凸点。但是这些凸点的尺寸和间距都很大,无法满足目前电子产品持续高密度化和小型化发展的要求。
虽然倒装芯片是在PCB上最可靠的封装技术之一。但是凸点焊料还是不可避免的会发生由于在倒装芯片和它的基质之间由于热量不匹配所引发的疲劳现象,从而引起失效的可靠性问题。此外,由于工作温度的增加、由于裸片尺寸的缩小所引发的凸点电流密度的增加,以及许多处在恶劣工作环境中的应用等因素对金属凸点的应用是一个非常大的挑战。对于间距为150μm采用SnPb共熔合金的凸点来说,最大的电流载荷能力在140℃时为240mA,而采用SnPb-2.5Cu凸点也只能够满足一个凸点在150℃时承载350mA电流传输的能力。
自碳纳米管被发现以来,由于其独特结构和出色的物理和化学特性已被誉为21世纪最具有前途的材料之一。碳纳米管是由石墨层卷曲而成具有高长径比的管状结构,一般可分为三种:单壁碳纳米管、双壁碳纳米管和多壁碳纳米管。由于碳纳米管具有超高的机械强度、优秀的导电和导热性能以及化学稳定性,使其在众多领域有着广泛的应用。已经被证实,具有金属性的碳纳米管可以传送的电流密度能够达到1010A/cm2,而传统的互连材料金属铜的这个值只有106A/cm2,它甚至可以在250℃下正常工作,因此,采用碳纳米管作为互连,不但具有更低的电阻率而且可以避免铜互连电迁移问题。
虽然单根碳纳米管具有非常好的电学性能,但是通过化学气相沉积法生长的碳纳米管束具有密度低的特点,直接利用这样的碳纳米管束作为互连材料时,其电学性能将大大降低。因此,如何提高碳纳米管束的密度成为当前碳纳米管作为互连材料应用的难点之一。为了解决这一难题,本发明给出了一种通过低温转移的方式把经过致密化处理的碳纳米管束制作成柔性微凸点的方法。
发明内容
本发明提供一种用于微电子封装中的碳纳米管柔性微凸点的制作方法。即通过低温转移的方式把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上制作成柔性微凸点。其中碳纳米管柔性凸点的制作方法是通过低温转移的方式把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上制作成柔性微凸点。
本发明的制作方法可以解决如下几个问题:一是高温环境(>600℃)下制作碳纳米管的问题,使碳纳米管可以用在有源基底上作为互连材料;二是通过化学气相沉积法制作的碳纳米管束阵列密度低的问题,可以在工艺过程中通过两步致密化处理提高碳纳米管束的密度;三是提供了一种工艺简单、兼容半导体制程的碳纳米管柔性微凸点的制作方法。
具体技术方案由如下步骤实现:
1)制作半导体基底接触焊盘;
2)制作致密化的碳纳米管束,其特征在于,对在金属薄膜(B201)上生长的垂直碳纳米管束阵列(B301)进行致密化处理;
3)将碳纳米管束转移到半导体基底上,其特征在于,在移除碳纳米管束阵列的生长基底(B100)后再次对碳纳米管束阵列进行致密化处理,完成碳纳米管束转移和碳纳米管柔性凸点的制作。
其中,所述制作半导体基底接触焊盘的过程具体包括以下步骤:
a)提供半导体基底(A100);
b)在所述半导体基底(A100)上制作金属再布线层(A203)和金属焊盘(A202);
c)制作钝化层(A301)并对其进行图形化;
d)制作种子层和底层金属层(A401);
e)涂覆光刻胶(A501),并进行光刻;
f)电镀无铅焊料(A601);
g)去除光刻胶并剥离种子层和底层金属层。
其中,所述制作致密化的碳纳米管束的方法具体包括以下步骤:
h)提供基地半导体基底(B100);
i)在所述半导体基底(B100)上制作金属薄膜(B201)并进行图形化;
j)在金属薄膜(B201)上生长垂直碳纳米管束(B301);
k)对碳纳米管束阵列(B301)进行致密化处理;
l)在碳纳米管束表面溅射钛/金薄膜(B401)。
其中,所述将碳纳米管束转移到半导体基底上的具体方法包括以下步骤:
m)加热半导体基底(A100)使其内部电镀的无铅焊料熔化;
n)倒置生长碳纳米管束阵列的半导体基底(B100),并使碳纳米管束(B301)顶端与无铅焊料金属薄膜(A601)一一对准;
o)把碳纳米管束(B301)压入熔融的无铅焊料中,降低温度使无铅焊料固化;
p)移除碳纳米管束阵列的生长基底(B100);
q)再次对碳纳米管束阵列进行致密化处理,完成碳纳米管束转移和碳纳米管柔性凸点的制作。
其中,在制造过程中通过低温转移方式把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上。
优选的,所述用于转移碳纳米管束的半导体基底可以是有源芯片或无源芯片。
优选的,所述再布线层和金属焊盘的材料可以是铜,铝或其他金属材料。
优选的,所述钝化层材料可以是二氧化硅,氮化硅,聚酰亚胺等绝缘材料。
优选的,所述种子层和底层金属材料为钛/铜。
优选的,所述无铅焊料可以是锡,铟,锡银,锡银铜,锡铋,铟铋等低熔点金属或合金。
优选的,所述金属催化剂可以是铁,镍或钴等金属。
优选的,所述垂直碳纳米管束阵列的制作方法可以是热化学气相沉积法或等离子体增强化学气相沉积法。
优选的,所述碳纳米管阵列的致密化处理方法可以是把碳纳米管阵列的一端浸入有机溶剂中,待溶剂挥发后使其收缩的处理方式或者是将碳纳米管阵列置于有机溶剂的蒸汽中使其收缩的处理方式。
优选的,所述碳纳米管束致密化后顶端的尺寸要小于无铅焊料所在区域的大小。
优选的,所述施加的加热温度要高于无铅焊料的熔点。
本发明所揭示的方法具有工艺简单,兼容半导体工艺的优点。利用碳纳米管作为微凸点不但具有良好的电传输性能,而且还可以解决金属凸点的电迁移问题。通过两步碳纳米管束致密化处理可以得到更高密度的碳纳米管束阵列,因此,利用经过致密化处理的碳纳米管束制作的微凸点将具有更好的电学性能。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1是根据本发明的实施例的一种碳纳米管柔性微凸点制作方法的流程图;
图2是用于转移碳纳米管束的半导体基底,此半导体基底表面具有钝化层;
图3是在半导体基底上制作再布线层和金属焊盘;
图4是在半导体基底的金属焊盘上制作底层金属层的接触窗口;
图5是在半导体基底上制作种子层和底层金属层;
图6是在半导体基底上制作光刻胶并进行光刻操作;
图7是电镀无铅焊料金属薄膜;
图8是去除光刻胶;
图9是剥离种子层和底层金属层;
图10是一半导体基底,此半导体基底表面具有氧化层;
图11是在半导体基底上溅射金属薄膜,并进行图形化操作;
图12是生长垂直碳纳米管束阵列;
图13是碳纳米管束致密化处理后结果;
图14是在碳纳米管束表面溅射钛/金薄膜;
图15是通过加热使熔融的无铅焊料与碳纳米管束键合;
图16是移除生长碳纳米管束阵列的半导体基底;
图17是对转移后的碳纳米管束进行致密化处理。
具体实施方式
下面详细描述本发明的实施例。
所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
本发明的实施例提供了一种碳纳米管柔性微凸点的制作方法。该方法通过低温转移的方式,把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上。下面,将结合图2至图17通过本发明的一个实施例对图1形成半导体结构的方法进行具体描述。该方法包括基底接触焊盘的制作、致密碳纳米管束的制作以及碳纳米束转移三个步骤。
具体地,基底接触焊盘的制作包括以下步骤:
在步骤S101中,完成半导体基底上制作再布线层和金属焊盘。具体地,
首先,提供半导体基底A100,如图2所示,本实施例中用于转移碳纳米管束的半导体基底A100是无源芯片,芯片表面具有厚度为1μm的二氧化硅。在其他实施例中,所述用于转移碳纳米管束的半导体基底可以是有源芯片或无源芯片;
其次在半导体基底上制作金属再布线层A203和金属焊盘A202,如图3所示。其中,导线材料为铜,介电绝缘层A201为聚酰亚胺材料,金属焊盘A202大小为50μm。在其他实施例中,所述再布线层和金属焊盘的材料可以是铜,铝或其他金属材料。
在步骤S102中,完成钝化层的制作并对其进行图形化。具体地,在半导体基底A100表面旋涂钝化层A301,之后以光刻胶为掩膜对钝化层A301进行刻蚀,制作底层金属层A401的接触窗口,如图4所示。在本是实例中,钝化层为聚酰亚胺材料,开窗大小为40μm,钝化层厚度大于5μm。在其他实施例中,所述钝化层材料可以是二氧化硅,氮化硅等绝缘材料。
在步骤S103中,在半导体基底100上制作种子层和底层金属层A401。具体地,如图5所示,首先在钝化层A301上溅射淀积0.2μm的钛金属薄膜,然后溅射1μm的金属铜薄膜。
在步骤S104中,对上一步中形成的种子层和底层金属层A401进行刻蚀。具体地,首先,喷涂厚度为2μm的光刻胶A501,并对光刻胶A501进行图形化刻蚀,裸露出光刻区域,如图6所示。所述光刻区域的尺寸不大于底层金属层A401的接触窗口。
在步骤S105中,在上一步所形成的光刻区域中电镀厚度为2μm的金属锡薄膜A601,如图7所示。其中,所述无铅焊料可以是锡,铟,锡银,锡银铜,锡铋,铟铋等低熔点金属或合金。
在步骤S104中,去除光刻胶A501,并剥离种子层和底层金属层A401,完成半导体基底接触焊盘的制作。去胶后和剥离种子层和底层金属层A401后的基底结构剖面图分别如图8,图9所示。
所述致密化的碳纳米管束的制作方法包括以下步骤:
在步骤S201中,提供如图10所示的半导体基底B100,并在其上制作金属催化剂薄膜并对其进行图形化,所述金属催化剂可以是铁,镍或钴等金属。该基底是用于生长碳纳米管束阵列的半导体硅基底,其表面有一层厚度为0.5μm的通过热氧化得到的二氧化硅薄膜。具体地,首先如图11所示,在半导体基底B100表面溅射厚度为3nm的金属铁薄膜B201,并进行图形化操作。其中,每一图形单元为直径40μm的圆形。
在步骤S202中,在金属铁薄膜表面上生长垂直排列的碳纳米管束阵列B301,通常所用的生长方法为热化学气相沉积法或等离子体增强化学气相沉积法。其中,碳纳米管束阵列的高度为30μm。其结构如图12所示。
在步骤S203中,对在S202中所生长的碳纳米管束B301进行致密化处理。在本是实例中,具体方法为,首先把生长碳纳米管束B301的半导体基底倒置于装有丙酮溶剂的装置上方,然后加热丙酮溶剂使之产生蒸汽,并使蒸汽通过碳纳米管束,当碳纳米管束密度达到所要求密度时,即如图13中B302所示,所述碳纳米管束致密化后顶端的尺寸要小于无铅焊料所在区域的大小时,停止致密化处理。在其他实施例中,也可以采用其他方法进行致密化处理,例如可以是把碳纳米管阵列的一端浸入有机溶剂中,待溶剂挥发后使其收缩的处理方式或者是将碳纳米管阵列置于有机溶剂的蒸汽中使其收缩的处理方式。
在步骤S204中,在致密化后的碳纳米管束阵列表面溅射钛/金薄膜B401。具体地,在其先溅射0.2μm金属钛薄膜,然后再溅射2μm金属金薄膜。溅射形成的薄膜如图14中B401所示。
所述碳纳米管束转移到半导体基底的方法包括以下步骤:
在步骤S301至S303中,完成基底焊盘与生成的致密纳米管的融合。具体地,首先把有接触焊盘的半导体基底A100加热到240℃,使其内部电镀的无铅焊料A601熔化,然后倒置生长有碳纳米管束阵列的半导体基底B100于有接触焊盘的半导体基底A100之上,如图14所示,并使碳纳米管束B302的顶端与无铅焊料金属薄膜A601对准,接着把碳纳米管束B302的顶端压入熔融的无铅焊料金属A601中,最后降低温度只室温使无铅焊料A601固化。
在步骤S304中,移除生长碳纳米管束阵列的半导体基底B100,如图15所示。
在步骤S305中,再次对碳纳米管束进行致密化处理。具体方法为,首先把融合碳纳米管束B301的半导体基底倒置于装有丙酮溶剂的装置上方,然后加热丙酮溶剂使之产生蒸汽,并使蒸汽通过碳纳米管束,当碳纳米管束密度达到所要求密度时,停止致密化处理,如图16所示的碳纳米管束B303。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。

Claims (15)

1.一种制作碳纳米管柔性微凸点的方法,该方法包括以下步骤:
1)制作半导体基底接触焊盘;
2)制作致密化的碳纳米管束,其特征在于,对在金属薄膜(B201)上生长的垂直碳纳米管束阵列(B301)进行致密化处理;
3)将碳纳米管束转移到半导体基底上,其特征在于,在移除碳纳米管束阵列的生长基底(B100)后再次对碳纳米管束阵列进行致密化处理,完成碳纳米管束转移和碳纳米管柔性凸点的制作。
2.根据权利要求1所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述制作半导体基底接触焊盘的过程具体包括以下步骤:
a)提供半导体基底(A100);
b)在所述半导体基底(A100)上制作金属再布线层(A203)和金属焊盘(A202);
c)制作钝化层(A301)并对其进行图形化;
d)制作种子层和底层金属层(A401);
e)涂覆光刻胶(A501),并进行光刻;
f)电镀无铅焊料(A601);
g)去除光刻胶并剥离种子层和底层金属层。
3.根据权利要求1所属的制作碳纳米管柔性微凸点的方法,其特征在于,所述制作致密化的碳纳米管束的方法具体包括以下步骤:
h)提供基地半导体基底(B100);
i)在所述半导体基底(B100)上制作金属薄膜(B201)并进行图形化;
j)在金属薄膜(B201)上生长垂直碳纳米管束(B301);
k)对碳纳米管束阵列(B301)进行致密化处理;
l)在碳纳米管束表面溅射钛/金薄膜(B401)。
4.根据权利要求1所属的制作碳纳米管柔性微凸点的方法,其特征在于,所述将碳纳米管束转移到半导体基底上的具体方法包括以下步骤:
m)加热半导体基底(A100)使其内部电镀的无铅焊料熔化;
n)倒置生长碳纳米管束阵列的半导体基底(B100),并使碳纳米管束(B301)顶端与无铅焊料金属薄膜(A601)一一对准;
o)把碳纳米管束(B301)压入熔融的无铅焊料中,降低温度使无铅焊料固化;
p)移除碳纳米管束阵列的生长基底(B100);
q)再次对碳纳米管束阵列进行致密化处理,完成碳纳米管束转移和碳纳米管柔性凸点的制作。
5.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,在制造过程中通过低温转移方式把生长在其它基底上的碳纳米管束经过致密化处理后移植到半导体基底上。
6.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述用于转移碳纳米管束的半导体基底(A100)和(B100)可以是有源芯片或无源芯片。
7.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述再布线层和金属焊盘的材料可以是铜,铝或其他金属材料。
8.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述钝化层(A301)材料可以是二氧化硅,氮化硅,聚酰亚胺等绝缘材料。
9.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述种子层和底层金属层(A401)为钛/铜。
10.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述无铅焊料可以是锡,铟,锡银,锡银铜,锡铋,铟铋等低熔点金属或合金。
11.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述金属催化剂可以是铁,镍或钴等金属。
12.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述垂直碳纳米管束阵列的制作方法可以是热化学气相沉积法或等离子体增强化学气相沉积法。
13.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述碳纳米管阵列的致密化处理方法可以是把碳纳米管阵列的一端浸入有机溶剂中,待溶剂挥发后使其收缩的处理方式或者是将碳纳米管阵列置于有机溶剂的蒸汽中使其收缩的处理方式。
14.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述碳纳米管束致密化后顶端的尺寸要小于无铅焊料所在区域的大小。
15.根据权利要求1至4所述的制作碳纳米管柔性微凸点的方法,其特征在于,所述施加的加热温度要高于无铅焊料的熔点。
CN201310317189.2A 2013-07-25 2013-07-25 一种采用转移法制作碳纳米管柔性微凸点的方法 Active CN103367185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310317189.2A CN103367185B (zh) 2013-07-25 2013-07-25 一种采用转移法制作碳纳米管柔性微凸点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310317189.2A CN103367185B (zh) 2013-07-25 2013-07-25 一种采用转移法制作碳纳米管柔性微凸点的方法

Publications (2)

Publication Number Publication Date
CN103367185A true CN103367185A (zh) 2013-10-23
CN103367185B CN103367185B (zh) 2016-03-09

Family

ID=49368266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310317189.2A Active CN103367185B (zh) 2013-07-25 2013-07-25 一种采用转移法制作碳纳米管柔性微凸点的方法

Country Status (1)

Country Link
CN (1) CN103367185B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928358A (zh) * 2014-04-14 2014-07-16 河南省科学院应用物理研究所有限公司 一种垂直碳纳米管阵列向金属衬底转移的方法
CN103928359A (zh) * 2014-04-14 2014-07-16 河南省科学院应用物理研究所有限公司 一种垂直碳纳米管阵列与金属基底键合的方法
CN104085875A (zh) * 2014-06-06 2014-10-08 华为技术有限公司 一种高密度碳纳米管阵列的制备方法
CN114057184A (zh) * 2020-07-31 2022-02-18 北京大学 一种自支撑碳纳米管薄膜靶的密度调控方法和制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894773A (zh) * 2009-11-30 2010-11-24 上海上大瑞沪微系统集成技术有限公司 碳纳米管凸点的制备方法
CN101916735A (zh) * 2010-07-19 2010-12-15 江阴长电先进封装有限公司 碳纳米管团簇作芯片凸点的倒装芯片封装结构的制作方法
CN102569181A (zh) * 2011-12-15 2012-07-11 中国科学院微电子研究所 一种碳纳米管束垂直互连的制作方法
CN102683265A (zh) * 2011-03-15 2012-09-19 中国科学院微电子研究所 一种将碳纳米管束填充到硅转接板的硅穿孔中的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894773A (zh) * 2009-11-30 2010-11-24 上海上大瑞沪微系统集成技术有限公司 碳纳米管凸点的制备方法
CN101916735A (zh) * 2010-07-19 2010-12-15 江阴长电先进封装有限公司 碳纳米管团簇作芯片凸点的倒装芯片封装结构的制作方法
CN102683265A (zh) * 2011-03-15 2012-09-19 中国科学院微电子研究所 一种将碳纳米管束填充到硅转接板的硅穿孔中的方法
CN102569181A (zh) * 2011-12-15 2012-07-11 中国科学院微电子研究所 一种碳纳米管束垂直互连的制作方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928358A (zh) * 2014-04-14 2014-07-16 河南省科学院应用物理研究所有限公司 一种垂直碳纳米管阵列向金属衬底转移的方法
CN103928359A (zh) * 2014-04-14 2014-07-16 河南省科学院应用物理研究所有限公司 一种垂直碳纳米管阵列与金属基底键合的方法
CN103928359B (zh) * 2014-04-14 2016-08-17 河南省科学院应用物理研究所有限公司 一种垂直碳纳米管阵列与金属基底键合的方法
CN104085875A (zh) * 2014-06-06 2014-10-08 华为技术有限公司 一种高密度碳纳米管阵列的制备方法
CN104085875B (zh) * 2014-06-06 2016-08-24 华为技术有限公司 一种高密度碳纳米管阵列的制备方法
CN114057184A (zh) * 2020-07-31 2022-02-18 北京大学 一种自支撑碳纳米管薄膜靶的密度调控方法和制备装置
CN114057184B (zh) * 2020-07-31 2023-06-09 北京大学 一种自支撑碳纳米管薄膜靶的密度调控方法和制备装置

Also Published As

Publication number Publication date
CN103367185B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
TWI398508B (zh) 片狀結構及製造片狀結構之方法
US9837372B1 (en) Wafer-level die to package and die to die interconnects suspended over integrated heat sinks
TWI564980B (zh) 以奈米結構連接和結合相鄰層
US8304291B2 (en) Semiconductor chip thermal interface structures
JP6127417B2 (ja) 放熱材料の製造方法
TW201041058A (en) Semiconductor device and method of providing z-interconnect conductive pillars with inner polymer core
US20130062764A1 (en) Semiconductor package with improved pillar bump process and structure
JP5212253B2 (ja) シート状構造体の製造方法
TW200926312A (en) Wafer level package integration and method
CN103367185B (zh) 一种采用转移法制作碳纳米管柔性微凸点的方法
JP7248659B2 (ja) アンダー・バンプ・メタライゼーション構造体を含む構造体、デバイスを含むシステムおよびデバイスを形成する方法
TWI798984B (zh) 具有重分佈結構的半導體元件及其製備方法
JP5636654B2 (ja) カーボンナノチューブシート構造体およびその製造方法、半導体装置
JP5013116B2 (ja) シート状構造体及びその製造方法並びに電子機器
CN104862701B (zh) 一种采用多层微米、亚微米薄膜快速制备可高温服役全imc微焊点的方法
JPWO2015097878A1 (ja) シート状構造体、これを用いた電子機器、シート状構造体の製造方法、及び電子機器の製造方法
US9159687B2 (en) Solder bump for ball grid array
US9644128B2 (en) Carbon nanotube sheet, electronic device, method of manufacturing carbon nanotube sheet, and method of manufacturing electronic device
Ji et al. Fabrication and mechanical properties improvement of micro bumps for high-resolution micro-LED display application
CN101894773B (zh) 碳纳米管凸点的制备方法
US11545453B2 (en) Semiconductor device with barrier layer and method for fabricating the same
CN101908494B (zh) 用于微电子封装的碳纳米管凸点的低温转印方法
CN111554582B (zh) 一种芯片封装方法和芯片封装器件
Kim et al. The effect of fillers in nonconductive adhesive on the reliability of chip-on-glass bonding with Sn/Cu bumps
TW200408092A (en) Self-assembled nanometer conductive bump and its manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NATIONAL CENTER FOR ADVANCED PACKAGING

Free format text: FORMER OWNER: INST OF MICROELECTRONICS, C. A. S

Effective date: 20150302

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100029 CHAOYANG, BEIJING TO: 214135 WUXI, JIANGSU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20150302

Address after: 214135 Jiangsu New District of Wuxi, Taihu international science and Technology Parks Linghu Road No. 200 China Sensor Network International Innovation Park building D1

Applicant after: National Center for Advanced Packaging Co.,Ltd.

Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3

Applicant before: Institute of Microelectronics of the Chinese Academy of Sciences

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170821

Address after: 200331 room 155-2, ginkgo Road, Shanghai, Putuo District, China, 4

Patentee after: Shanghai State Intellectual Property Services Co.,Ltd.

Address before: 214135 Jiangsu New District of Wuxi, Taihu international science and Technology Parks Linghu Road No. 200 China Sensor Network International Innovation Park building D1

Patentee before: National Center for Advanced Packaging Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191210

Address after: 214028 Jiangsu New District of Wuxi City Linghu Road No. 200 Chinese Sensor Network International Innovation Park building D1

Patentee after: National Center for Advanced Packaging Co.,Ltd.

Address before: 200331 room 155-2, ginkgo Road, Shanghai, Putuo District, China, 4

Patentee before: Shanghai State Intellectual Property Services Co.,Ltd.