CN103341183B - 纳米氧化钨wo2.9在ct造影剂材料中的应用 - Google Patents

纳米氧化钨wo2.9在ct造影剂材料中的应用 Download PDF

Info

Publication number
CN103341183B
CN103341183B CN201310234207.0A CN201310234207A CN103341183B CN 103341183 B CN103341183 B CN 103341183B CN 201310234207 A CN201310234207 A CN 201310234207A CN 103341183 B CN103341183 B CN 103341183B
Authority
CN
China
Prior art keywords
contrast agent
tungsten oxide
imaging
contrast
contrast medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310234207.0A
Other languages
English (en)
Other versions
CN103341183A (zh
Inventor
杨仕平
孔斌
周治国
张红卫
崔晓贞
魏杰
张钖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201310234207.0A priority Critical patent/CN103341183B/zh
Publication of CN103341183A publication Critical patent/CN103341183A/zh
Application granted granted Critical
Publication of CN103341183B publication Critical patent/CN103341183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明的目的致力于需找一种X射线CT成像造影剂。本研究中利用较小尺寸的氧化钨纳米棒,进行生物体的CT成像,无论是从溶液,还是从活体而言,成像效果都非常明显,并且较传统的X射线CT成像造影剂要优。首先,材料尺寸较小。其次,毒性较小,生物相容性较好。另外,相同溶度条件下,该材料较传统的碘造影剂造影效果要好,若想得到相同的造影效果,所需的钨材料浓度就相对要小,降低材料对生物体毒性的同时,增强了造影效果。就此而言,WO2.9在CT造影方面具有很好的应用前景。

Description

纳米氧化钨WO2.9在CT造影剂材料中的应用
技术领域
本发明属于造影剂领域,具体涉及氧化钨纳米材料在肿瘤CT造影方面的应用。 
背景技术
随着分子影像技术的日益趋向成熟,CT造影已经被很好的应用于医学领域。现有的一些成像技术包括磁共振成像(MRI)、微计算机断层成像(CT)、超声成像、光学成像、红外热成像、正电子衍射成像、单电子衍射成像等。 
人体各种组织X线的吸收不等,CT利用这一性质进行成像。CT图像,一方面是观察解剖结构,另一方面是了解密度变化。后者可以通过测定CT值而知,亦可与周围组织的密度对比观察。人体内肿瘤组织因部位、代谢、生长及伴随情况不同,其密度变化各异。CT对组织的密度分辨率较高,且为横断面扫描,提高了肿瘤诊断的准确率。同时,虽然CT较普通X射线造影有更高的密度分辨率,但有些病变与正常组织间的密度差异很小,需要利用某些使造影增强的物质,既造影剂,以帮助诊断。CT扫描造影剂可分为两类:一类为用于空腔脏器造影剂,另一类为静脉注射造影剂。现在医学上普遍应用的为含碘的有机试剂,如碘普胺、碘曲仑、碘克沙醇、碘海醇、碘帕醇、碘 佛醇等等。 
现今,由于各种疾病的突发,以及对于人体健康关注度的提高,人们对于医疗需求越来越大,包括对于医药与治疗检测手段等的需求。CT由于其无创伤性检查,检查方便、迅速,很高的密度分辨率,密度相差5~6Hu的不同组织能被区分,图像清晰,解剖关系明确,能提供没有组织重叠的横断面图像,并可进行冠状面和矢状面图像的重建,另外,利用造影剂增强扫描,不仅可以提高病变的发现率,而且对于某些病变可进行诊断。 
钨元素在100KeV条件下对于X射线的吸收系数为4.438cm2/g,而对于医学领域常用的碘代试剂碘元素中,在此条件下对于X射线的吸收系数为1.94cm2/g,理论上,相同条件下含钨元素的材料比传统的碘代试剂X射线CT成像效果要好。 
发明内容
本发明的目的在于利用纳米WO2.9具有较大的X射线吸收系数,能够很好地吸收X射线,探讨将其用于CT造影剂材料制备中的可能性。 
本发明的目的可以通过以下技术方案来实现: 
(1)制备纳米氧化钨WO2.9:将钨酸分散于苯醚中,在搅拌条件下滴加油醇,在惰性气体或氮气保护下升温至280℃-300℃,反应5-120min,冷却,离心分离,得纳米氧化钨WO2.9; 
(2)对所制备的纳米氧化钨WO2.9进行修饰:取甲氧基聚乙二醇酸溶解于氯仿中,将所得纳米氧化钨WO2.9加入其中,搅拌12-14小 时,反应结束后,离心分离,将所得到的样品分散于水中保存。 
步骤(1)中钨酸、油醇与苯醚的质量体积比1mg:0.001-1.5mL:0.001-1.5mL。 
步骤(2)中钨元素与甲氧基聚乙二醇酸和氯仿的用量比为(5×10-4-1×10-3mmol):(1mg):(0.01-0.6mL)。 
对比所得样品与现在医学中常用的X射线CT造影剂(碘海醇)溶液中的造影效果; 
其次,将等元素质量浓度的样品材料与传统造影剂注入活体内,对其活体成像进行比较。 
结果表明,本发明中所用材料本身在磷酸缓冲溶液、血清中具有较好的分散性,稳定性,较小的毒副作用。 
本发明通过将WO2.9纳米材料用甲氧基聚乙二醇酸(分子量:2000)进行修饰,从而使其能够应用于生物体内;通过观察其X射线成像效果,得到了一种较传统的CT成像造影剂造影效果更好的新型CT造影剂。 
与现有技术相比,本发明有益效果在于: 
1、WO2.9纳米材料合成易得,对生物体的毒副作用较小,材料尺寸、溶解性、稳定性、生物相容性好; 
2、WO2.9纳米材料在溶液以及生物体内成像效果明显,用其制备的CT造影剂明显优于传统的碘代CT造影剂。 
附图说明
图1是本发明中用WO2.9纳米材料制得的CT造影剂的透射电镜 图。 
图2是本发明中用WO2.9纳米材料制得的CT造影剂的粒径分布图(宽度)。 
图3是本发明中用WO2.9纳米材料制得的CT造影剂的粒径分布图(长度)。 
图4是本发明中用WO2.9纳米材料制得的CT造影剂的不同浓度的MTT细胞毒性测试图。 
图5是本发明中用WO2.9纳米材料制得的CT造影剂及医用碘海醇在溶液中不同浓度的成像图。 
图6是本发明中用WO2.9纳米材料制得的CT造影剂及医用碘海醇在溶液中不同浓度的HU值拟合图。 
图7是本发明中用WO2.9纳米材料制得的CT造影剂及医用碘海醇在裸鼠体内的X射线CT成像图。 
图8是本发明中用WO2.9纳米材料制得的CT造影剂及医用碘海醇在裸鼠体内的X射线CT成像图(2D图)。 
图9是本发明中用WO2.9纳米材料制得的CT造影剂及医用碘海醇在裸鼠体内的X射线CT成像图(3D重建图)。 
具体实施方式
下面结合具体实施例,进一步阐述本发明。 
实施例: 
(1)称取钨酸187.38mg,放入圆底烧瓶中,加入30mL苯醚,将其尽可能分散然后取20mL油醇,搅拌条件下加入上述溶液中;滴加完成后,给装置排空气,惰性气体或氮气环境下再给反应物升温,温度升高到280℃,反应1h;冷却,离心分离。即可得到油溶性氧化钨WO2.9纳米棒。改性时,取100mg甲氧基聚乙二醇酸溶解于15mL氯仿中,再将0.094mmol WO3-X加入其中,搅拌12h,反应结束后,离心分离,将所得到的样品分散于水中; 
(2)将样品及碘海醇分别配制成0、0.4375、0.875、1.75、3.5、7、14、28mg W或I/mL,置于通用电器生产的64排容积CT产品Light Speed VCT上进行扫描测试。主要参数设定如下:层厚,0.625mm;间距,0.984:1;电压,80kVp;电流500mA;像素512×512;机架旋转时间0.4s;旋转速度为40mm/转; 
(3)活体实验:选择前肢腋下接有肿瘤的裸鼠(每只约20g),注射样品前,给裸鼠进行一次扫描(空白对照),扫描结束后,按20mg W/kg的剂量给小鼠肿瘤进行注射,浓度为4mg/mL,0.1mL,注射后,进行CT扫描。扫描仪器是西门子公司生产的复旦肿瘤医院小动物PET/CT成像仪。主要参数设定如下:电压60kVp;电流500μA;像素512×512;机架旋转时间2s;曝光时间1.5s,采用FPD重建算法。 
图1为本实施例中制得的CT造影剂的TEM图,从TEM图可以看出,所合成的CT造影剂粒径分布较均匀,颗粒较小。 
图2和图3为本实施例的粒径分布图,图中可以看出,所合成 CT造影剂的宽度为4.4±1.0,长度为9.8±1.1,CT造影剂的粒径较小,满足生物应用的条件之一。 
图4为本实施例CT造影剂的细胞毒性测试,可以发现,材料毒性比较小,可进行生物应用。 
图5为本实施例CT造影剂的与医用造影剂碘海醇,在溶液中不同浓度条件下的X射线CT成像图,从成像图可以直观看出,CT造影剂的X射线CT成像效果要优于传统的医用试剂碘海醇的X射线CT成像效果。 
图6为本实施例CT造影剂的与医用造影剂碘海醇,在溶液中不同浓度条件下的X射线的CT值,从拟合值而言,本材料要优于碘海醇。 
图7、图8、图9为本实施例CT造影剂及碘海醇用于裸鼠活体肿瘤的CT成像图,可以看出,本实施例的CT造影剂其成像效果非常明显,可以被很好地应用于X射线CT成像(图像从左到右分别是横断面、冠状面、矢状面)。 
上述实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。 

Claims (3)

1.一种CT造影剂材料的制备方法,其特征在于,包括以下步骤:
(1)制备纳米氧化钨WO2.9:将钨酸分散于苯醚中,在搅拌条件下滴加油醇,在惰性气体或氮气保护下升温至280℃-300℃,反应5-120min,冷却,离心分离,得纳米氧化钨WO2.9
(2)对所制备的纳米氧化钨WO2.9进行修饰:取甲氧基聚乙二醇酸溶解于氯仿中,将所得纳米氧化钨WO2.9加入其中,搅拌12-14小时,反应结束后,离心分离,将所得到的样品分散于水中保存。
2.权利要求1中所述的CT造影剂材料的制备方法,其特征在于,步骤(1)中钨酸、油醇与苯醚的质量体积比1mg:0.001-1.5mL:0.001-1.5mL。
3.权利要求1中所述的CT造影剂材料的制备方法,其特征在于,步骤(2)中钨元素与甲氧基聚乙二醇酸和氯仿的用量比为(5×10-4-1×10-3mmol):(1mg):(0.01-0.6mL)。
CN201310234207.0A 2013-06-13 2013-06-13 纳米氧化钨wo2.9在ct造影剂材料中的应用 Expired - Fee Related CN103341183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310234207.0A CN103341183B (zh) 2013-06-13 2013-06-13 纳米氧化钨wo2.9在ct造影剂材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310234207.0A CN103341183B (zh) 2013-06-13 2013-06-13 纳米氧化钨wo2.9在ct造影剂材料中的应用

Publications (2)

Publication Number Publication Date
CN103341183A CN103341183A (zh) 2013-10-09
CN103341183B true CN103341183B (zh) 2015-03-18

Family

ID=49276041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310234207.0A Expired - Fee Related CN103341183B (zh) 2013-06-13 2013-06-13 纳米氧化钨wo2.9在ct造影剂材料中的应用

Country Status (1)

Country Link
CN (1) CN103341183B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611170B (zh) * 2013-11-21 2015-08-26 南通南京大学材料工程技术研究院 兼具光热治疗和ct造影能力的w18o49纳米颗粒的制备方法
US9989482B2 (en) * 2016-02-16 2018-06-05 General Electric Company Methods for radiographic and CT inspection of additively manufactured workpieces
CN110507829B (zh) * 2019-07-31 2021-08-31 湖北大学 铁钨复合氧化物纳米晶团簇的制备方法及其应用
CN115645605B (zh) * 2022-12-05 2024-04-26 苏州大学 一种显影骨水泥及制备方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300032A (zh) * 2005-11-02 2008-11-05 通用电气公司 用于x-射线/计算层析x射线照相术的基于纳米颗粒的显像剂
US9149545B2 (en) * 2005-11-02 2015-10-06 General Electric Company Nanoparticle-based imaging agents for X-ray/computed tomography and methods for making same

Also Published As

Publication number Publication date
CN103341183A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
Song et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties
Zhang et al. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging
Zhang et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy
Xing et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging
Wang et al. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy
Cai et al. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice
Perlman et al. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging
Wu et al. Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging
Park et al. Bi 2 Se 3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm
Astolfo et al. In vivo visualization of gold-loaded cells in mice using x-ray computed tomography
Yi et al. PEGylated NaLuF4: Yb/Er upconversion nanophosphors for in vivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking
Gao et al. Liquid metal biomaterials for biomedical imaging
CN104689346B (zh) 用于肿瘤mri/ct成像和光热治疗的多功能纳米探针及应用
CN103341183B (zh) 纳米氧化钨wo2.9在ct造影剂材料中的应用
Cuccione et al. Multicolor spectral photon counting CT monitors and quantifies therapeutic cells and their encapsulating scaffold in a model of brain damage
Wu et al. Hyaluronic acid-functionalized gadolinium oxide nanoparticles for magnetic resonance imaging-guided radiotherapy of tumors
Kanakia et al. Towards an advanced graphene-based magnetic resonance imaging contrast agent: sub-acute toxicity and efficacy studies in small animals
Li et al. Spectral computed tomography with inorganic nanomaterials: State-of-the-art
Astolfo et al. A simple way to track single gold-loaded alginate microcapsules using x-ray CT in small animal longitudinal studies
Ma et al. Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba 4 Yb 3 F 17: Lu 3+, Gd 3+
Ha et al. Ions doped melanin nanoparticle as a multiple imaging agent
Mahvi et al. Rapid microwave-assisted synthesis of Bi2Te3 nanoflakes as an efficient contrast agent for X-ray computed tomography
CN109125744B (zh) 一种具有mri与ct双模态成像功能的钆掺杂氧化铪纳米颗粒的制备方法
Majeed Hameed et al. Comparison study between the contrast media of Iodine and Iodine nanoparticles in physicochemical properties in CT-scan imaging
US9786048B2 (en) System and method using precious-metal nanoparticle contrast agent for microwave medical imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150318

Termination date: 20180613