CN103339740A - 太阳能电池和制造该太阳能电池的方法 - Google Patents

太阳能电池和制造该太阳能电池的方法 Download PDF

Info

Publication number
CN103339740A
CN103339740A CN2011800660294A CN201180066029A CN103339740A CN 103339740 A CN103339740 A CN 103339740A CN 2011800660294 A CN2011800660294 A CN 2011800660294A CN 201180066029 A CN201180066029 A CN 201180066029A CN 103339740 A CN103339740 A CN 103339740A
Authority
CN
China
Prior art keywords
window layer
layer
solar cell
battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800660294A
Other languages
English (en)
Other versions
CN103339740B (zh
Inventor
崔撤焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of CN103339740A publication Critical patent/CN103339740A/zh
Application granted granted Critical
Publication of CN103339740B publication Critical patent/CN103339740B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能电池和制造该太阳能电池的方法。太阳能电池包括多个电池。每个电池包括基板、在所述基板上的背电极层、在所述背电极层上的光吸收层、在所述光吸收层上的缓冲层和在所述缓冲层上的窗口层。当每个电池的宽度是W1,并且所述窗口层的厚度是W2时,每个电池的所述宽度和所述窗口层的所述厚度满足公式W2=A×W1,其中A具有在约1×10-4至1.7×10-4的范围内的值。

Description

太阳能电池和制造该太阳能电池的方法
技术领域
本发明涉及一种太阳能电池和制造该太阳能电池的方法。
背景技术
最近,随着能源消耗的增长,开发了将太阳能转化成电能的太阳能电池。
具体地讲,广泛使用了基于CIGS的太阳能电池,其中基于CIGS的太阳能电池是具有支撑基板结构的PN异质结器件,支撑基板结构包括玻璃支撑基板、金属背电极层、P型基于CIGS的光吸收层、缓冲层和N型透明电极层。
此外,为了提高太阳能电池的效率,进行了各种研究。
发明内容
技术问题
实施例提供了一种太阳能电池和制造该太阳能电池的方法,该方法能通过将窗口层的厚度调节为相对于每个电池的宽度的预定比值来减小窗口层的厚度,以便提高生产率。
技术方案
根据实施例,太阳能电池包括多个电池。每个电池包括基板、在所述基板上的背电极层、在所述背电极层上的光吸收层、在所述光吸收层上的缓冲层和在所述缓冲层上的窗口层。当每个电池的宽度是W1,并且所述窗口层的厚度是W2时,每个电池的所述宽度和所述窗口层的所述厚度满足公式W2=A×W1,其中A具有在约1×10-4至1.7×10-4的范围内的值。
根据实施例,一种制造太阳能电池的方法包括:在基板上形成背电极层;在所述背电极层上形成光吸收层、缓冲层和窗口层;以及通过部分地去除所述光吸收层、所述缓冲层和所述窗口层来形成多个通孔以限定多个窗口和电池。当每个电池的宽度是W1,并且所述窗口层的厚度是W2时,每个电池的所述宽度和和所述窗口层的所述厚度满足公式W2=A×W1,其中A具有在约1×10-4至1.7×10-4的范围内的值。
有益效果
如上所述,可以通过将窗口层的厚度调节为相对于每个电池的宽度的预定比值来减小窗口层的厚度,从而可以提高生产率。
此外,可以通过减小窗口的厚度来提高透光率,从而可以提高光电转换效率。
附图说明
图1是示出了根据实施例的太阳能电池装置的平面图;
图2是沿着图1的A-A′线截取的剖面图;以及
图3至6是示出了根据实施例的一种制造太阳能电池的方法的剖面图。
具体实施方式
在实施例的描述中,可以理解,当层(或薄膜)、部位、图案或结构被称为在另一个基板、另一个层(或薄膜)、另一个部位、另一个片或另一个图案“上”或“下”时,它可以“直接”或“间接”在其他基板、层(或薄膜)、部位、片或图案上,或者还可以存在一个或多个中间层。已经参照附图描述了这种层的位置。为了方便或清晰的目的,可以放大、省略或示意地图示附图中示出的每个层的厚度和大小。此外,元件的大小并不完全反映实际大小。
图1是示出了根据实施例的太阳能电池装置的平面图。图2是沿着图1的A-A′线截取的剖面图。
参见图2,根据实施例的太阳能电池包括支撑基板100、支撑基板100上的背电极层200、背电极层200上的光吸收层300、光吸收层300上的缓冲层400和高电阻缓冲层500以及高电阻缓冲层500上的窗口层600。
支撑基板100具有平板形状并且支撑背电极层200、光吸收层300、缓冲层400、高电阻缓冲层500和窗口层600。
支撑基板100可以包括绝缘体。支撑基板100可以包括玻璃基板、塑料基板或金属基板。更详细地讲,支撑基板100可以包括钠钙玻璃基板。
如果支撑基板100包括钠钙玻璃,则在制造太阳能电池时,包含在钠钙玻璃中的钠(Na)可以扩散到包括CIGS的光吸收层300中。因此,可以增加光吸收层300的电荷浓度。因此,可以提高光电转换效率。
此外,支撑基板100可以包括陶瓷基板,该陶瓷基板包括氧化铝、不锈钢或有弹性的聚合物。因此,支撑基板100可以是透明度、刚性的或柔性的。
背电极层200设置在支撑基板100上。背电极层200是导电层。背电极层200移动从太阳能电池的光吸收层300产生的电荷使得电流可以流动到太阳能电池的外面。背电极层200必须表现出高电导率或低电阻率以实现所述功能。
当在形成CIGS化合物的硫(S)或硒(Se)的气氛中进行热处理过程时,背电极层200必须维持高温条件下的稳定性。此外,背电极层200必须表现出相对于支撑基板100的更加优良的粘附性,使得背电极层200不会由于背电极层200与支撑基板100之间的热膨胀系数的差异而与支撑基板100层离。
背电极层200可以包括选自以下各项组成的组中之一:钼(Mo)、金(Au)、铝(Al)、铬(Cr)、钨(W)和铜(Cu)。其中,与其他元素相比,Mo表现出相对于支撑基板100的低的热膨胀系数差异。因此,Mo表现出相对于支撑基板100的更加优良的粘附性以防止背电极层200与支撑基板100层离。此外,Mo满足背电极层200所需的特性。
背电极层200可以包括至少两个层。在这种情况下,这些层包括相同的金属或不同的金属。
第一通孔TH1形成在背电极层200中。第一通孔TH1是开口区域以露出支撑基板100的一部分上表面。当在平面观看时,第一通孔TH1可以在一个方向上延伸。
露出穿过第一通孔TH1的支撑基板100的宽度可以在约80μm至约200μm的范围内。
背电极层200被第一通孔TH1划分成多个背电极。换句话讲,背电极由第一通孔TH1限定。
背电极布置成条带形式。此外,背电极可以布置成矩阵形式。在这种情况下,当在平面观看时,第一通孔TH1可以形成为格子形式。
光吸收层300可以形成在背电极层200上。光吸收层300包括P型半导体化合物。更具体地讲,光吸收层300包括I-III-V族化合物。例如,光吸收层300可以具有基于Cu-In-Ga-Se的晶体结构(Cu(In,Ga)Se2,CIGS)、基于Cu-In-Se的晶体结构或基于Cu-Ga-Se的晶体结构。
缓冲层400和高电阻缓冲层500可以形成在光吸收层300上。在包括构成光吸收层300的CIGS化合物的太阳能电池中,PN结形成在包括P型半导体的CIGS化合物薄膜与包括N型半导体的窗口层600之间。然而,由于以上两种材料的晶格常数和带隙能量表现出很大差异,所以需要具有所述两种材料的带隙之间的中间带隙的缓冲层,以便形成优良的结。
缓冲层400包括CdS或ZnS,并且CdS表现出更高的太阳能电池的发电效率。
高电阻缓冲层500包括不掺杂杂质的i-ZnO。高电阻缓冲层500的能量带隙在约3.1eV至约3.3eV的范围内。
窗口层600形成在高电阻缓冲层500上。窗口层600是透明导电层。此外,窗口层600的电阻大于背电极层200的电阻。
窗口层600包括氧化物。例如,窗口层600可以包括氧化锌、铟锡氧化物或铟锌氧化物(IZO)。
此外,氧化物可以包括导电杂质,例如铝(Al)、氧化铝(Al2O3)、镁(Mg)或镓(Ga)。更具体地讲,窗口层600可以包括掺铝氧化锌(AZO)或掺镓氧化锌(GZO)。
根据现有技术,窗口层600的厚度W2相对于每个电池C1、C2...或Cn的宽度形成恒定的比值。例如,这由以下公式表示。
公式
W2=A×W1
换句话讲,如果每个电池C1、C2...或Cn的宽度W1是3mm,则窗口层600的厚度W2为600nm。换句话讲,如果每个电池C1、C2...或Cn的宽度W1是4mm,则窗口层600的厚度W2为800nm。换句话讲,如果每个电池C1、C2...或Cn的宽度W1是5mm,则窗口层600的厚度W2为1000nm。
根据现有技术,如上所述,由于窗口层600的厚度W2比每个电池C1、C2...或Cn的宽度厚,所以需要在生产成本和时间上进行改进。此外,由于窗口层600的厚度W2降低了透射率。
此外,如果窗口层600的厚度W2增加,当形成第三通孔TH3时,由于窗口层600的颗粒而可能出现短路。
此外,如果减小每个电池C1、C2...或Cn的宽度W1,则可以增大开路电压Voc。然而,与此同时,短路电流Isc减小,使得太阳能电池的效率会减小。如果过度减少每个电池C1、C2...或Cn的宽度W1,则可以减小开路电压Voc。就这一点而言,每个电池C1、C2...或Cn的宽度W1可以优选地形成为在约3mm至约6mm的范围内的厚度。
以下表示了将每个电池C1、C2...或Cn的宽度W1和窗口层600的厚度W2的范围优化的公式,该范围能提高生产率。
公式
W2=A×W1
在此公式中,如果A的值减小到1×10-4或更小,则窗口层600的电阻特性会降低。如果A的值增加到1.5×10-4或更大,则窗口层600的厚度W2增加,使得透光率减小并且生产的成本增加。
每个电池C1、C2...或Cn的宽度W1指的是一个第三通孔TH3与相邻的第三通孔TH3之间的距离。
因此,A可以具有1×10-4至1.7×10-4的值。优选地,A可以具有1.2×10-4至1.3×10-4的值。
换句话讲,如果每个电池C1、C2...或Cn的宽度W1是3mm,则窗口层600的厚度W2是375nm。换句话讲,如果每个电池C1、C2...或Cn的宽度W1是4mm,则窗口层600的厚度W2是500nm。换句话讲,如果每个电池C1、C2...或Cn的宽度W1是5mm,则窗口层600的厚度W2是625nm。
根据实施例,通过将窗口层600的厚度W2调节为相对于每个电池的宽度W1的预定比值以减小窗口层600的厚度W2,以便可以提高生产率。
可以通过减小窗口层的厚度来提高透光率,从而可以提高光电转换效率。
图3至6是示出了根据实施例的一种制造太阳能电池装置的方法的剖面图。将根据太阳能电池装置的描述来描述制造太阳能电池装置的方法。
参见图3,在支撑基板100上形成背电极层200之后,背电极层200被图案化,从而形成第一通孔TH1。因此,在支撑基板100上形成多个背电极。使用激光使背电极层200图案化。
第一通孔TH1露出支撑基板100的上表面,并且可以具有在约80μm至约200μm的范围内的宽度。
此外,诸如抗扩散层的附加层可以插置在支撑基板100与背电极层200之间。在这种情况下,第一通孔TH1露出附加层的上表面。
例如,第一通孔TH1可以通过波长在约200nm至约600nm的范围内的激光束来形成。
参见图4,光吸收层300、缓冲层400和高电阻缓冲层500形成在背电极层200上。
光吸收层300可以通过溅射方法或蒸发方法来形成。
例如,光吸收层300可以通过各种方法来形成,例如,通过同时或单独地蒸发Cu、In、Ga和Se来形成基于Cu(In,Ga)Se2(CIGS)的光吸收层300的方法以及在形成了金属前驱膜之后执行硒化过程的方法。
关于在形成了金属前驱膜之后执行硒化过程的细节,通过采用Cu靶、In靶或Ga靶的溅射过程在后接触电极200上形成金属前驱膜。
此后,金属前驱膜经过硒化过程,从而形成基于Cu(In,Ga)Se2(CIGS)的光吸收层300。
与上述不同,可以同时执行采用Cu靶、In靶或Ga靶的溅射过程和硒化过程。
此外,可以通过只采用Cu靶和In靶或只采用Cu靶和Ga靶的溅射过程以及硒化过程来形成CIS或CIG的光吸收层300。
此后,可以在通过溅射过程或CBD(化学浴沉积)方法来沉积硫化镉之后形成缓冲层400。
接下来,去除光吸收层300、缓冲层400和高电阻缓冲层500的一部分,从而形成第二通孔TH2。
第二通孔TH2可以通过诸如尖头工具的机械设备或激光来形成。
例如,可以通过宽度约40μm至约180μm的尖头工具将光吸收层300和缓冲层400图案化。此外,可以通过波长约200nm至约600nm的的激光器来形成第二通孔TH2。.
第二通孔TH2可以具有在约100μm至约200μm的范围内的宽度。
此外,第二通孔TH2露出背电极层200的一部分上表面。
参见图5,窗口层600形成在光吸收层300之上并且形成在第二通孔TH2的内部。换句话讲,通过将透明导电材料沉积在缓冲层400之上并且沉淀在第二通孔TH2内部来形成窗口层600。
在这种情况下,透明导电材料填充在第二通孔TH2的内部,并且窗口层600与背电极层200直接接触。
在这种情况下,可以通过在无氧的气氛中沉积透明导电材料来形成窗口层600。更具体地讲,可以通过在不含氧的惰性气体气氛下沉积AZO来形成窗口层600。此外,可以通过沉积掺镓和铝的氧化锌来形成窗口层600。
连接部700设置在第二通孔TH2内。连接部700从窗口层600向下延伸而与背电极层200接触。例如,连接部700从第一电池的窗口延伸而与第二电池的背电极接触。
因此,连接部700使相邻的电池互相连接。更具体地讲,连接部700使窗口层600与包括在相邻的电池C1、C2...和Cn内的背电极连接。
连接部700与窗口层600一体形成。更具体地讲,连接部700包括与构成窗口层600的材料相同的材料。
参见图6,去除缓冲层400、高电阻缓冲层500和窗口层600的一部分以形成第三通孔TH3。因此,窗口层600被图案化,从而限定多个窗口和多个电池C1、C2...和Cn。第三通孔TH3可以具有约80μm至约200μm的范围内的宽度。
如上所述,可以形成厚度减小的窗口层,从而提高生产率。此外,可以提高透光率,由此表现出改进的太阳能电池。
本说明书中涉及的“一个实施例”、“实施例”、“示例性实施例”等,表示结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。在说明书中不同位置的这些词语的出现不必要都指代同一实施例。此外,当结合任意实施例描述特定特征、结构或特性时,应当认为结合其它实施例实现这些特征、结构或特性在本领域技术人员的能力范围内。
尽管已参照本发明的若干示例性实施例描述了本发明,但是应该理解,本领域技术人员可以推导出的许多其它改进和实施例都将落在本公开的原理的精神和范围内。
更具体地,在本公开、附图和所附权利要求的范围内可以对所讨论的组合排列的组成部件和/或排列方式进行各种变型和改进。除了对组成部件和/或排列方式进行变型和改进之外,替换使用对本领域技术人员来说也是显而易见的。

Claims (7)

1.一种太阳能电池,所述太阳能电池包括多个电池,其中每个电池包括:
基板;
在所述基板上的背电极层;
在所述背电极层上的光吸收层;
在所述光吸收层上的缓冲层;以及
在所述缓冲层上的窗口层,并且
其中,当每个电池的宽度是W1,并且所述窗口层的厚度是W2时,每个电池的所述宽度和所述窗口层的所述厚度满足公式W2=A×W1,其中A具有在约1×10-4至1.7×10-4的范围内的值。
2.如权利要求1所述的太阳能电池,其中,所述窗口层的所述厚度是在约3mm至约6mm的范围内。
3.如权利要求1所述的太阳能电池,其中,所述窗口层包括选自由以下各项组成的组中的至少一种:氧化锌、铟锡氧化物(ITO)、铟锌氧化物(IZO)、掺铝氧化锌(AZO)和掺镓氧化锌(GZO)。
4.如权利要求1所述的太阳能电池,还包括形成在所述缓冲层与所述窗口层之间的高电阻缓冲层。
5.如权利要求1所述的太阳能电池,还包括形成在所述电池之间的多个通孔,其中每个通孔具有在约80μm至约200μm的范围内的宽度。
6.一种制造太阳能电池的方法,所述方法包括:
在基板上形成背电极层;
在所述背电极层上形成光吸收层、缓冲层和窗口层;以及
通过部分地去除所述光吸收层、所述缓冲层和所述窗口层来形成多个通孔以限定多个窗口和电池,
其中,当每个电池的宽度是W1,并且所述窗口层的厚度是W2时,每个电池的所述宽度和所述窗口层的所述厚度满足公式W2=A×W1,其中A具有在约1×10-4至1.7×10-4的范围内的值。
7.如权利要求6所述的方法,还包括在所述缓冲层与所述窗口层之间形成高电阻缓冲层。
CN201180066029.4A 2011-01-25 2011-10-06 太阳能电池和制造该太阳能电池的方法 Expired - Fee Related CN103339740B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110007530A KR101189415B1 (ko) 2011-01-25 2011-01-25 태양전지 및 이의 제조방법
KR10-2011-0007530 2011-01-25
PCT/KR2011/007401 WO2012102453A1 (en) 2011-01-25 2011-10-06 Solar cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN103339740A true CN103339740A (zh) 2013-10-02
CN103339740B CN103339740B (zh) 2016-01-06

Family

ID=46581005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180066029.4A Expired - Fee Related CN103339740B (zh) 2011-01-25 2011-10-06 太阳能电池和制造该太阳能电池的方法

Country Status (6)

Country Link
US (1) US20130220398A1 (zh)
EP (1) EP2619801A1 (zh)
JP (1) JP2014503128A (zh)
KR (1) KR101189415B1 (zh)
CN (1) CN103339740B (zh)
WO (1) WO2012102453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300017A (zh) * 2014-10-17 2015-01-21 中国科学技术大学 具有多孔高电阻层的薄膜太阳能电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287843A1 (en) * 2014-04-03 2015-10-08 Tsmc Solar Ltd. Solar cell with dielectric layer
KR101688401B1 (ko) 2014-10-31 2016-12-22 한국과학기술연구원 박막 태양전지의 제조 방법 및 모듈 구조
CN108807600A (zh) * 2018-07-10 2018-11-13 成都先锋材料有限公司 太阳能电池制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144946A (ja) * 1996-11-08 1998-05-29 Showa Shell Sekiyu Kk 薄膜太陽電池の透明導電膜及び該透明導電膜の製造 方法
JP2008103720A (ja) * 2006-10-19 2008-05-01 Emcore Corp キャップ層の局在化ドーピングを有する太陽電池構造体
KR20100133623A (ko) * 2009-06-12 2010-12-22 엘지이노텍 주식회사 태양광 발전장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0301350D0 (sv) * 2003-05-08 2003-05-08 Forskarpatent I Uppsala Ab A thin-film solar cell
JP2006013028A (ja) * 2004-06-24 2006-01-12 National Institute Of Advanced Industrial & Technology 化合物太陽電池及びその製造方法
US7838868B2 (en) * 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
JP2007012976A (ja) 2005-07-01 2007-01-18 Honda Motor Co Ltd 太陽電池モジュール
JP2007305876A (ja) 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 太陽電池モジュール
US20100236607A1 (en) * 2008-06-12 2010-09-23 General Electric Company Monolithically integrated solar modules and methods of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144946A (ja) * 1996-11-08 1998-05-29 Showa Shell Sekiyu Kk 薄膜太陽電池の透明導電膜及び該透明導電膜の製造 方法
JP2008103720A (ja) * 2006-10-19 2008-05-01 Emcore Corp キャップ層の局在化ドーピングを有する太陽電池構造体
KR20100133623A (ko) * 2009-06-12 2010-12-22 엘지이노텍 주식회사 태양광 발전장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300017A (zh) * 2014-10-17 2015-01-21 中国科学技术大学 具有多孔高电阻层的薄膜太阳能电池

Also Published As

Publication number Publication date
CN103339740B (zh) 2016-01-06
JP2014503128A (ja) 2014-02-06
KR20120086217A (ko) 2012-08-02
EP2619801A1 (en) 2013-07-31
WO2012102453A1 (en) 2012-08-02
KR101189415B1 (ko) 2012-10-10
US20130220398A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
CN105684160B (zh) 太阳能电池及其制造方法
US20110024793A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
CN105794000A (zh) 太阳能电池
CN104025308B (zh) 太阳能电池装置及其制造方法
CN102576758A (zh) 太阳能电池设备及其制造方法
EP2506312A1 (en) Solar cell
CN104272470A (zh) 太阳能电池及其制造方法
CN103339740B (zh) 太阳能电池和制造该太阳能电池的方法
KR101428146B1 (ko) 태양전지 모듈 및 이의 제조방법
CN103222068A (zh) 太阳能电池及其制造方法
CN104022179B (zh) 形成太阳能电池的缓冲层的方法和由此形成的太阳能电池
CN103988317A (zh) 太阳能电池及太阳能电池模块
US9748424B2 (en) Solar cell and preparing method of the same
KR101210046B1 (ko) 태양전지 및 이의 제조방법
KR101241708B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101173418B1 (ko) 태양전지 및 이의 제조방법
EP2600420A2 (en) Apparatus for generating electricity using solar power and method for manufacturing same
CN104106146A (zh) 太阳能电池组件及其制造方法
KR101405639B1 (ko) 태양전지 및 이의 제조 방법
KR20120085577A (ko) 태양전지 및 그의 제조방법
CN105789353A (zh) 具有掺杂缓冲层的太阳能电池和制造太阳能电池的方法
CN104254926A (zh) 光伏装置
KR101189366B1 (ko) 태양전지 및 이의 제조방법
KR101428147B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101326964B1 (ko) 태양전지 모듈 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106

Termination date: 20181006