CN103339259B - 用于在真菌细胞中表达基因的启动子 - Google Patents

用于在真菌细胞中表达基因的启动子 Download PDF

Info

Publication number
CN103339259B
CN103339259B CN201180066380.3A CN201180066380A CN103339259B CN 103339259 B CN103339259 B CN 103339259B CN 201180066380 A CN201180066380 A CN 201180066380A CN 103339259 B CN103339259 B CN 103339259B
Authority
CN
China
Prior art keywords
seqidno
promotor
polypeptide
sequence
polynucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180066380.3A
Other languages
English (en)
Other versions
CN103339259A (zh
Inventor
M.卡特利特
D.雅弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes Inc
Original Assignee
Novozymes Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novozymes Biotech Inc filed Critical Novozymes Biotech Inc
Priority to CN201510919712.8A priority Critical patent/CN105420267A/zh
Publication of CN103339259A publication Critical patent/CN103339259A/zh
Application granted granted Critical
Publication of CN103339259B publication Critical patent/CN103339259B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及分离的启动子,和包含可操作地连接于编码多肽的多核苷酸的此类启动子的构建体、载体和真菌宿主细胞。本发明亦涉及产生此类多肽的方法。

Description

用于在真菌细胞中表达基因的启动子
对相关申请的交叉引用
本申请要求2010年11月30日提交的美国临时申请系列号61/418,302的权益,该申请通过提述并入本文。
涉及序列表
本申请包含计算机可读形式的序列表。所述计算机可读形式通过提述并入本文。
发明背景
技术领域
本发明涉及产生多肽的方法。本发明亦涉及分离的启动子和涉及包含可操作地连接于编码多肽的多核苷酸的启动子的核酸构建体、载体和宿主细胞。
背景技术
在真菌宿主细胞,例如丝状真菌细胞中,多肽的重组表达,可对于以商业上相关的量产生所述多肽提供更理想的媒介(vehicle)。
多肽的重组产生伴随构建表达盒,其中将编码多肽的DNA置于启动子的表达调控下,所述启动子从基因切出并适于所述宿主细胞。将该表达盒导入宿主细胞,通常通过质粒介导的转化。然后,多肽的产生通过在包含在所述表达盒上的启动子的合适功能所需的诱导条件下培养经转化的宿主细胞来实现。
将真菌宿主细胞用于多肽的重组产生一般需要得到适于在宿主细胞中调控所述多肽表达的启动子。因此,在本领域具有对调控基因的重组表达的新颖启动子的需要。
Melin等,2002,Mol.Genet.Genomics267(6):695-702公开了构巢曲霉(Aspergillusnidulans)concanamycin(伴刀球霉素)诱导的蛋白C。Lu等,2010,Microb.CellFact.9:23公开了黑曲霉(Aspergillusniger)中的cipC蛋白。
本发明提供了改善的用于在真菌宿主细胞中产生多肽的方法。
发明内容
本发明涉及用于产生多肽的方法,其包括:(a)在有助于产生所述多肽的培养基中培养真菌宿主细胞,其中所述真菌宿主细胞包含编码多肽的多核苷酸,所述多核苷酸可操作地连接于启动子,所述启动子选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%序列同一性;(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联(tandom)启动子;其中所述编码多肽的多核苷酸对于所述启动子是外源的;和(b)从培养基分离所述多肽。
本发明亦涉及分离的启动子,其选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%序列同一性,(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联启动子。
本发明亦涉及包含可操作地连接于编码多肽的多核苷酸的本发明的启动子的构建体、载体和真菌宿主细胞。
附图说明
图1显示pHUda852的限制性图。
图2显示pMhCt036的限制性图。
图3显示来自黑曲霉889-852-47和黑曲霉cipC036.24的发酵的相对淀粉葡糖苷酶产率(yield)。
定义
等位变体(allelicvariant):术语“等位变体”意指占据相同染色体基因座的基因的任何两种或更多种(例如几种)可选形式。等位变异通过突变天然地发生,并且可导致种群内的多态性。基因突变可以是沉默的(在编码的多肽中无变化)或可以编码具有改变的氨基酸序列的多肽。多肽的等位变体是由基因的等位变体编码的多肽。
cDNA:术语“cDNA”意指能够通过反转录从得自真核或原核细胞的成熟的、已剪接的mRNA分子制备的DNA分子。cDNA缺少通常存在于相应基因组DNA中的内含子序列。起始的(initial)、初级的RNA转录物是mRNA的前体,其通过一系列的步骤加工包括剪接,然后作为成熟的已剪接的mRNA出现。
编码序列:术语“编码序列”意指直接指定多肽的氨基酸序列的多核苷酸。编码序列的边界通常由开读框决定,所述开读框以起始密码子如ATG、GTG或TTG开始,并且以终止密码子如TAA、TAG或TGA结束。编码序列可以是基因组DNA、cDNA、合成DNA或其组合。
调控序列(controlsequence):术语“调控序列”意指对编码多肽的多核苷酸表达是必需的核酸序列。各个调控序列对于编码所述多肽的多核苷酸可以是天然的(即,来自同一基因)或外源的(即,来自不同基因)。这些调控序列包括但不限于前导序列、聚腺苷酸化序列、前肽序列、启动子、信号肽序列和转录终止子。最少的情况,调控序列包括启动子和转录和翻译的终止信号。调控序列可以和用于引入特异性限制位点的接头一起提供,所述特异性限制位点促进调控序列与编码所述多肽的多核苷酸编码区的连接。
表达:术语“表达”包括涉及多肽产生的任何步骤,其包括但不限于转录、转录后修饰、翻译、翻译后修饰和分泌。
表达载体:术语“表达载体”意指线性的或环状的DNA分子,其包含编码多肽的多核苷酸,并且所述多核苷酸与提供用于其表达的调控序列可操作地连接。
高严格条件:术语“高严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在65℃将载体材料最终洗涤三次,每次15分钟。
宿主细胞:术语“宿主细胞”意指任何细胞类型,所述细胞类型对于使用包含感兴趣的多核苷酸的核酸构建体或表达载体的转化、转染、转导等是易感的(susceptible)。术语“宿主细胞”涵盖任何亲本细胞的后代,其由于在复制中发生的突变而不同于亲本细胞。
杂合启动子:术语“杂合启动子”意指两个或更多个(例如几个)启动子的部分连接在一起以生成是所述两个或更多个启动子的部分的融合物的序列,所述序列当可操作地连接于编码序列时,介导所述编码序列转录为mRNA。
分离的:术语“分离的”意指以不在自然界出现的形式或环境存在的物质。分离的物质的非限定性实例包括(1)任何非天然存在的物质,(2)任何至少部分地从一种或多种或全部与其天然结合的天然存在的成分移出的物质,包括但不限于任何酶、变体、多核苷酸、蛋白质、肽或辅因子;(3)任何相对于见于自然界的该物质经人工修饰的物质;或(4)任何通过相对于与其自然结合的其他组分增加该物质的量(例如,编码该物质的基因的多拷贝;比与编码该物质的基因自然结合的启动子更强的启动子的使用)而修饰的物质。感兴趣的多肽可以以发酵液产物的形式用于工业应用,即所述多肽是在工业应用(例如乙醇产生)中作为产物使用的发酵液的组分。所述发酵液产物除了感兴趣的多肽之外,还会包含其它用于发酵工艺的成分,如例如细胞(包括含有编码感兴趣的多肽的基因的宿主细胞,其用于产生所述多肽),细胞碎片,生物质,发酵培养基和/或发酵产物。可任选地对发酵液进行一个或多个纯化(包括过滤)步骤以去除或减少一种或多种发酵工艺的组分。相应地,分离的物质可在此种发酵液产物中存在。
低严格条件:术语“低严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在50℃将载体材料最终洗涤三次,每次15分钟。
成熟多肽:术语“成熟多肽”意指以其在翻译和任何翻译后修饰之后的最终形式存在的多肽,所述修饰例如N-末端加工、C-末端截短、糖基化、磷酸化等。在本领域中已知宿主细胞可产生由相同多核苷酸表达的两种或更多种不同成熟多肽(即具有不同的C端和/或N端氨基酸)的混合物。
成熟多肽编码序列:术语“成熟多肽编码序列”意指编码具有生物活性的成熟多肽的多核苷酸。
中等严格条件:术语“中等严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在55℃将载体材料最终洗涤三次,每次15分钟。
中等-高严格条件:术语“中等-高严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在60℃将载体材料最终洗涤三次,每次15分钟。
核酸构建体:术语“核酸构建体”意指单链或双链的核酸分子,其分离自天然存在的基因,或其经修饰以本来不存在于(nototherwiseexist)自然界中的方式含有核酸的区段,或其为合成的。
可操作地连接:术语“可操作地连接”意指这样的构型,其中将调控序列置于相对于多核苷酸的编码序列的适当位置,使得调控序列指导编码序列的表达。
多肽片段:术语“多肽片段”意指具有从成熟多肽的氨基和/或羧基端缺失一个或多个(例如几个)氨基酸的多肽,其中所述片段具有生物活性。在一个方面,所述片段具有成熟多肽的氨基酸数的至少85%,例如至少90%或至少95%。
多肽变体:术语“多肽变体”意指包含改变,即在一个或多个(例如几个)位置的取代、插入和/或缺失的具有生物活性的多肽。取代意指用不同的氨基酸替代占据某位置的氨基酸;缺失意指去除占据某位置的氨基酸;而插入意指在邻接并紧接着占据某位置的氨基酸之后添加氨基酸。
启动子:术语“启动子”意指DNA序列,其结合RNA聚合酶并将所述聚合酶导向编码多肽的多核苷酸的下游转录起始位点以起始转录。RNA聚合酶有效地催化互补于编码区的合适DNA链的信使RNA的装配(assembly)。术语“启动子”亦理解为包括用于在转录为mRNA之后的翻译的5’非编码区(在启动子和翻译起点之间),顺式作用转录调控元件如增强子,和其它能够与转录因子相互作用的核苷酸序列。
启动子变体:术语“启动子变体”意指包含改变,即在一个或多个(例如几个)位置的取代、插入和/或缺失的启动子。取代意指用不同的氨基酸替代占据某位置的氨基酸;缺失意指去除占据某位置的氨基酸;而插入意指在邻接并紧接着占据某位置的氨基酸之后添加氨基酸。术语“启动子变体”亦会涵盖天然变体,和通过使用本领域公知的方法如经典的诱变,定位诱变和DNA改组而获得的体外生成的变体。
序列同一性:参数“序列同一性”描述两个氨基酸序列之间或两个核苷酸序列之间的相关性。
就本发明而言,两个氨基酸序列之间的序列同一性程度使用如EMBOSS软件包(EMBOSS:TheEuropeanMolecularBiologyOpenSoftwareSuite,Rice等,2000,TrendsGenet.16:276-277),优选3.0.0、5.0.0版或更高版本的Needle程序中所执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,J.Mol.Biol.48:443-453)来测定。使用的参数为缺口罚分(gappenalty)10,缺口延伸罚分(gapextensionpenalty)0.5和EBLOSUM62(BLOSUM62的EMBOSS版)取代矩阵。使用Needle标记为“最高同一性(longestidentity)”的输出结果(使用-nobrief选项获得)作为同一性百分比,并计算如下:
(同样的残基×100)/(比对长度-比对中缺口的总数)
就本发明而言,两个核苷酸序列之间的序列同一性程度使用如EMBOSS软件包(EMBOSS:TheEuropeanMolecularBiologyOpenSoftwareSuite,Rice等,2000,见上文),优选3.0.0、5.0.0版或更高版本的Needle程序中所执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,见上文)来测定。使用的参数为缺口罚分10,缺口延伸罚分0.5和EDNAFULL(NCBINUC4.4的EMBOSS版)取代矩阵。使用Needle标记为“最高同一性”的输出结果(使用-nobrief选项获得)作为同一性百分比,并计算如下:
(同样的脱氧核糖核苷酸×100)/(比对长度-比对中缺口的总数)
亚序列:术语“亚序列(subsequence)”意指从成熟多肽编码序列的5’和/或3’端缺失一个或多个(例如几个)核苷酸的多核苷酸,其中所述亚序列编码具有生物活性的片段,或者从启动子序列的5’和/或3’端缺失一个或多个(例如几个)核苷酸的多核苷酸,其中所述启动子亚序列具有启动子活性。在一个方面,所述亚序列具有成熟多肽编码序列的核苷酸数的至少85%,例如至少90%或至少95%。在另一个方面,所述启动子亚序列具有启动子序列的核苷酸数的至少85%,例如至少90%或至少95%。
串联启动子:术语“串联启动子”意指串联连接的两个或更多个(例如几个)启动子,其每一个均可操作地连接于编码序列并介导所述编码序列转录为mRNA。
非常高严格条件:术语“非常高严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在70℃将载体材料最终洗涤三次,每次15分钟。
非常低严格条件:术语“中等严格条件”意指对于长度至少100个核苷酸的探针,在42℃,在5XSSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。使用2XSSC、0.2%SDS在45℃将载体材料最终洗涤三次,每次15分钟。
发明详述
本发明涉及用于产生多肽的方法,其包括:(a)在有助于产生所述多肽的培养基中培养真菌宿主细胞,其中所述真菌宿主细胞包含编码多肽的多核苷酸,所述多核苷酸可操作地连接于启动子,所述启动子选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%序列同一性,(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联启动子;其中所述编码多肽的多核苷酸对于所述启动子是外源的;和(b)从培养基分离所述多肽。
在本发明的产生方法中,使用本领域已知的方法在适合于产生所述多肽的营养培养基中培养细胞。例如,可以通过在合适培养基中和允许表达和/或分离所述多肽的条件下进行的摇瓶培养,或实验室或工业发酵罐中的小规模或大规模发酵(包括连续、分批、补料分批或固态发酵)来培养细胞。使用本领域已知的方法在合适的营养培养基中进行培养,所述营养培养基包含碳源和氮源和无机盐。合适的培养基能够从商业供应商获得或可以根据公开的组成制备(例如,在美国典型培养物保藏中心的目录中)。如果多肽分泌到营养培养基中,该多肽能够从所述培养基中直接回收。如果多肽不分泌,则其能够从细胞裂解物(lysate)回收。
可以使用本领域已知的对于所述多肽是特异性的方法来检测该多肽。这些检测方法可包括特异性抗体的使用、高效液相色谱,毛细管层析(capillarychromatography),酶产物的形成,酶底物的消失或SDS-PAGE。例如,酶测定法(enzymeassay)可用于确定酶的活性。对于许多酶,确定酶活性的方法在本领域中是已知的(参见,例如D.Schomburg和M.Salzmann(编),EnzymeHandbook,Springer-Verlag,NewYork,1990)。
多肽可使用本领域已知的方法回收。例如,所述多肽可以通过常规方法从营养培养基中回收,所述常规方法包括但不限于收集、离心、过滤、提取、喷雾干燥、蒸发或沉淀。在一个方面,回收了整个发酵液
分离的多肽可以使用多种本领域已知的方法进一步纯化以获得基本上纯的多肽,所述方法包括但不限于层析(例如,离子交换、亲和、疏水、层析聚焦和大小排阻)、电泳方法(例如,制备型(preparative)等电聚焦)、差示溶解度(例如,硫酸铵沉淀)、SDS-PAGE或提取(参见,例如,ProteinPurification,J.C.Janson和LarsRyden编,VCHPublishers,NewYork,1989)。
启动子
本发明亦涉及分离的启动子,其选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列具有至少60%序列同一性与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32,(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联启动子;和涉及包含可操作地连接于编码多肽的多核苷酸的启动子的构建体、载体和真菌宿主细胞。
在一个方面,分离的启动子与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%,例如,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%,或100%的序列同一性,其具有启动子活性。
在一个实施方案中,本发明的启动子包含或组成为(consistof)SEQIDNO:1的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:1的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:2的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:2的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:3的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:3的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:4的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:4的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:5的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:5的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:6的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:6的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:7的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:7的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:8的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:8的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:31的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:31的核苷酸序列。
在另一个实施方案中,本发明的启动子包含或组成为SEQIDNO:32的核苷酸序列或其等位变体,或是其具有启动子活性的亚序列。在另一个方面,所述启动子包含或组成为SEQIDNO:32的核苷酸序列。
SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的亚序列(即截短的启动子)包含在5’端的截短,从而使得保留了最接近ATG密码子的在3’端的序列,所述亚序列可为至少600个核苷酸,例如至少700个核苷酸,至少750个核苷酸,至少800个核苷酸,至少850个核苷酸,或至少900个核苷酸,其具有启动子活性。
在一个方面,所述分离的启动子包含核苷酸序列,所述核苷酸序列在非常低严格条件,低严格条件,中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其亚序列;或它们的全长互补链(J.Sambrook,E.F.Fritsch,和T.Maniatis,1989,MolecularCloning,ALaboratoryManual,第2版,ColdSpringHarbor,NewYork)。
SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸,或其亚序列,可用于设计核酸探针,以根据本领域内公知的方法从不同属或种的菌株鉴定和克隆启动子DNA。具体而言,根据标准的Southern印迹方法,可将这些探针用于与感兴趣的属或种的基因组DNA或cDNA杂交,以鉴定和从其中分离相应的基因。这些探针可明显短于完整序列,但长度上应为至少15,例如至少25,至少35,或至少70个核苷酸。优选地,所述核酸探针是至少100个核苷酸的长度,例如,至少200个核苷酸,至少300个核苷酸,至少400个核苷酸,至少500个核苷酸,至少600个核苷酸,至少700个核苷酸,至少800个核苷酸,或至少900个核苷酸的长度。DNA和RNA探针二者均可使用。通常将探针标记以检测相应的基因(例如,用32P、3H、35S、生物素或抗生物素蛋白(avidin)标记)。这些探针涵盖于本发明中。
可从由这些其它菌株制备的基因组DNA或cDNA文库中筛选DNA,所述DNA与本文中所述的探针杂交并且具有启动子活性。可以通过琼脂糖或聚丙烯酰胺凝胶电泳,或通过其它分离技术分离来自这些其它菌株的基因组或其它DNA。可以将来自文库的DNA或分离的DNA转移至硝化纤维素(nitrocellulose)或其它合适的载体材料并且固定于其上。为了鉴定与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32,或其亚序列同源的克隆或DNA,将所述载体材料优选用在Sounthern印迹中。
就本发明而言,杂交表示多核苷酸在非常低至非常高的严格条件下与标记的核酸探针杂交,所述核酸探针对应于下述:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;其全长互补链;其它们的亚序列。可使用例如X射线片(X-rayfilm)检测在这些条件下与核酸探针杂交的分子。
在一个实施方案中,所述核酸探针是SEQIDNO:1或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:1。在另一个实施方案中,所述核酸探针是SEQIDNO:2或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:2。在另一个实施方案中,所述核酸探针是SEQIDNO:3或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:3。在另一个实施方案中,所述核酸探针是SEQIDNO:4或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:4。在另一个实施方案中,所述核酸探针是SEQIDNO:5或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:5。在另一个实施方案中,所述核酸探针是SEQIDNO:6或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:6。在另一个实施方案中,所述核酸探针是SEQIDNO:7或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:7。在另一个实施方案中,所述核酸探针是SEQIDNO:8或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:8。在另一个实施方案中,所述核酸探针是SEQIDNO:31或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:31。在另一个实施方案中,所述核酸探针是SEQIDNO:32或其亚序列。在另一个实施方案中,所述核酸探针是SEQIDNO:32。
对于长度大约15个核苷酸至大约70个核苷酸的短探针,将严格条件定义为在比使用根据Bolton和McCarthy的计算法(1962,Proc.Natl.Acad.Sci.USA48:1390)计算出的Tm低大约5℃至大约10℃,在0.9MNaCl,0.09MTris-HClpH7.6,6mMEDTA,0.5%NP-40,1×Denhardt溶液,1mM焦磷酸钠(sodiumpyrophosphate),1mM磷酸二氢钠(sodiummonobasicphosphate),0.1mMATP和0.2mg每ml的酵母RNA中,根据标准的Southern印迹步骤进行预杂交和杂交最佳12至24小时。将所述载体材料在6×SSC加0.1%SDS中最终洗涤一次15分钟,并用6×SSC在比计算的Tm低5℃至10℃的温度洗涤两次,每次15分钟。
在另一个方面,所述分离的启动子可为启动子的突变体,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸序列;或其具有启动子活性的亚序列。所述突变体启动子包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的一个或多个(例如几个)突变;或其具有启动子活性的亚序列。每个突变是独立的核苷酸取代、缺失和/或插入。将核苷酸取代、缺失和/或插入导入启动子可使用本领域中任何已知的方法如经典的诱变,定位诱变或DNA改组来实现。特别有用的是利用超螺旋的(supercoiled)双链DNA载体的方法,所述载体具有感兴趣的插入和两个含有所需突变的合成引物。将寡核苷酸引物,每个均互补于载体的相反链,通过PfuDNA聚合酶的手段在温度循环过程中延伸。当组入引物时,生成了含有交错切口(staggerednick)的突变的质粒。在温度循环之后,用对经甲基化和半甲基化DNA具特异性的DpnI处理产物以消化亲本DNA模板,并选择含有突变的合成的DNA。亦可使用本领域中已知的其他方法。
在另一个方面,所述分离的启动子可为杂合启动子,其包含本发明的启动子的部分和另一个启动子的部分,例如一个启动子的前导序列和来自另一个启动子的转录起始位点;或一个或多个(例如几个)本发明的启动子的部分和一个或多个(例如几个)其它启动子的部分。所述其它启动子可为任何在所选的真菌宿主细胞中显示转录活性的启动子序列,包括突变、截短和杂合启动子,并可从与宿主细胞同源或异源的、编码胞外或胞内多肽的基因获得。所述其它启动子序列亦可为本发明的启动子的部分。所述其它启动子序列亦可对于所述编码多肽的多核苷酸是天然的或外源的,和对于所述细胞是天然的或外源的。
在另一个方面,所述分离的启动子可为串联启动子,其包含一个或多个(例如几个)本发明的启动子和一个或多个(例如几个)其它启动子。所述一个或多个(例如几个)其它启动子可为本发明的启动子。所述一个或多个(例如几个)其它启动子可为如下文例示的那些的启动子。所述串联启动子的两个或更多个(例如几个)启动子序列可同时引发多核苷酸的转录。或者,所述串联启动子的一个或多个(例如几个)启动子序列可在细胞生长的不同阶段引发多核苷酸的转录。在一个实施方案中,所述串联启动子包含两个启动子。在另一个实施方案中,所述串联启动子包含三个启动子。在另一个实施方案中,所述串联启动子包含四个启动子。在另一个实施方案中,所述串联启动子包含五个启动子。
可用于与本发明的启动子构建串联启动子或杂合启动子的其它启动子的实例包括从下述基因获得的启动子:构巢曲霉(Aspergillusnidulans)乙酰胺酶、黑曲霉(Aspergillusniger)中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉或泡盛曲霉(Aspergillusawamori)葡糖淀粉酶(glaA)、米曲霉(Aspergillusoryzae)TAKA淀粉酶、米曲霉碱性蛋白酶、米曲霉丙糖磷酸异构酶、尖镰孢(Fusariumoxysporum)胰蛋白酶样蛋白酶(WO96/00787)、镶片镰孢(Fusariumvenenatum)淀粉葡糖苷酶(WO00/56900)、镶片镰孢Daria(WO00/56900)、镶片镰孢Quinn(WO00/56900)、曼赫根毛霉(Rhizomucormiehei)脂肪酶、曼赫根毛霉天冬氨酸蛋白酶、里氏木霉(Trichodermareesei)β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉木聚糖酶III、里氏木霉β-木糖苷酶和里氏木霉翻译延伸因子,以及NA2-tpi启动子(一种修饰的启动子,其来自在曲霉属中性α-淀粉酶基因,其中未翻译的前导序列由曲霉属丙糖磷酸异构酶的基因的未翻译的前导序列所替代;非限制性实例包括修饰的启动子,其来自黑曲霉中性α-淀粉酶的基因,其中未翻译的前导序列由来自构巢曲霉或米曲霉丙糖磷酸异构酶的基因的未翻译的前导序列所替代);酿酒酵母(Saccharomycescerevisiae)烯醇化酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH1,ADH2/GAP)、酿酒酵母丙糖磷酸异构酶(TPI)、酿酒酵母金属硫蛋白(CUP1)和酿酒酵母3-磷酸甘油酸激酶;和它们的突变的、截短的和杂合的启动子。其它启动子描述于美国专利号6,011,147和Romanos等,1992,Yeast8:423-488。
在本发明的方法中,即便野生型启动子对于编码多肽的多核苷酸是天然的,但本发明的杂合或串联启动子应理解为对于所述多核苷酸是外源的。例如,在由至少两个启动子组成的串联启动子中,一个启动子可为所述编码多肽的多核苷酸的野生型启动子。
多肽
术语“多肽”在本文中定义为由编码序列编码的多肽,其对于本发明的启动子是外源的。
所述多肽可为任何具有感兴趣的生物活性的多肽。术语“多肽”在本文中并不意指编码产物的特定长度,并因此涵盖肽、寡肽和蛋白质。术语“多肽”亦涵盖多肽,其包含从至少两个不同多肽获得的部分和/或完整多肽序列的组合,其中一个或多个(例如几个)多肽可对于所述真菌细胞为异源的。多肽进一步包括多肽天然存在的等位变异和工程改造的变异。
在一个方面,所述多肽为抗体、抗原、抗微生物肽、酶、生长因子、激素、immunodilator(免疫增强剂)、神经递质、受体、报道蛋白、结构蛋白和转录因子。
在一个实施方案中,所述酶是氧化酶、转移酶、水解酶、裂合酶、异构酶或连接酶。在另一个实施方案中,所述酶是乙酰甘露聚糖酯酶、乙酰木聚糖酯酶、α-半乳糖苷酶、α-葡糖苷酶、α-葡糖醛酸糖苷酶、氨肽酶、淀粉酶、淀粉葡糖苷酶、阿拉伯聚糖酶、阿拉伯呋喃糖苷酶、β-半乳糖苷酶、β-葡糖苷酶、β-木糖苷酶、糖酶、羧肽酶、过氧化氢酶、纤维二糖水解酶、纤维素酶、甲壳酶、香豆酸酯酶、角质酶、环糊精糖基转移酶、脱氧核糖核酸酶、内切葡聚糖酶、酯酶、阿魏酸酯酶、具有纤维素分解增强活性的GH61多肽、葡糖脑苷酯酶、葡糖醛酸糖苷酶、半纤维素酶、转化酶、漆酶、脂肪酶、甘露聚糖酶、甘露糖苷酶、变聚糖酶、氧化酶、果胶分解酶、过氧化物酶、磷脂酶、植酸酶、多酚氧化酶、蛋白酶、核糖核酸酶、转谷氨酰胺酶、尿激酶或木聚糖酶。
在另一个方面,所述多肽是白蛋白、胶原、原弹性蛋白、弹性蛋白或明胶。
在另一个方面,所述多肽是棒曲霉素或膨胀素。
在另一个方面,所述多肽是杂合多肽,其中一个多肽的区融合于另一个多肽的区的N端或C端。
在另一个方面,所述多肽是嵌合多肽,其中一个多肽的一个或多个(例如几个)区用来自一个或多个(例如几个)其它多肽的一个或多个(例如几个)区替代。
在另一个方面,所述多肽是融合多肽或可切割的融合多肽,其中一个多肽融合于另一个多肽的N端或C端。通过将编码一个多肽的多核苷酸融合于编码另一个多肽的多核苷酸来产生融合多肽。产生融合多肽的技术是本领域已知的,并包括连接编码多肽的编码序列以使它们处于同一阅读框(inframe),并且使融合多肽的表达在相同启动子和终止子的控制下。融合蛋白亦可使用内蛋白(intein)技术构建,其中融合物在翻译后产生(Cooper等,1993,EMBOJ.12:2575-2583;Dawson等,1994,Science266:776-779)。
融合多肽还可在两个多肽之间包含切割位点。一旦分泌了融合蛋白,就切割所述位点,释放所述两个多肽。切割位点的实例包括,但不限于,公开于Martin等,2003,J.Ind.Microbiol.Biotechnol.3:568-76;Svetina等,2000,J.Biotechnol.76:245-251;Rasmussen-Wilson等,1997,Appl.Environ.Microbiol.63:3488-3493;Ward等,1995,Biotechnology13:498-503;和Contreras等,1991,Biotechnology9:378-381;Eaton等,1986,Biochem.25:505-512;Collins-Racie等,1995,Biotechnology13:982-987;Carter等,1989,Proteins:Structure,Function,andGenetics6:240-248;以及Stevens,2003,DrugDiscoveryWorld4:35-48中的位点。
编码多肽的多核苷酸可从任何原核、真核或其它来源获得。就本发明而言,术语“从…获得”与给定来源相联系用于本文中应意指所述多肽由所述来源产生,或由其中插入了来自所述来源的基因的细胞产生。
用于分离或克隆编码多肽的多核苷酸的技术是本领域内已知的,并包括从基因组DNA分离,从cDNA制备,或其组合。可通过例如使用聚合酶链式反应(PCR)来实现从这种基因组DNA克隆多核苷酸。参见,例如,Innis等,1990,PCR:AGuidetoMethodsandApplication,AcademicPress,NewYork。克隆方法可涉及将包含所述编码多肽的多核苷酸的所需核酸片段切出并分离,将所述片段插入载体分子,并将所述重组载体组入真菌细胞,在真菌细胞中复制所述多核苷酸的多重拷贝或克隆。所述多核苷酸可为基因组、cDNA、RNA、半合成、合成来源,或其任意组合。
核酸构建体
本发明还涉及包含编码多肽的多核苷酸的核酸构建体,所述多核苷酸可操作地连接于本发明的启动子和一个或多个(例如几个)调控序列,所述调控序列在合适的宿主细胞中在与该调控序列相容的条件下指导编码序列的表达。表达应理解为包括任何涉及多肽产生的步骤,其包括但不限于转录、转录后修饰、翻译、翻译后修饰和分泌。
可以用许多方式操作所述多核苷酸以提供多肽的表达。依赖于表达载体,在将多核苷酸插入载体之前对其进行操作可能是理想的或必需的。使用重组DNA方法修饰多核苷酸的技术是本领域熟知的。
调控序列也可以是转录终止子,其由宿主细胞识别以终止转录。所述终止子与编码多肽的多核苷酸的3’末端可操作地连接。在本发明中可使用在宿主细胞中有功能的任何终止子。
对于丝状真菌宿主细胞优选的终止子从如下酶的基因获得:构巢曲霉乙酰胺酶、构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶、尖镰孢胰蛋白酶样蛋白酶、里氏木霉β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉木聚糖酶III、里氏木霉β-木糖苷酶和里氏木霉翻译延伸因子。
对于酵母宿主细胞优选的终止子从如下酶的基因获得:酿酒酵母烯醇化酶、酿酒酵母细胞色素C(CYC1)和酿酒酵母甘油醛-3-磷酸脱氢酶。对于酵母宿主细胞其它有用的终止子由Romanos等,1992,见上文描述。
调控序列还可以是合适的前导序列,其为对于宿主细胞的翻译重要的mRNA非翻译区。前导序列可操作地连接于编码多肽的多核苷酸的5’-末端。可使用在宿主细胞中有功能的任何前导序列。
对于丝状真菌宿主细胞优选的前导序列从如下酶的基因获得:米曲霉TAKA淀粉酶和构巢曲霉丙糖磷酸异构酶。
对于酵母宿主细胞合适的前导序列从如下酶的基因获得:酿酒酵母烯醇化酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α因子和酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
调控序列也可以是聚腺苷酸化序列,其是与多核苷酸的3’末端可操作地连接的序列,并且在转录时,宿主细胞将其识别为将聚腺苷残基添加至转录的mRNA的信号。可使用在宿主细胞中有功能的任何聚腺苷酸化序列。
对于丝状真菌宿主细胞优选的聚腺苷酸化序列从如下酶的基因获得:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶和尖镰孢胰蛋白酶样蛋白酶。
对于酵母宿主细胞有用的聚腺苷酸化序列由Guo和Sherman,1995,Mol.CellularBiol.15:5983-5990描述。
调控序列还可为信号肽编码区,其编码与多肽的N端相连的信号肽,并且指导所述多肽进入细胞分泌途径。多核苷酸的编码序列5’端可固有地包含信号肽编码序列,其与编码所述多肽的编码序列的区段一起天然地连接在翻译阅读框中。或者,编码序列5’端可含有对于所述编码序列外源的信号肽编码序列。外源信号肽编码序列在编码序列不天然地含有信号肽编码序列时可为必需的。或者,外源信号肽编码序列可简单地取代天然信号肽编码序列以增强多肽的分泌。然而,可使用指导表达的多肽进入宿主细胞的分泌途径的任何信号肽编码序列。
对于丝状真菌宿主细胞有效的信号肽编码序列是从如下酶的基因获得的信号肽编码序列:黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米曲霉TAKA淀粉酶、特异腐质霉纤维素酶、特异腐质霉内切葡聚糖酶V、疏棉状腐质霉脂肪酶和曼赫根毛霉天冬氨酸蛋白酶。
对于酵母宿主细胞有用的信号肽从酿酒酵母α因子和酿酒酵母转化酶的基因获得。其它有用的信号肽编码序列由Romanos等,1992,见上文描述。
调控序列还可以是前肽编码序列,其编码位于多肽的N端的前肽。所得多肽称为酶原(proenzyme)或前多肽(propolypeptide)(或在某些情况下称为酶原(zymogen))。前多肽通常是无活性的,并且能够通过前肽的催化或自催化切割从前多肽转化为活性多肽。可以从嗜热毁丝霉漆酶(WO95/33836)、曼赫根毛霉天冬氨酸蛋白酶和酿酒酵母α因子的基因获得前肽编码序列。
当信号肽和前肽序列二者均存在时,将前肽序列置于紧接着(nextto)多肽N端,并且将信号肽序列置于紧接着前肽序列的N端。
同样理想的是添加调节序列,其相对于宿主细胞的生长来调节所述多肽的表达。调节序列的实例是引起基因表达响应化学或物理刺激物,包括调节化合物的存在而开启或关闭的那些系统。在酵母中,可使用ADH2系统或GAL1系统。在丝状真菌中,可以使用黑曲霉葡糖淀粉酶启动子、米曲霉TAKAα-淀粉酶启动子和米曲霉葡糖淀粉酶启动子、里氏木霉纤维二糖水解酶I启动子和里氏木霉纤维二糖水解酶II启动子。调节序列的其它实例是那些允许基因扩增的序列。在真核系统中,这些调节序列包括在氨甲蝶呤(methotrexate)存在下扩增的二氢叶酸还原酶基因,和以重金属(withheavymetal)扩增的金属硫蛋白基因。在这些情况下,编码多肽的多核苷酸将与调节序列可操作地连接。
本发明亦涉及用于改变编码多肽的基因的表达的核酸构建体,所述多肽对于宿主细胞是内源的。所述构建体可含有用于改变内源基因的表达所需最小数目的组分。在一个实施方案中,所述核酸构建体优选包含:(a)靶向序列,(b)本发明的启动子,(c)外显子,和(d)剪接-供体位点(splice-donorsite)。一旦将核酸构建体导入细胞,所述构建体通过同源重组在内源基因位点插入细胞基因组。所述靶向序列指导元件(a)-(d)整合入所述内源基因,从而使得元件(b)-(d)可操作地连接于内源基因。在另一个实施方案中,所述核酸构建体包含(a)靶向序列,(b)本发明的启动子,(c)外显子,(d)剪接-供体位点,(e)内含子,和(f)剪接-受体位点(splice-acceptorsite),其中靶向序列指导元件(a)-(f)的整合而使得元件(b)-(f)可操作地连接于内源基因。然而,所述构建体可含有其它组分如选择性标记。
在两个实施方案中,这些组分的导入导致新转录单元的产生,其中改变了内源基因的表达。基本上,所述新转录单元是通过靶向构建体导入的序列和内源基因的融合产物。在一个其中改变了内源基因的实施方案中,激活了基因。在该实施方案中,使用同源重组通过插入调节序列来替代、破坏通常与亲本细胞的内源基因结合的调节区或使其失能(disable),所述调节序列导致基因以与相应的亲本细胞中所显露(evident)的相比更高的水平表达。激活的基因可通过使用本领域中公知的方法在构建体中纳入可扩增的选择性标记基因来进行进一步扩增(参见,例如美国专利号5,641,670)。在另一个其中改变了内源基因的实施方案中,减少了基因的表达。
所述靶向序列可处于内源基因内,紧邻于基因,在上游基因内,或在内源基因上游并与其相距一段距离。可使用一个或多个(例如几种)靶向序列。例如,对于环状质粒或DNA片段优选使用单个靶向序列,而对于线性质粒或DNA片段优选使用两个靶向序列。
所述构建体进一步包含内源基因的一个或多个(例如几个)外显子。外显子定义为DNA序列,其拷贝为RNA,并存在于成熟mRNA分子中,从而使得所述外显子序列与内源基因的编码序列处于同一读码框。所述外显子可任选地含有编码一个或多个(例如几个)氨基酸和/或部分地编码氨基酸的DNA。或者,所述外显子含有对应于5’非编码区的DNA。当内源外显子编码一个或多个(例如几个)氨基酸和/或氨基酸的一部分时,设计核酸构建体使得一旦经转录和剪接,其读码框与内源基因的编码区处于同一读码框,从而使得来源于第二外显子的mRNA的部分的合适读码框不变化。
所述构建体的剪接-供体位点指导一个外显子剪接至另一个外显子。通常,第一外显子位于第二外显子的5’,且与第一外显子在其3’侧重叠并位于其一侧的剪接-供体位点识别在第二外显子的5’侧位于第二外显子一侧的剪接-受体位点。剪接-受体位点,如同剪接-供体位点,是指导一个外显子剪接至另一个外显子的序列。与剪接-供体位点一同起作用,剪接装置(splcingapparatus)使用剪接-受体位点以实现内含子的去除。
本发明进一步涉及用于产生多肽的方法,其包括:(a)在有助于产生所述多肽的条件下培养并入了转录单元的同源重组细胞,所述转录单元包含本发明的启动子,外显子,和/或剪接供体位点,其可操作地连接于编码所述多肽的内源多核苷酸的第二外显子,其中所述编码多肽的多核苷酸对于所述启动子是外源的;和(b)回收所述多肽。所述方法是基于基因激活技术的使用,例如,如美国专利号No.5,641,670中所述。
表达载体
本发明还涉及重组表达载体,所述重组表达载体包含本发明的启动子,编码多肽的多核苷酸,和转录和翻译终止信号。多种核苷酸和调控序列可以结合在一起以产生重组表达载体,所述表达载体可以包括一个或多个(例如几个)方便的限制位点以允许在这些位点插入或取代编码多肽的多核苷酸。或者,可以通过在适当的用于表达的载体中插入可操作地连接于本发明的启动子的多核苷酸或其核酸构建体来表达所述多核苷酸。在制备表达载体的过程中,将编码序列置于载体中,从而使得所述编码序列可操作地连接于本发明的启动子。
重组表达载体可以是任何载体(例如,质粒或病毒),其能够方便地进行重组DNA步骤,并且能够产生多核苷酸的表达。载体的选择将通常依赖于载体与将引入该载体的宿主细胞的相容性。载体可以是线状或闭合环状质粒。
载体可以是自主复制载体,即,作为染色体外实体(entity)存在的载体,其复制独立于染色体复制,例如,质粒、染色体外元件、微型染色体(minichromosome)或人工染色体。载体可以含有任何用于确保自复制的手段(means)。或者,载体可以是一种当被引入宿主细胞中时,整合到基因组中并且与整合了该载体的染色体一起复制的载体。此外,可以使用单独的载体或质粒或两个或更多个载体或质粒,其共同含有待引入宿主细胞基因组的完整DNA(totalDNA),或可以使用转座子(transposon)。
所述载体优选地含有一个或多个选择性标记,其允许简单选择经转化、转染、转导等的细胞。选择性标记是基因,其产物提供杀生物剂或病毒抗性、对重金属的抗性、对营养缺陷型的原养性(prototrophytoauxotrophs)等。
对于酵母宿主细胞的选择性标记包括但不限于ADE2、HIS3、LEU2、LYS2、MET3、TRP1和URA3。用于丝状真菌宿主细胞的选择性标记包括但不限于adeA(磷酸核糖氨基咪唑琥珀羧酰胺合酶,phosphoribosylaminoimidazole-succinocarboxamidesynthase)、adeB(磷酸核糖氨基咪唑合酶,phosphoribosyl-aminoimidazolesynthase)、amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草铵膦(phosphinothricin)乙酰转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)(nitratereductase)、pyrG(乳清酸核苷-5’-磷酸脱羧酶)(orotidine-5’-phosphatedecarboxylase)、sC(硫酸腺苷酰转移酶)和trpC(邻氨基苯甲酸合酶(anthranilatesynthase))以及它们的等同物。优选用在曲霉属细胞中的是构巢曲霉或米曲霉amdS和pyrG基因和吸水链霉菌(Streptomyceshygroscopicus)bar基因。优选用于木霉属细胞的是adeA、adeB、amdS、hph和pyrG基因。
选择性标记可为WO2010/039889中所述的双重选择性标记系统。在一个方面,所述双重选择性标记是hph-tk双重选择性标记系统。
所述载体优选含有元件,其允许载体整合入宿主细胞基因组或载体在细胞中独立于基因组的自主复制。
为了整合入宿主细胞基因组,载体可依赖编码多肽的多核苷酸的序列或用于通过同源或非同源重组整合入基因组的任何其它载体元件。或者,载体可以含有额外的多核苷酸,用于指导通过同源重组整合入宿主细胞基因组染色体中的精确位置。为了增加在精确位置整合的可能性,整合元件应含有足够数量的核酸,如100至10,000碱基对,400至10,000碱基对,和800至10,000碱基对,其与相应的目标序列具有高度序列同一性以增强同源重组的概率。整合元件可以是任何序列,其与宿主细胞基因组中的目标序列同源。此外,整合元件可以是非编码或编码的多核苷酸。另一方面,可以将载体通过非同源重组整合到宿主细胞的基因组中。
为了自主复制,载体可以进一步包含复制起点,其使载体能够在所述的宿主细胞中自主地复制。复制起点可以是介导自主复制的任何质粒复制子(replicator),其在细胞中发挥功能。术语“复制起点”或“质粒复制子”意指能够使质粒或载体体内复制的多核苷酸。
用于酵母宿主细胞中的复制起点的实例是2微米复制起点,ARS1,ARS4,ARS1和CEN3的组合,和ARS4和CEN6的组合。
在丝状真菌细胞中有用的复制起点的实例是AMA1和ANS1(Gems等,1991,Gene98:61-67;Cullen等,1987,NucleicAcidsRes.15:9163-9175;WO00/24883)。分离AMA1基因和构建包含该基因的质粒或载体能够根据公开于WO00/24883中的方法完成。
可以将多于一个拷贝的多核苷酸插入宿主细胞以增加多肽的产生。多核苷酸拷贝数的增加可通过如下方法获得:将至少一个额外拷贝的序列整合入宿主细胞基因组,或将可扩增的选择性标记基因包括于多核苷酸,其中可通过在合适的选择剂(selectableagent)存在下培养细胞来选择含有选择性标记基因的扩增拷贝,且由此含有多核苷酸的额外拷贝的细胞。
用于连接上述元件以构建本发明的重组表达载体的方法是本领域技术人员熟知的(参见,例如,Sambrook等,1989,见上文)。
宿主细胞
本发明还涉及重组宿主细胞,其包含可操作地连接于编码多肽的多核苷酸的本发明的启动子,其有利地用于多肽的重组产生。将包含可操作地连接于编码多肽的多核苷酸的本发明的启动子的载体引入宿主细胞,使所述载体如前所述作为染色体整合体或者作为自复制的染色体外载体维持。术语“宿主细胞”包括亲本细胞的任何后代,其由于复制过程中发生的突变而不同于亲本细胞。宿主细胞的选择会很大程度上取决于编码多肽的基因及其来源。
所述宿主细胞可为任何可用于本发明的方法中的真菌细胞。“真菌”用于本文包括以下门:子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)和接合菌门(Zygomycota)以及卵菌门(Oomycota)和所有有丝分裂孢子真菌(mitosporicfungi)(如由Hawksworth等,于AinsworthandBisby’sDictionaryofTheFungi,第8版,1995,CABInternational,UniversityPress,Cambridge,UK中所定义)。
真菌宿主细胞可为酵母细胞。“酵母”用在本文包括产子囊酵母(ascosporogenousyeast)(内孢霉目(Endomycetales))、产担子酵母(basidiosporogenousyeast)和属于半知菌类(FungiImperfecti)(芽孢纲(Blastomycetes))的酵母。由于酵母的分类在未来可能改变,就本发明而言,将酵母定义为如BiologyandActivitiesofYeast(Skinner,Passmore,和Davenport编,Soc.App.Bacteriol.SymposiumSeriesNo.9,1980)中所述。
酵母宿主细胞可为假丝酵母属(Candida)、汉逊酵母属(Hansenula)、克鲁维酵母属(Kluyveromyces)、毕赤酵母属(Pichia)、酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)或西洋蓍霉属(Yarrowia)细胞,如乳酸克鲁维酵母(Kluyveromyceslactis)、卡尔酵母(Saccharomycescarlsbergensis)、酿酒酵母(Saccharomycescerevisiae)、糖化酵母(Saccharomycesdiastaticus)、道格拉氏酵母(Saccharomycesdouglasii)、克鲁弗酵母(Saccharomyceskluyveri)、诺地酵母(Saccharomycesnorbensis)、卵形酵母(Saccharomycesoviformis)或解脂西洋蓍霉(Yarrowialipolytica)细胞。
真菌宿主细胞可为丝状真菌细胞。“丝状真菌”包括真菌门(Eumycota)和卵菌门的亚门(如由Hawksworth等,1995,见上文,所定义)的所有丝状形式。丝状真菌通常的特征在于由壳多糖(chitin)、纤维素、葡聚糖、壳聚糖(chitosan)、甘露聚糖和其它复杂多糖组成的菌丝体壁。通过菌丝延伸进行营养生长,而碳分解代谢是专性需氧的。相反,酵母例如酿酒酵母的营养生长通过单细胞菌体的出芽生殖(budding)进行,而碳分解代谢可以是发酵的。
丝状真菌宿主细胞可为枝顶孢霉属(Acremonium)、曲霉属(Aspergillus)、短梗霉属(Aureobasidium)、烟管霉属(Bjerkandera)、拟蜡菌属(Ceriporiopsis)、金孢子菌属(Chrysosporium)、鬼伞属(Coprinus)、革盖菌属(Coriolus)、隐球菌属(Cryptococcus)、Filibasidium、镰孢属(Fusarium)、腐质霉属(Humicola)、梨孢菌属(Magnaporthe)、毛霉属(Mucor)、毁丝霉属(Myceliophthora)、新考玛脂霉属(Neocallimastix)、脉孢菌属(Neurospora)、拟青霉属(Paecilomyces)、青霉属(Penicillium)、平革菌属(Phanerochaete)、射脉菌属(Phlebia)、瘤胃壶菌属(Piromyces)、侧耳属(Pleurotus)、裂褶菌属(Schizophyllum)、踝节菌属(Talaromyces)、嗜热子囊菌属(Thermoascus)、梭孢壳属(Thielavia)、弯颈霉属(Tolypocladium)、栓菌属(Trametes)或木霉属(Trichoderma)细胞。
例如,丝状真菌宿主细胞可为泡盛曲霉(Aspergillusawamori)、烟曲霉(Aspergillusfumigatus)、臭曲霉(Aspergillusfoetidus)、日本曲霉(Aspergillusjaponicus)、构巢曲霉(Aspergillusnidulans)、黑曲霉(Aspergillusniger)、米曲霉(Aspergillusoryzae)、黑刺烟管菌(Bjerkanderaadusta)、干拟蜡菌(Ceriporiopsisaneirina)、Ceriporiopsiscaregiea、Ceriporiopsisgilvescens、Ceriporiopsispannocinta、Ceriporiopsisrivulosa、Ceriporiopsissubrufa、虫拟蜡菌(Ceriporiopsissubvermispora)、Chrysosporiuminops、嗜角质金孢子菌(Chrysosporiumkeratinophilum)、Chrysosporiumlucknowense、Chrysosporiummerdarium、毡金孢子菌(Chrysosporiumpannicola)、Chrysosporiumqueenslandicum、热带金孢子菌(Chrysosporiumtropicum)、Chrysosporiumzonatum、灰盖鬼伞(Coprinuscinereus)、毛革盖菌(Coriolushirsutus)、杆孢状镰孢(Fusariumbactridioides)、禾谷镰孢(Fusariumcerealis)、库威镰孢(Fusariumcrookwellense)、大刀镰孢(Fusariumculmorum)、禾本科镰孢(Fusariumgraminearum)、禾赤镰孢(Fusariumgraminum)、异孢镰孢(Fusariumheterosporum)、合欢木镰孢(Fusariumnegundi)、尖镰孢(Fusariumoxysporum)、多枝镰孢(Fusariumreticulatum)、粉红镰孢(Fusariumroseum)、接骨木镰孢(Fusariumsambucinum)、肤色镰孢(Fusariumsarcochroum)、拟分枝孢镰孢(Fusariumsporotrichioides)、硫色镰孢(Fusariumsulphureum)、圆镰孢(Fusariumtorulosum)、拟丝孢镰孢(Fusariumtrichothecioides)、镶片镰孢(Fusariumvenenatum)、特异腐质霉(Humicolainsolens)、疏棉状腐质霉(Humicolalanuginosa)、米黑毛霉(Mucormiehei)、嗜热毁丝霉(Myceliophthorathermophila)、粗糙脉孢菌(Neurosporacrassa)、产紫青霉(Penicilliumpurpurogenum)、黄孢平革菌(Phanerochaetechrysosporium)、辐射射脉菌(Phlebiaradiata)、刺芹侧耳(Pleurotuseryngii)、土生梭孢霉(Thielaviaterrestris)、长绒毛栓菌(Trametesvillosa)、变色栓菌(Trametesversicolor)、哈茨木霉(Trichodermaharzianum)、康宁木霉(Trichodermakoningii)、长枝木霉(Trichodermalongibrachiatum)、里氏木霉(Trichodermareesei)或绿色木霉(Trichodermaviride)细胞。
可以将真菌细胞通过涉及原生质体形成、原生质体转化和细胞壁再生的方法以本身公知的方式转化。用于转化曲霉属和木霉属宿主细胞的合适方法在EP238023和Yelton等,1984,Proc.Natl.Acad.Sci.USA81:1470-1474以及Christensen等,1988,Bio/Technology6:1419-1422中描述。用于转化镰孢属菌种的合适方法由Malardier等,1989,Gene78:147-156和WO96/00787描述。可以使用由如下文献描述的方法转化酵母:Becker和Guarente,于Abelson,J.N.和Simon,M.I.编,GuidetoYeastGeneticsandMolecularBiology,MethodsinEnzymology,Volume194,pp182-187,AcademicPress,Inc.,NewYork;Ito等,1983,J.Bacteriol.153:163;和Hinnen等,1978,Proc.Natl.Acad.Sci.USA75:1920。
本发明通过下述实施例进一步描述,其不应视作对本发明范围的限制。
实施例
菌株
将WO2006/069289中所述的米曲霉菌株#13-1用作瓣环栓菌(Trametescingulata)淀粉葡糖苷酶基因(WO2006/069289)的cDNA的来源。
将构巢曲霉NRRL1092用作pyrG基因的来源。
黑曲霉菌株M1010(NN059095)来源于分离自土壤的黑曲霉NN049184。菌株M1010经遗传修饰破坏了草酰乙酸水解酶(oah),pyrG,三肽基氨肽酶(tripeptidylaminopeptidase),烟曲霉毒素(fumonisin)和淀粉葡糖苷酶基因的表达,并用作淀粉葡糖苷酶基因终止子的来源。
将黑曲霉803-2(淀粉葡糖苷酶产生菌株的ku70-衍生物)用作cipC启动子的来源。
将缺乏淀粉葡糖苷酶(AMG)活性的黑曲霉C1650(黑曲霉M1010的pyrG+型式)用作阴性对照。
培养基和溶液
COVE-N-Gly平板包含218g的山梨醇,10g的甘油,2.02g的KNO3,50ml的COVE盐溶液,25g的Noble琼脂,和去离子水加至1升。
COVE盐溶液包含26g的KCl,26g的MgSO4·7H2O,76g的KH2PO4,50ml的COVE痕量金属溶液,和去离子水加至1升。
COVE痕量金属溶液包含0.04g的NaB4O7·10H2O,0.4g的CuSO4·5H2O,1.2g的FeSO4·7H2O,0.7g的MnSO4·H2O,0.8g的Na2MoO2·2H2O,10g的ZnSO4·7H2O,和去离子水加至1升。
COVE-N(tf)平板包含342.3g的蔗糖,3g的NaNO3,20ml的COVE盐溶液,30g的Noble琼脂,和去离子水加至1升。
COVE-N平板包含30g的蔗糖,3g的NaNO3,20ml的COVE盐溶液,30g的Noble琼脂,和去离子水加至1升。
用于原生质体再生的COVE-N-JP平板包含342.3g的蔗糖,20ml的COVE盐溶液,3g的NaNO3,30g的Noble琼脂,和去离子水加至1升。
YPG培养基包含4g的酵母提取物,1g的KH2PO4,0.5g的MgSO4·7H2O,5g的葡萄糖,和去离子水加至1升(pH6.0)。
YPG+山梨醇培养基包含10g的酵母提取物,20g的细菌用蛋白胨(BactoPeptone),30ml的50%葡萄糖,20ml的2M山梨醇,和去离子水加至1升。
YPG+尿苷培养基包含10g的酵母提取物,20g的细菌用蛋白胨,30ml的50%葡萄糖,去离子水加至1升,和10mM尿苷。
STC缓冲液包含0.8M山梨醇,25mMTrispH8,和25mMCaCl2
STPC缓冲液包含STC缓冲液中的40%PEG4000。
COVE-N顶层琼脂糖包含342.3g的蔗糖,3g的NaNO3,20ml的COVE盐溶液,10g的低熔点琼脂糖,和去离子水加至1升。
用于基因组DNA的2X裂解缓冲液包含200mMEDTA,20mMTrispH8.0,2%X-100,1M胍-HCl,和400mMNaCl。
TAE缓冲液包含4.84g的Tris碱,1.14ml的冰醋酸,2ml的0.5MEDTApH8.0,和去离子水加至1升。
TE缓冲液包含10mMTris碱和1mMEDTA,pH8.0。
EB缓冲液包含10mMTrispH8.0。
PCR裂解缓冲液包含400mMTris-HClpH8.0,60mMEDTApH8.0,150mMNaCl,和1%SDS。
乙酸钾pH4.8包含60ml的5M乙酸钾,11.5ml的冰醋酸,和28.5ml的去离子水。
MU1/MLC/尿素包含1升的MU1,200ml的MLC,和40ml的50%w/v尿素。
MU1包含260g的麦芽糊精,3g的MgSO4·7H2O,6g的K2SO4,5gKH2PO4,0.5ml的AMG痕量金属溶液,三滴Pluronic消泡剂,和去离子水加至1升;pH调整至4.5。
AMG痕量金属溶液包含0.3g柠檬酸·H2O,0.68gZnCl2,0.25gCuSO4·5H2O,0.024gNiCl2·6H2O,1.39gFeSO4·7H2O,1.356gMnSO4·5H2O和去离子水加至1升。
MLC包含40g的葡萄糖,50g的大豆粉,4g的柠檬酸,三滴Pluronic消泡剂,和去离子水加至1升;pH调整至5.0。
2XYT+amp平板包含16g的胰蛋白胨,10g的酵母提取物,5g的NaCl,100mg的氨苄青霉素,和15g的细菌用琼脂,和去离子水加至1升。
实施例1:黑曲霉基因组DNA的制备
来自黑曲霉菌株M1010的基因组DNA通过将125ml摇瓶中的50ml的YPG+山梨醇培养基用两块来自稠密生长的黑曲霉菌株M1010的COVE-N-Gly平板、含有孢子和菌丝体的大约1cm2琼脂片接种,并将所述烧瓶在30℃在250rpm振荡下温育过夜来制备。菌丝体通过使用(Calbiochem,SanDiego,CA,USA)衬里的漏斗过滤来收获。回收了大约2g的菌丝体,将其用25ml的0.6MKCl漂洗,用接种环转移至含有10ml的含36mg/ml的200G(NovozymesNorthAmerica,Franklinton,NC,USA)的0.6MKCl的50ml聚丙烯锥形离心管,并在37℃温育1小时。将管在863xg下离心5分钟,并将沉淀重悬于10ml的0.6MKCl并重新离心。将沉淀重悬于5ml的去离子水,并在室温温育5分钟。然后添加五ml的2X裂解缓冲液。添加三μl的100mg/mlRNaseA(QIAGENInc.,Valencia,CA,USA),并将管在37℃温育30分钟,接着添加150μl的20mg/mlProteinaseK(QIAGENInc.,Valencia,CA,USA)并在50℃温育2小时。将管在7240xg下离心20分钟。将上清转移至在QBT缓冲液中预平衡的Maxi-tip(如PlasmidMaxiKit(QIAGENInc.,Valencia,CA,USA)中所述),且剩余的DNA提取步骤根据生产商的指示进行。将DNA重悬于100μl的EB缓冲液。
实施例2:质粒pHUda666的构建
质粒pHUda666根据下述方法构建。将米曲霉菌株#13-1的菌丝体从100ml的YPG培养基中的过夜培养物收获,过滤,用蒸馏水漂洗,干燥,并冻结于-80℃。RNA样品使用PlusRNAPurificationKit(Invitrogen,LaJolla,CA,USA)根据生产商的指示来制备。将磨碎的菌丝体用2ml的温育,剧烈混合,并在室温温育5分钟。将0.4ml体积的氯仿添加至混合物并剧烈混合。将500μl体积的无色的含有RNA的上层相转移至不含RNase的管,接着添加500μl的乙醇并混合。将混合物转移至试剂盒提供的过滤管。将管在4℃在12,000xg下离心1分钟。将700μl体积的洗涤溶液添加至每个管,然后将管在4℃在12,000xg下离心1分钟。最终将RNA样品通过添加100μl的不含RNase的水至每个管并将这些管在4℃在12,000xg下离心1分钟来洗脱。
设计了下示的引物TCGA-F和TCAG-R以基于WO2006/069289中的多核苷酸序列信息通过PCR扩增瓣环栓菌淀粉葡糖苷酶基因的cDNA。
TCGA-F(有义):
5’-TGGGGGATCCACCATGCGTTTCACGCTCCT-3’(SEQIDNO:9)
TCGA-R(反义):
5’-CTCGAGTTAATTAACTACCGCCAGGTGTCGTTC-3’(SEQIDNO:10)
扩增反应物(50μl)包含1ng每μl的总RNA,250mM各dNTP,250nM引物TCGA-F,250nM引物TCGA-R,1单位的RNase抑制剂(RocheDiagnostics,Japan),0.1单位的逆转录酶(RocheDiagnostics,Japan),10μl的1X缓冲液(RocheDiagnostics,Japan),和0.1单位每μl1X缓冲液的TaqDNA聚合酶(RocheDiagnostics,Japan)。将反应在DNAEnginePTC-200(MJ-Research,Japan)中温育,其程序如下:1个循环,在50℃进行30分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行2分钟;1个循环,在72℃进行10分钟;和维持在4℃。
将反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1.7kb产物从凝胶切出并使用QIAQUICKTMGelExtractionKit(QIAGENInc.,Valencia,CA,USA)根据生产商的指示纯化。
将1.7kb扩增的DNA片段用BamHI和XhoI消化,并使用RapidDephosAndLigationKit(RocheAppliedScience,IndianapolisIN,USA)根据生产商的指示连接入用BamHI和XhoI消化的曲霉属表达盒pJaL790(WO2005/070962),其总反应体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的1.7kb片段,100ng的BamHI和XhoI消化的pJaL790载体片段,和1μl的连接酶。缓冲液和连接酶由试剂盒提供。将反应在室温温育30分钟,将上述连接反应的10μl等分试样转移至大肠杆菌DB6507的化学感受态细胞。质粒pHUda666使用SpinMiniprepKit(QIAGENInc.,Valencia,CA,USA)根据生产商的指示回收。
质粒pJaL790包含表达盒,其基于在相同方向连接的三个拷贝的黑曲霉中性淀粉酶II启动子,融合于最后一个黑曲霉中性淀粉酶II启动子的构巢曲霉丙糖磷酸异构酶非翻译前导序列(三重Na2/tpi启动子),黑曲霉淀粉葡糖苷酶终止子(AMG终止子),和来自构巢曲霉的选择性标记amdS(其允许在作为唯一氮源的乙酰胺上生长)。
实施例3:克隆与黑曲霉淀粉葡糖苷酶终止子融合的构巢曲霉pyrG基因以形成pHUda794
质粒pHUda794根据下述方法构建。设计了下示的引物nidP-f和nidP-r1以基于构巢曲霉NRRL1092的基因组数据库中的多核苷酸序列信息通过PCR扩增构巢曲霉pyrG基因(Galagan等,2005,Nature438:1105-1115)。引物nidP-f导入SpeI位点。
nidP-f(有义):
5’-TTTGCTAGCACTAGTTACTAAATGACGTTTGTGAAC-3’(SEQIDNO:11)
nidP-r1(反义):
5’-CTACCGCCAGGTGTCAGTCACCCTCAAAGTCCAACTCTTT-3’(SEQIDNO:12)
用构巢曲霉NRRL1092的基因组DNA作为模板的PCR反应用EXPANDTMPCRSystem(RocheDiagnostics,Japan)和引物nidP-f和nidP-r1进行。将构巢曲霉NRRL1092的菌丝体从100ml的YPG加尿苷培养基中的过夜培养物收获,过滤,用蒸馏水漂洗,干燥,并冻结于-80℃。磨碎的菌丝体用ProteinaseK和RNaseA(QIAGENInc.,Valencia,CA,USA)在65℃温育1小时。基因组DNA通过苯酚/CHCl3/异戊醇(25:24:1v/v/v)提取两次接着进行乙醇沉淀并重悬于蒸馏水来回收。
扩增反应物(50μl)包含1ng每μl的构巢曲霉NRRL1092基因组DNA,250mM各dNTP,250nM引物nidP-F,250nM引物nidP-r1,10μl的1X缓冲液,和0.1单位每μl1X缓冲液的TaqDNA聚合酶。反应在DNAEnginePTC-200中温育,其程序如下:1个循环,在94℃进行2分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行2分钟;1个循环,在72℃进行10分钟;和维持在4℃。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1.4kb产物条带从凝胶切出并使用GelExtractionKit根据生产商的指示纯化。
设计了下示的引物nidP-f1和nigGAT-r以基于黑曲霉CBS513.88的基因组数据库中的多核苷酸序列信息通过PCR扩增黑曲霉淀粉葡糖苷酶终止子区(Pel等,2007,NatureBiotechnology25:221-231)。
nidP-f1(有义):
5’-AAAGAGTTGGACTTTGAGGGTGACTGACACCTGGCGGTAG-3’(SEQIDNO:13)
nigGAT-r(反义):
5’-TCTCTAGAGGAGAGAGTTGAACCTGGACGC-3’(SEQIDNO:14)
用黑曲霉M1010的基因组DNA作为模板的PCR反应用EXPANDTMPCRSystem(RocheDiagnostics,Japan)和引物nidP-f1和nigGAT-r进行。将黑曲霉M1010的菌丝体从100ml的YPG加尿苷培养基中的过夜培养物收获,过滤,用蒸馏水漂洗,干燥,并冻结于-80℃。磨碎的菌丝体用ProteinaseK和RNaseA在65℃温育1小时。基因组DNA通过苯酚/CHCl3/异戊醇(25:24:1v/v/v)提取两次接着进行乙醇沉淀并重悬于蒸馏水来回收。
扩增反应物(50μl)包含1ng每μl的黑曲霉M1010基因组DNA,250mM各dNTP,250nM引物nidP-F1,250nM引物nigGAT-r,10μl的1X缓冲液,和0.1单位每μl1X缓冲液的TaqDNA聚合酶。反应在DNAEnginePTC-200中温育,其程序如下:1个循环,在94℃进行2分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行1分钟;1个循环,在72℃进行10分钟;和维持在4℃。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将0.7kb产物条带从凝胶切出并使用GelExtractionKit根据生产商的指示纯化。
用含有构巢曲霉pyrG基因的纯化的1.4kb片段和含有黑曲霉淀粉葡糖苷酶终止子的纯化的0.7kb片段的PCR反应用EXPANDTMPCRSystem使用引物nidP-f和nigGAT-r进行。扩增反应物(50μl)包含1ng每μl的含有构巢曲霉pyrG基因的1.4kb片段和1ng每μl的含有黑曲霉淀粉葡糖苷酶终止子的0.7kb片段,250mM各dNTP,250nM引物nidP-F,250nM引物nidP-R,10μl的1X缓冲液,和0.1单位每μl1X缓冲液的TaqDNA聚合酶。反应在DNAEnginePTC-200中温育,其程序如下:1个循环,在94℃进行2分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行2分钟;1个循环,在72℃进行10分钟;和维持在4℃。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将2.1kb产物条带从凝胶切出并使用GelExtractionKit根据生产商的指示纯化。
将2.1kb扩增的DNA片段使用CloningKit(Invitrogen,LaJolla,CA,USA)根据生产商的方案克隆入(Invitrogen,LaJolla,CA,USA),总反应体积为6μl,包含1μl的盐溶液,50ng的回收的2.1kb片段,和1μl的将反应在室温温育30分钟。将上述TOPO反应物的5μl等分试样根据生产商的指示转化入化学感受态大肠杆菌细胞DH5α(TOYOBO,Japan)以构建质粒pHUda794。
实施例4:质粒pHUda798的构建
质粒pHUda798根据下述方法构建。将质粒pHUda794用SpeI和XbaI以生成2.1kbDNA片段,所述片段含有融合于黑曲霉淀粉葡糖苷酶终止子的构巢曲霉pyrG基因,将所述片段使用QIAQUICKTMGelExtractionKit根据生产商的指示回收。将回收的2.1kb片段使用RapidDephosAndLigationKit根据生产商的指示连接于XbaI消化的pHUda666,其总反应体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的2.1kb片段,100ng的XbaI消化的pHUda666片段,和1μl的连接酶。将反应在室温温育30分钟。将上述连接反应物的10μl等分试样根据生产商的指示转化入化学感受态大肠杆菌DH5α细胞以构建质粒pHUda798。使用SpinMiniprepKit根据生产商的指示回收质粒pHUda798。
质粒pHUda798包含瓣环栓菌淀粉葡糖苷酶基因的表达盒,其基于在相同方向连接的三个拷贝的黑曲霉中性淀粉酶II启动子,融合于最后一个黑曲霉中性淀粉酶II启动子的构巢曲霉丙糖磷酸异构酶非翻译前导序列(三重Na2/tpi启动子),黑曲霉淀粉葡糖苷酶终止子(AMG终止子),和具有黑曲霉AMG终止子重复的选择性标记pyrG。
实施例5:质粒pTK2的构建
质粒pTK2根据下述方法构建。质粒pJaL574(WO2007/045248,实施例9)用EcoRI和XhoI消化以生成含有单纯疱疹病毒(Herpessimplexvirus)(HSV)胸腺嘧啶激酶基因(TK)的2.5kbDNA片段,将所述片段使用QIAQUICKTMGelExtractionKit根据生产商的指示回收。将回收的2.5kb片段使用RapidDephosAndLigationKit根据生产商的指示连接于EcoRI和XhoI消化的IISK-(AgilentTechnologies,SantaClara,CA,USA;Genbank#X52330),其总体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的2.5kb片段,100ng的EcoRI和XhoI消化的IISK-片段,和1μl的连接酶。将反应在室温温育30分钟。将上述的连接反应物的10μl等分试样根据生产商的指示转化入化学感受态大肠杆菌DH5α细胞以构建质粒pTK2。质粒pTK2使用SpinMiniprepKit根据生产商的指示回收。
实施例6:质粒pTK2-5NA1的构建
质粒pTK2-5NA1根据下述方法构建。设计了下示的引物5NA1F2和5NA1R2(分别导入NotI位点和NheI/XbaI位点)以基于黑曲霉CBS513.88的基因组数据库中的多核苷酸序列信息扩增中性淀粉酶I(NAI)基因的黑曲霉菌株M10105’侧翼区(Pel等,2007,见上文)。
5NA1F2(有义):
5’-GGCGGCCGCGTTTAAACCTATCTGTTCCC-3’(SEQIDNO:15)
5NA1R2(反义):
5’-TCGTCTAGAGCTAGCTGACTTCTATATAAAAATGAGT-3’(SEQIDNO:16)
用黑曲霉M1010基因组DNA(实施例3)作为模板的PCR反应用EXPANDTMPCRSystem和引物5NA1F2和5NA1R2进行。
扩增反应物(50μl)包含1ng每μl的黑曲霉M1010基因组DNA,250mM各dNTP,250nM引物5NA1F,250nM引物5NA1R,10μl的1X缓冲液,和0.1单位每μl1X缓冲液的TaqDNA聚合酶。反应在DNAEnginePTC-200中温育,其程序如下:1个循环,在94℃进行2分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行2分钟;1个循环,在72℃进行10分钟;和维持在4℃。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1.8kb产物条带从凝胶切出并使用GelExtractionKit根据生产商的指示纯化。
1.8kb扩增的DNA片段用NotI和XbaI消化,并使用RapidDephosAndLigationKit根据生产商的指示连接至NotI和XbaI消化的pTK2,总反应体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的1.8kb片段,100ng的NotI和XbaI消化的pTK2XbaI片段,和1μl的连接酶。将反应在室温温育30分钟。将上述的连接反应物的10μl等分试样根据生产商的指示转化入化学感受态大肠杆菌DH5α细胞以构建质粒pTK2-5NA1。质粒pTK2-5NA1使用SpinMiniprepKit根据生产商的指示回收。
实施例7:质粒pTK2-5NA1-3NA1的构建
质粒pTK2-5NA1-3NA1根据下述方法构建。设计了下示的引物3NA1F2和3NA1R2(分别导入XbaI位点和EcoRI位点)以基于黑曲霉CBS513.88的基因组数据库中的多核苷酸序列信息扩增中性淀粉酶I(NAI)基因的黑曲霉菌株M10103’侧翼区(Pel等,2007,见上文)。
3NA1F2(有义):
5’-TCCTCTAGAGTATATGATGGTACT-3’(SEQIDNO:17)
3NA1R(反义):
5’-GGAGAATTCTTAATTAAGCATTCTCCTAGTTACT-3’(SEQIDNO:18)
用黑曲霉M1010基因组DNA(实施例3)作为模板的PCR反应用EXPANDTMPCRSystem和引物3NA1F2和3NA1R2进行。扩增反应物(50μl)包含1ng每μl的黑曲霉M1010基因组DNA,250mM各dNTP,250nM引物3NA1F,250nM引物3NA1R,10μl的1X缓冲液,和0.1单位每μl1X缓冲液的TaqDNA聚合酶。反应在DNAEnginePTC-200中温育,其程序如下:1个循环,在94℃进行2分钟;30个循环,每循环在92℃进行1分钟,55℃进行1分钟,和72℃进行2分钟;1个循环,在72℃进行10分钟;和维持在4℃。
反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1.4kb产物条带从凝胶切出并使用GelExtractionKit根据生产商的指示纯化。
The1.4kb扩增的DNA片段用XbaI和EcoRI消化,并使用RapidDephosAndLigationKit根据生产商的指示连接至XbaI和EcoRI消化的pTK2-5NA1,总反应体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的1.4kb片段,100ng的pTK2-5NA1XbaI和EcoRI消化的载体片段,和1μl的连接酶。将反应在室温温育30分钟。将上述的连接反应物的10μl等分试样转化入化学感受态大肠杆菌DH5α细胞根据生产商的指示以构建质粒pTK2-5NA1-3NA1。质粒pTK2-5NA1-3NA1使用SpinMiniprepKit根据生产商的指示回收。
实施例8:质粒pHUda852的构建
构建了质粒pHUda852作为黑曲霉三重NA2启动子驱动的瓣环栓菌淀粉葡糖苷酶报道质粒以供在黑曲霉NA1座(locus)进行位点特异性整合。
质粒pHUda798用NheI和XbaI消化以生成含有瓣环栓菌淀粉葡糖苷酶表达盒和构巢曲霉pyrG基因的6.1kbDNA片段,将所述片段使用QIAQUICKTMGelExtractionKit根据生产商的指示回收。将回收的6.1kb片段使用RapidDephosAndLigationKit根据生产商的指示连接于XbaI消化的pTK2-5NA1-3NA1,总反应体积为21μl,包含2μl的缓冲液3,10μl的缓冲液4,200ng的回收的6.1kb片段,100ng的pTK2-5NA1-3NA1XbaI载体片段,和1μl的连接酶。将反应在室温温育30分钟。将上述的连接反应物的10μl等分试样根据生产商的指示转化入化学感受态大肠杆菌DH5α细胞以构建表达质粒pHUda852(图1)。质粒pHUda852使用SpinMiniprepKit根据生产商的指示回收.
质粒pHUda852包含瓣环栓菌淀粉葡糖苷酶基因的表达盒,其基于在相同方向连接的三个拷贝的黑曲霉中性淀粉酶II启动子,融合于最后一个黑曲霉中性淀粉酶II启动子的构巢曲霉丙糖磷酸异构酶非翻译前导序列(三重Na2/tpi启动子),黑曲霉淀粉葡糖苷酶终止子(AMG终止子),来自具有AMG终止子的构巢曲霉的选择性标记pyrG,位于构巢曲霉甘油磷酸脱氢酶(gpd)启动子和构巢曲霉trpC基因(其涉及色氨酸生物合成)的终止子之间的单纯疱疹病毒(HSV)胸腺嘧啶激酶基因,和黑曲霉中性淀粉酶I基因的5’和3’侧翼区。
实施例9:pMhCt036,用于在黑曲霉NA1座进行位点特异性整合的黑曲霉cipC启动子驱动的瓣环栓菌淀粉葡糖苷酶报道质粒的构建
为了确定来自黑曲霉伴刀球霉素诱导的蛋白C基因(cipC)启动子的表达潜力,构建了质粒以将处于cipC启动子(SEQIDNO:1)调控下的报道蛋白,瓣环栓菌淀粉葡糖苷酶,靶向黑曲霉的NA1座。含有对pHUda852的NheI位点区的5’同源性,来自黑曲霉cipC基因的启动子区的-1008至-3,加上12个碱基对的接头,接着是瓣环栓菌淀粉葡糖苷酶开读框的+1至+8的PCR片段使用下述引物从黑曲霉菌株803-2基因组DNA(根据实施例1中所述的方法制备)生成:
引物065879(有义):
5’-TTATATAGAAGTCAGCTAGCCAAGACGAGAAGCTGACCG-3’(SEQIDNO:19)
NheI
引物065880(反义):
5’-AAACGCATGGTGGATCCCCCGATTGATGTATGAAGTAGTGAAGAG-3’(SEQIDNO:20)
BamHI
PCR反应物(50μl)包含100ng的黑曲霉菌株803-2基因组DNA(根据实施例1制备),1XiProofTMHF缓冲液(Bio-RadLaboratories,Inc.,Hercules,CA,USA),100pmol的引物065879,100pmol的引物065880,各200μM的dATP,dCTP,dGTP,和dTTP,和1单位的iProofTMHighFidelityDNA聚合酶(Bio-RadLaboratories,Inc.,Hercules,CA,USA)。PCR在 (EppendorfAG,Hamburg,Germany)中进行,其程序如下:1个循环,在98℃进行30秒,接着进行32个循环,每循环在98℃进行10秒,53℃进行30秒,和72℃进行30秒。最终延伸循环在72℃进行5分钟。在热循环之后,PCR反应产物通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳分离,其中将大约1kbPCR产物从凝胶切出并使用ExtractIIKit(Macherey-Nagel,Bethlehem,PA,USA)根据生产商的指示纯化。
含有对包含BamHI位点的上述PCR产物的5’同源性,12个碱基对的接头,和瓣环栓菌淀粉葡糖苷酶开读框的+1至+386(StuI位点位于+366至+371位置)的第二PCR片段使用下述引物从pHUda852质粒DNA通过PCR生成:
引物065881(有义):
5’-CTCTTCACTACTTCATACATCAATCGGGGGATCCACCATGCGTTT-3’(SEQIDNO:21)
BamHI
引物065882(反义):
5’-AACTTGGGCTCGCCGAGG-3’(SEQIDNO:22)
(内源StuI位点的一半包含于该引物,并如上所述以下划线表示。)
PCR反应物(50μl)包含10ng的pHUda852,1X克隆的PfuDNA聚合酶缓冲液(AgilentTechnologies,SantaClara,CA,USA),100pmol的引物065881,100pmol的引物065882,各200μM的dATP,dCTP,dGTP,和dTTP,和2.5单位PfuDNA聚合酶(AgilentTechnologies,SantaClara,CA,USA)。PCR在中进行,其程序如下:1个循环,在94℃进行2分钟,接着进行32个循环,每循环在94℃进行30秒,50℃进行30秒,和72℃进行1分钟。最终延伸循环在72℃进行5分钟。在热循环之后,PCR反应产物通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳分离,其中将大约400bpPCR产物从凝胶切出并使用ExtractIIKit根据生产商的指示纯化。
质粒pHUda852用NheI和StuI消化,并通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳纯化,其中将大约12.7kb条带从凝胶切出并使用ExtractIIKit根据生产商的指示纯化。
然后将上述纯化的400bp和12.7kbPCR产物使用IN-FUSIONTMPCRCloningKit(Clontech,MountainView,CA,USA)插入NheI/StuI消化的pHUda852片段,其总体积为20μl,包含2μl的10X缓冲液(Clontech,MountainView,CA,USA),2μl的10XBSA(Clontech,MountainView,CA,USA),200ng的各PCR产物,100ng的NheI/StuI消化的pHUda852片段,和1μl的IN-FUSIONTM酶(Clontech,MountainView,CA,USA)。将反应物在42℃温育30分钟,置于冰上,并用40μl的TE缓冲液稀释。将连接反应物的4μl等分试样根据生产商的指示转化入ONETOP10化学感受态大肠杆菌细胞(Invitrogen,SanDiego,CA,USA)。将转化体铺板于2XYT+amp平板上并在37℃温育过夜。对数个所得的转化体通过PstI消化筛选所需PCR产物的正确插入。产生所需的条带大小的克隆通过DNA测序确认为正确的,并命名为pMhCt036(图2)。
质粒pMhCt036包含瓣环栓菌淀粉葡糖苷酶基因的表达盒,其处于cipC启动子和黑曲霉淀粉葡糖苷酶终止子(AMG终止子),来自具有黑曲霉淀粉葡糖苷酶终止子(AMG终止子)的构巢曲霉的选择性标记pyrG,位于构巢曲霉甘油磷酸脱氢酶(gpd)启动子和构巢曲霉trpC基因的终止子之间的单纯疱疹病毒(HSV)胸腺嘧啶激酶基因,和黑曲霉中性淀粉酶I基因的5’和3’侧翼区的调控下。
实施例10:黑曲霉889-852-47的构建
如下所述构建了黑曲霉889-852-47作为供将三重NA2-tpi启动子与cipC启动子相比较的对照菌株。
将黑曲霉菌株M1010接种入100ml的YPG+尿苷培养基,并在32℃和80rpm温育16小时。收集沉淀,并将其用0.6MKCl洗涤,并重悬于20ml的含有最终浓度为20mg每ml的GLUCANEXTM(NovozymesA/S,Bagsvaerd,Denmark)的0.6MKCl。将悬液在32℃和80rpm温育直至形成原生质体,然后将其用STC缓冲液洗涤两次。将原生质体用红细胞计数器(VWR,WestChester,PA,USA)计数,并在STC:STPC:DMSO的8:2:0.1v/v/v溶液中重悬和调整至2.5x107个原生质体/ml的最终浓度。将大约3μg的pHUda852添加至100μl的原生质体悬液,轻柔地混合,并在冰上温育30分钟。添加一ml的SPTC,并将原生质体悬液在37℃温育20分钟。在添加10ml的50°CCOVE-N顶层琼脂糖之后,将反应物倾至COVE-N(tf)平板上,并将该平板在32℃温育。在5日之后,从COVE-N(tf)培养基选择转化体。
将随机选择的转化体接种于补充2.5μM5-氟-2-脱氧尿苷(FdU)的COVE-N平板上,该药剂杀灭表达pHUda852中携带的单纯疱疹病毒(HSV)胸腺嘧啶激酶基因的细胞。在含2.5μMFdU的COVE-N平板上生长良好的菌株通过单菌落分离纯化,并对其进行Southern印迹分析以确认pHUda852中的表达盒是否如下所述正确地在NA1(中性淀粉酶I)座整合。
将选定的转化体的菌丝体从100ml的YPG加mM尿苷培养基中的过夜培养物收获,过滤,用蒸馏水漂洗,干燥,并冻结于-80℃。将磨碎的菌丝体用ProteinaseK和RNaseA在65℃温育1小时。基因组DNA通过苯酚/CHCl3(25:24:1v/v/v)提取两次,接着进行乙醇沉淀并重悬于蒸馏水来回收。
非放射性探针使用PCRDIGProbeSynthesisKit(RocheAppliedScience,IndianapolisIN,USA)根据生产商的指示来合成。将DIG标记的探针使用QIAQUICKTMGelExtractionKit根据生产商的指示进行凝胶纯化。使用下示的引物制备NA1座特异性探针以从黑曲霉NA1座通过PCR扩增大约500bp的5’NA1区。
NA1正向引物(有义):
5’-AATCCGGATCCTTTCCTATA-3’(SEQIDNO:23)
NA1反向引物(反义):
5’-GATGGAGCGCGCCTAGAAGC-3’(SEQIDNO:24)
PCR(100μl)包含1XEXPANDTM缓冲液(RocheDiagnostics,Japan),50pmol的NA1正向引物,50pmol的NA1反向引物,200μMDIGdNTP混合物,5单位的EXPANDTMDNA聚合酶(RocheDiagnostics,Japan),和100ng的pHUda852。PCR在中进行,其程序如下:1个循环,在95℃进行2分钟,接着进行30个循环,每循环在95℃进行30秒,60℃进行30秒,和72℃进行30秒。最终延伸循环在72℃进行10分钟。在热循环之后,PCR反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳分离,其中将大约500bpPCR产物从凝胶切出并使用QIAQUICKTMGelExtractionKit根据生产商的指示纯化。
使用下示的引物制备瓣环栓菌淀粉葡糖苷酶特异性探针以从黑曲霉NA1座通过PCR扩增大约500bp区。
AMG正向引物(有义):
5’-TGATTGCAAGTCCGAGCACA-3’(SEQIDNO:25)
AMG反向引物(反义):
5’-GAGGTTTGTCCGATGCGATT-3’(SEQIDNO:26)
PCR(100μl)包含1XEXPANDTM缓冲液,50pmol的AMG正向引物,50pmol的AMG反向引物,200μMDIGdNTP混合物,5单位的EXPANDTMDNA聚合酶,和100ng的pHUda852。PCR在中进行,其程序如下:1个循环,在95℃进行2分钟,接着进行30个循环,每循环在95℃进行30秒,60℃进行30秒,和72℃进行30秒。最终延伸循环在72℃进行10分钟。在热循环之后,PCR反应产物通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳分离,其中将大约500bpPCR产物从凝胶切出并使用QIAQUICKTMGelExtractionKit根据生产商的指示纯化。
将五微克来自随机选择的在含2.5μMFdU的COVE-N平板上生长良好的菌株的基因组DNA用NcoI或NheI/SpeI消化,并对其进行使用TAE缓冲液的0.8%琼脂糖凝胶电泳。将DNA在凝胶中通过用0.2MHCl处理20分钟来片段化,用0.5MNaOH-1.5MNaCl变性30分钟,并用1MTrispH7.5-1.5MNaCl中和30分钟,以供接着在20XSSC中转移至HYBONDTMN+膜(Amersham,GEHealthcare,Piscataway,NJ,USA)。将DNAUV交联至膜,并在42℃在20ml的DIGEasyHyb缓冲液(RocheDiagnostics,Japan)中预杂交1小时。将变性的探针直接添加至DIGEasyHyb缓冲液,并在42℃进行杂交过夜。在杂交后洗涤(在室温在2XSSC中进行两次,每次5分钟,和在0.1XSSC中在68℃进行两次,每次15分钟)之后,根据生产商的规程进行使用DIG检测系统和试剂(RocheDiagnostics,Japan)的化学发光检测。使用DIG标记的DNAMolecularWeightMarkerII(RocheDiagnostics,Japan)作为标准标记。
正确的整合事件导致通过NcoI消化的在2.8kb的杂交信号迁移至用5’NA1侧翼区探测的4.6kb,而6.4kbNheI/SpeI消化的条带用淀粉葡糖苷酶探针检测出。在具有正确整合事件的菌株中,选择了一个菌株并命名为黑曲霉889-852-47。
实施例11:将pMhCt036转化入黑曲霉M1010
黑曲霉M1010的原生质体制备通过将大约2x107个孢子接种入含有100ml的YPG+尿苷培养基的250ml烧瓶,并在32℃在200rpm下将该烧瓶温育16-18小时来进行。菌丝体通过将培养物倾倒通过衬以的灭菌漏斗,并用50ml的0.6MKCl漂洗来收集。将经洗涤的菌丝体重悬于含有20ml的包含20mg每ml0.6MKCl的200G的125ml烧瓶,并在32℃在80rpm混合下温育1小时。将原生质体形成溶液(protoplastingsolution)倾倒通过衬以的灭菌漏斗,并用50ml的0.6MKCl漂洗。将流过物收集在两个50ml聚丙烯管中。将管在室温在1300xg下离心5分钟。弃去上清,并将原生质体沉淀通过重悬于总共20ml的STC缓冲液来合并。移取10μl悬液样品,并将原生质体通过血细胞计数器来计数。将剩余的原生质体悬液在室温在1300xg下离心5分钟,并将沉淀在含有8:2:0.1比例的STC/SPTC/DMSO的溶液中重悬至1x107个原生质体/ml的终浓度。然后将原生质体溶液等分入1.8ml冷冻小瓶(cryovial)(Nunc,ThermoScientific,Rochester,NY,USA)并在Mr.Frosty冷冻容器(NALGENE,ThermoScientific,Rochester,NY,USA)中冻结至-80℃。
质粒pMhCt036通过用PmeI和AgeI的限制性消化制备用于转化。将含有表达盒,NA1侧翼区,pyrG选择性标记,和单纯疱疹病毒胸腺嘧啶激酶(HSV-1TK)反选择标记的11,181bp片段通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳从载体片段分离,从凝胶切出,并使用ExtractIIKit根据生产商的指示进行纯化。制备了两个转化反应物。对于每个反应,将原生质体制备物(在冰上解冻)的100μl溶液转移至14ml聚丙烯管,并对其添加1.5μg纯化的PmeI和AgeI消化的pMhCt036片段。将原生质体和DNA溶液在冰上温育30分钟。然后添加1ml的SPTC并轻柔地混合,接着在37℃温育20分钟。将12.5ml体积的50℃熔化的COVE-N顶层琼脂糖添加至每个转化反应物,并将所得的悬液倾至顶层涂覆的COVE-N-JP平板以供原生质体再生。将平板在30℃温育直至四日后出现菌落。
实施例12:对pMhCt036转化体筛选在NA1座发生的合适整合
将来自原始转化平板(实施例11)的五十个转化体挑至单独的COVE-N-Gly平板,并允许在30℃生长。为了筛选缺乏HSV-1TK反选择性标记的菌株,使用灭菌的牙签将少量每种转化体移至含有1.5ml的COVE-N-Gly琼脂加上5μM5-氟-2-脱氧尿苷(FdU)的24孔微滴定板的孔(BDBiosciences,Bedford,MA,USA)。在30℃进行一周之后,将十二个在FdU平板上鲁棒地(robustly)生长的COVE-N-Gly平板划线至新COVE-N-Gly平板上以分离菌落。在30℃生长两日之后,将单个分离的菌落从每个平板挑取至新的COVE-N-Gly平板并在30℃生长直至孢子形成。重复该孢子纯化方法以产生双孢子纯化的转化体。
为了允许PCR筛选所需的靶向NA1座的单拷贝整合体,如下所述制备了来自十二个潜在整合体的小规模基因组DNA制备物。对于每个潜在的整合体,将两个含有孢子、菌丝体和琼脂的栓从COVE-N-Gly平板使用灭菌的一次性转移移液管(VWR,WestChester,PA,USA)转移至1.5ml管。然后将500μl的PCR裂解缓冲液和大约100μl的0.5mm氧化锆/氧化硅珠(BioSpecProducts,Bartlesville,OK,USA)添加至每个管。细胞通过两轮在FP120A机器中(Qbiogene,Inc,Carlsbad,CA,USA)设定为4.5的45秒的搅拌来破坏。将管在16,100xg下离心1分钟,接着添加150μl的乙酸钾pH4.8。将管短暂地涡旋。在16,100xg下进行第二离心1分钟之后,将400μl的上清转移至新管。为了去除剩余固体,重复离心,并将上清转移至1.5ml管。将400μl体积的异丙醇添加至每个管,然后倒置混合。将管在16,100xg下离心5分钟,并弃去上清。将沉淀用500μl的70%乙醇洗涤。在16,100xg下最终离心1分钟之后,去除上清,并将沉淀在SavantISS110SpeedVacConcentrator(ThermoScientific,Rochester,NY,USA)中干燥5分钟。将沉淀重悬于50μl的TE。
设计了下示的引物以区分黑曲霉M1010亲本菌株中的NA1座和所需的经pMhCt036修饰的座。引物065978在pyrG+开读框末端退火,而引物065979在黑曲霉基因组中恰在pMhCt036中含有的NA1侧翼区的3’处退火。
065978(有义):
5’-GTTGGGCGAGGTGCGGACTTTA-3’(SEQIDNO:27)
065979(反义):
5’-TCCAGCCAGCAATACTGCCC-3’(SEQIDNO:28)
每个诊断性PCR反应物含有50μl总反应体积,具有2μl的如上所述制备的基因组DNA,1XThermoPol缓冲液(NewEngl和Biolabs,Ipswich,MA,USA),100pmol的引物065978,100pmol的引物065979,各200μM的dATP,dCTP,dGTP,和dTTP,和5单位的TaqDNA聚合酶。PCR在 中进行,其程序如下:1个循环,在95℃进行3分钟,接着进行32个循环,每循环在95℃进行30秒,50℃进行30秒,和72℃进行2分30秒。最终延伸循环在72℃进行10分钟。在热循环之后,PCR反应物通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳分离,并将凝胶在UV光下成像(photograph)。2379碱基对条带的存在表明直链化的pMhCt036在NA1座的合适整合。
然后在如上所述的诊断性PCR中对于2379bp条带测试为阳性的pMhCt036转化体通过Southern印迹分析来确认。从转化体,以及对照(通过如上所述对于黑曲霉803-2基因组DNA的方法制备但未经转化的菌株)制备高品质基因组DNA。基因组DNA用BglII或(在不同反应中)SacII和XhoI消化。将消化的DNA通过使用TAE缓冲液的1.0%琼脂糖凝胶电泳分离,然后使用Sambrook等,1989,Molecularcloning:Alaboratorymanual,ColdSpringHarborlab.,ColdSpringHarbor,NewYork中描述的标准技术转移至HYBONDTMN+膜。
使用下示的引物制备NA1座特异性Southern探针以从黑曲霉NA1座通过PCR扩增大约530bp区。
066032(有义):
5’-TGTTCCCTCCCCCCCCTTTTATCTTC-3’(SEQIDNO:29)
066033(反义):
5’-ATACCGATGTTGGCCCACCACG-3’(SEQIDNO:30)
PCR反应物(50μl)包含1XECONOTAQ缓冲液(Lucigen,Middleton,WI,USA),50pmol的引物066032,50pmol的引物066033,各200μM的dATP,dCTP,dGTP,和dTTP,2.5单位的DNA聚合酶(Lucigen,Middleton,WI,USA),和100ng的质粒pHUda852。PCR在 中进行,其程序如下:1个循环,在95℃进行3分钟,接着进行30个循环,每循环在95℃进行30秒,55℃进行30秒,和72℃进行1分钟。最终延伸循环在72℃进行10分钟。在热循环之后,PCR反应产物通过使用TAE缓冲液的0.9%琼脂糖凝胶电泳分离,其中将538bp条带从凝胶切出并使用ExtractIIKit根据生产商的指示纯化。
将纯化的PCR产物在另一个PCR反应中进行异羟基洋地黄毒苷(digoxigenin)-dUTP标记,其50μl总反应体积含有1XThermoPol缓冲液,50pmol的引物066032,50pmol的引物066033,各200μM的dATP,dCTP,dGTP,和dTTP,5μl的DIGDNA标记混合物(RocheDiagnostics,Mannheim,Germany),20ng的原始、纯化的538bpNA1PCR产物,和4单位的TaqDNA聚合酶。PCR条件与原始反应相同。在热循环之后,将5μl的PCR反应物添加至50μl的TE缓冲液,加热至95℃进行8分钟,在冰上冷却10分钟,然后用作探针以用DIGHighPrimerDNALabelingAndDetectionStarterKitII(RocheDiagnostics,Mannheim,Germany)根据生产商的指示进行Southern检测。对于BglII消化,黑曲霉M1010的NA1座产生8460bp条带,而pMhCt036的正确整合产生11,239bp条带。对于SacII和XhoI消化,黑曲霉M1010的NA1座产生3552bp条带,而pMhCt036的正确整合在NA1座产生5284bp条带。三个独立分离的转化体,在本文中称作cipC036.20,cipC036.24,和cipC036.25,确认为pMhCt036在NA1座的正确整合体。
实施例13:在小规模黑曲霉培养中TcAMG报道蛋白活性的分析
将COVE-N-Gly平板用黑曲霉菌株(cipC启动子整合体;黑曲霉C1650,一种pyrG+无淀粉葡糖苷酶的对照菌株;或黑曲霉889-852-47,一种如上所述在NA1座具有三重NA2-tpi-瓣环栓菌淀粉葡糖苷酶报道基因整合的菌株)并允许其在30℃生长一周。使用灭菌的一次性转移移液管将四个从平板环切的栓转移至含有4ml的MU1/MLC/尿素的灭菌的14-ml聚丙烯圆底管。将管倾斜置于设定为200rpm的定轨振荡器上的管架中,并在30℃生长九日。将管在1942xg下离心5分钟,并将200μl的每个上清储藏于-20℃以供后来分析。
如下所述对来自第9日的上清测定淀粉葡糖苷酶活性:将培养上清在0.1M乙酸钠-0.01%X-100pH5.0缓冲液(样品缓冲液)中适当地稀释,然后对稀释的样品进行从0倍至1/3倍至1/9倍的系列稀释。将淀粉葡糖苷酶标样NovozymesA/S,Bagsvaerd,Denmark)使用2倍稀释步骤稀释,起始以样品缓冲液中的8AGU/ml浓度并终以1AGU/ml浓度。将包括标样的二十μl的每种稀释液转移至96孔平底板。将一百微升的对硝基苯基-α-D-葡糖吡喃糖苷(SigmaChemicalCo.,St.Louis,MO,USA)底物溶液(0.1M乙酸钠pH5.0中的1mg/ml)添加至每个孔,然后在环境温度温育45分钟。一旦完成了温育,将反应用100μl的0.06NNaOH淬灭。反应的终点在405nm使用3000和NXLaboratoryAutomationWorkstations(BeckmanCoulter,Inc,FullertonCA,USA)测量。样品浓度通过生成的标准曲线外推来确定。
将每个菌株生长一式三次,且根据测定的相对平均淀粉葡糖苷酶活性(相对于作为对照菌株的黑曲霉889-852-47)和相对标准偏差(“偏差”)如下所示:
样品 相对平均AMG活性 相对标准偏差
C1650 0.00 0.00
889-852-47 1.00 0.08
cipC036.20 0.18 0.03
cipC036.24 0.20 0.04
cipC036.25 0.25 0.06
上述结果说明黑曲霉C1650,一种黑曲霉M1010亲本菌株的pyrG+衍生物,并不产生可检测的淀粉葡糖苷酶活性,但从黑曲霉菌株cipC036.20,cipC036.24,和cipC036.25中的cipC启动子产生了来自淀粉葡糖苷酶报道蛋白的显著活性。黑曲霉889-852-47阳性对照菌株,其具有在三重NA2-tpi启动子调控下的淀粉葡糖苷酶报道蛋白,在该测定中产生了最高的淀粉葡糖苷酶活性。
实施例14:黑曲霉889-852-47和黑曲霉cipC036.24的发酵
将黑曲霉cipC036.24和作为对照的黑曲霉889-852-47发酵以评估在cipC启动子调控下的淀粉葡糖苷酶的表达。摇瓶培养基包含标准的碳源和氮源。将一百ml的摇瓶培养基添加至500ml摇瓶以供每次罐运行总共四个摇瓶。将每个摇瓶用对应于1至2百万个孢子的总孢子计数的液体孢子悬液体积接种,并在30℃在定轨振荡器上以220rpm温育72小时。将来自四个烧瓶培养液的各五十ml用于接种2升发酵容器。发酵批次培养基包含在pH5的标准的碳源和氮源。
将总共1.8升的发酵批次培养基添加至ApplikonBiotechnology两升玻璃加套的发酵器(glassjacketedfermentor)(ApplikonBiotechnologyInc.,FosterCityCA,USA)。将发酵容器维持在34℃的温度,并使用Applikon1030controlsystem(ApplikonBiotechnologyInc.,FosterCityCA,USA)控制pH至4.85+/-0.1的设定点。将灭菌空气以1vvm的速率添加至容器,并将培养液通过在1100rpm旋转的Rushton叶轮搅拌。培养运行185个小时。
从发酵管每日取样,并根据实施例13中所述的测定法测定淀粉葡糖苷酶活性。结果示于图3。从黑曲霉菌株cipC036.24中的cipC启动子产生了来自淀粉葡糖苷酶报道蛋白的显著活性。
本发明通过下述编号段落进一步描述:
[1]一种产生多肽的方法,其包括:(a)在有助于产生所述多肽的培养基中培养真菌宿主细胞,其中所述真菌宿主细胞包含编码多肽的多核苷酸,所述多核苷酸可操作地连接于启动子,所述启动子选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%序列同一性,(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联启动子;其中所述编码多肽的多核苷酸对于所述启动子是外源的;和(b)从培养基分离所述多肽。
[2]段1的方法,其中所述启动子包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%或100%序列同一性。
[3]段1的方法,其中所述启动子包含核苷酸序列,所述核苷酸序列在中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链。
[4]段1的方法,其中所述启动子包含或组成为SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸序列;或其具有启动子活性的亚序列。
[5]段4的方法,其中所述启动子包含或组成为SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸序列。
[6]段1的方法,其中所述启动子是杂合启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的多核苷酸序列的一个或多个(例如几个)部分。
[7]段1的方法,其中所述启动子是串联启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的一个或多个(例如几个)多核苷酸序列;或其保留启动子活性的亚序列。
[8]段的方法7,其中所述启动子是串联启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的一个或多个(例如几个)多核苷酸序列。
[9]段7或8的方法,其中所述串联启动子包含两个或更多个(例如几个)启动子。
[10]段9的方法,其中所述串联启动子的两个或更多个(例如几个)启动子同时引发多核苷酸的转录。
[11]段10的方法,其中所述串联启动子的两个或更多个(例如几个)启动子的一个或多个(例如几个)在真菌宿主细胞生长的不同阶段引发编码多肽的多核苷酸的转录。
[12]段1-11任一项的方法,其所述真菌宿主细胞含有一个或多个(例如几个)拷贝的编码多肽的多核苷酸。
[13]段1-11任一项的方法,其中所述真菌宿主细胞含有一个拷贝的编码多肽的多核苷酸。
[14]段1-13任一项的方法,其中所述多肽选自下组:抗原、酶、生长因子、激素、免疫增强剂(immunodilator)、神经递质、受体、报道蛋白、结构蛋白和转录因子。
[15]段1-14任一项的方法,其中所述多肽对于真菌宿主细胞是天然的或外源的。
[16]段1-15任一项的方法,其中所述多核苷酸包含于真菌宿主细胞的染色体中。
[17]段1的方法,其中所述多核苷酸包含于染色体外元件上。
[18]段1-17任一项的方法,其中所述真菌宿主细胞是丝状真菌细胞。
[19]段1-17任一项的方法,其中所述真菌宿主细胞是酵母细胞。
[20]一种分离的启动子,其选自下组:(i)启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%序列同一性;(ii)启动子,其包含核苷酸序列,所述核苷酸序列在至少中等严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链;(iii)启动子,其包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;(iv)启动子,其包含(i),(ii),或(iii)的保持启动子活性的亚序列;和(v)(i),(ii),(iii),或(iv)的突变、杂合或串联启动子。
[21]段20的启动子,其包含核苷酸序列,所述核苷酸序列与SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32具有至少60%,至少65%,至少70%,至少75%,至少80%,至少81%,至少82%,至少83%,至少84%,至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,至少99%或100%序列同一性。
[22]段20的启动子,其包含核苷酸序列,所述核苷酸序列在中等严格条件,中等-高严格条件,高严格条件,或非常高严格条件下与以下杂交:SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32;或其全长互补链。
[23]段20的启动子,其包含或组成为SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸序列;或其具有启动子活性的亚序列。
[24]段23的启动子,其包含或组成为SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,SEQIDNO:8,SEQIDNO:31,或SEQIDNO:32的多核苷酸序列。
[25]段20的启动子,其为杂合启动子,所述杂合启动子包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的多核苷酸序列的一个或多个(例如几个)部分。
[26]段20的启动子,其为串联启动子,所述串联启动子包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的一个或多个(例如几个)多核苷酸序列;或其保留启动子活性的亚序列。
[27]段26的启动子,其为串联启动子,所述串联启动子包含SEQIDNO:1,SEQIDNO:2,SEQIDNO:3,SEQIDNO:4,SEQIDNO:5,SEQIDNO:6,SEQIDNO:7,和SEQIDNO:8的一个或多个(例如几个)多核苷酸序列。
[28]段26或27的启动子,其中所述串联启动子包含两个或更多个(例如几个)启动子。
[29]段28的启动子,其中所述串联启动子的两个或更多个(例如几个)启动子同时引发编码多肽的多核苷酸的转录。
[30]段28的启动子,其中所述串联启动子的两个或更多个(例如几个)启动子的一个或多个(例如几个)在真菌宿主细胞生长的不同阶段引发编码多肽的多核苷酸的转录。
[31]一种核酸构建体,其包含可操作地连接于段20-30任一项的启动子的编码多肽的多核苷酸。
[32]一种重组表达载体,其包含段31的核酸构建体。
[33]一种重组宿主细胞,其包含段31的核酸构建体。
[34]段33的重组宿主细胞,其为丝状真菌细胞。
[35]段33的重组宿主细胞,其为酵母细胞。
[36]一种核酸构建体,其包含(a)靶向序列,(b)段20-30任一项的启动子,(c)外显子,和(d)剪接-供体位点。
[37]一种核酸构建体,其包含(a)靶向序列,(b)段20-30任一项的启动子,(c)外显子,(d)剪接-供体位点,(e)内含子,和(f)剪接-受体位点,其中靶向序列指导元件(a)-(f)的整合,从而使得元件(b)-(f)可操作地连接于内源基因。
[38]一种用于产生多肽的方法,其包括:(a)在有助于产生所述多肽的条件下培养其中并入了转录单元的同源重组细胞,所述转录单元包含段20-30任一项的启动子,外显子,和/或剪接供体位点,其可操作地连接于编码所述多肽的内源多核苷酸的第二外显子,其中编码所述多肽的多核苷酸对于所述启动子是外源的;和(b)回收所述多肽。
本文描述和要求保护的本发明并不局限于本文公开的具体方面的范围内,因为这些实施方案旨在作为本发明几个方面的说明。旨在将任何等同的方面包含于本发明的范围内。实际上,从前面的说明中,除本文所显示和描述的之外,本发明的多种修改对于本领域的技术人员来说是显而易见的。这些修改也旨在落入所附的权利要求的范围内。在冲突的情况下,将以包括定义部分的本公开为准。
本文中引用了多个参考文献,其公开通过全文提述并入本文。

Claims (18)

1.一种产生多肽的方法,其包括:
(a)在有助于产生所述多肽的培养基中培养真菌宿主细胞,其中所述真菌宿主细胞包含编码多肽的多核苷酸,所述多核苷酸可操作地连接于启动子,所述启动子由核苷酸序列组成,所述核苷酸序列为SEQIDNO:1;其中所述编码多肽的多核苷酸对于所述启动子是外源的;和
(b)从培养基分离所述多肽。
2.权利要求1的方法,其所述真菌宿主细胞含有一个或多个拷贝的编码多肽的多核苷酸。
3.权利要求2的方法,其中所述真菌宿主细胞含有一个拷贝的编码多肽的多核苷酸。
4.权利要求1-3任一项的方法,其中所述多肽选自下组:抗原、酶、生长因子、激素、免疫增强剂(immunodilator)、神经递质、受体、报道蛋白、结构蛋白和转录因子。
5.权利要求1-3任一项的方法,其中所述多肽对于真菌宿主细胞是天然的或外源的。
6.权利要求1-3任一项的方法,其中所述多核苷酸包含于真菌宿主细胞的染色体中。
7.权利要求1的方法,其中所述多核苷酸包含于染色体外元件上。
8.权利要求1-3任一项的方法,其中所述真菌宿主细胞是丝状真菌细胞。
9.权利要求1-3任一项的方法,其中所述真菌宿主细胞是酵母细胞。
10.一种分离的启动子,由核苷酸序列组成,所述核苷酸序列为SEQIDNO:1。
11.一种核酸构建体,其包含可操作地连接于权利要求10的启动子的编码多肽的多核苷酸。
12.一种重组表达载体,其包含权利要求11的核酸构建体。
13.一种重组宿主细胞,其包含权利要求11的核酸构建体。
14.权利要求13的重组宿主细胞,其为丝状真菌细胞。
15.权利要求13的重组宿主细胞,其为酵母细胞。
16.一种核酸构建体,其包含(a)靶向序列,(b)权利要求10的启动子,(c)外显子,和(d)剪接-供体位点。
17.一种核酸构建体,其包含(a)靶向序列,(b)权利要求10的启动子,(c)外显子,(d)剪接-供体位点,(e)内含子,和(f)剪接-受体位点,其中靶向序列指导元件(a)-(f)的整合,从而使得元件(b)-(f)可操作地连接于内源基因。
18.一种用于产生多肽的方法,其包括:(a)在有助于产生所述多肽的条件下培养其中并入了转录单元的同源重组细胞,所述转录单元包含权利要求10的启动子,外显子,和/或剪接供体位点,其可操作地连接于编码所述多肽的内源多核苷酸的第二外显子,其中编码所述多肽的多核苷酸对于所述启动子是外源的;和(b)回收所述多肽。
CN201180066380.3A 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子 Expired - Fee Related CN103339259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510919712.8A CN105420267A (zh) 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41830210P 2010-11-30 2010-11-30
US61/418,302 2010-11-30
PCT/US2011/062663 WO2012075151A2 (en) 2010-11-30 2011-11-30 Promoters for expressing genes in a fungal cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510919712.8A Division CN105420267A (zh) 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子

Publications (2)

Publication Number Publication Date
CN103339259A CN103339259A (zh) 2013-10-02
CN103339259B true CN103339259B (zh) 2016-01-13

Family

ID=45349295

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180066380.3A Expired - Fee Related CN103339259B (zh) 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子
CN201510919712.8A Pending CN105420267A (zh) 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510919712.8A Pending CN105420267A (zh) 2010-11-30 2011-11-30 用于在真菌细胞中表达基因的启动子

Country Status (5)

Country Link
US (2) US9359630B2 (zh)
EP (1) EP2646558B1 (zh)
CN (2) CN103339259B (zh)
DK (1) DK2646558T3 (zh)
WO (1) WO2012075151A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3296401T1 (sl) * 2016-09-20 2020-07-31 Clariant International Ltd Metoda za selektivno vir ogljika-neodvisno ekspresijo protein-kodirajočih sekvenc v celici filamentozne glive
CN108642075A (zh) * 2018-04-10 2018-10-12 深圳大学 适用于太瑞斯梭孢壳霉的表达载体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223663A (zh) * 1996-07-05 1999-07-21 诺沃挪第克公司 转录因子
US20040146975A1 (en) * 2002-11-18 2004-07-29 Novozymes Biotech, Inc. Promoter variants for expressing genes in a fungal cell
CN101061224A (zh) * 2004-11-18 2007-10-24 金克克国际有限公司 在宿主细胞中表达基因的黑曲霉启动子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK122686D0 (da) 1986-03-17 1986-03-17 Novo Industri As Fremstilling af proteiner
US5989870A (en) 1986-04-30 1999-11-23 Rohm Enzyme Finland Oy Method for cloning active promoters
US5641670A (en) 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
ES2165420T3 (es) 1994-06-03 2002-03-16 Novozymes Biotech Inc Lacasas myceliophthora purificadas y acidos nucleicos que las codifican.
CN101659926A (zh) 1994-06-30 2010-03-03 诺沃奇梅兹有限公司 非毒性、非产毒性、非致病性镰孢属表达系统及所用启动子和终止子
DE69932345T2 (de) 1998-10-26 2007-07-19 Novozymes A/S Erstellung und durchmusterung von interessierenden dna-banken in zellen von filamentösen pilzen
CN100482801C (zh) 1999-03-22 2009-04-29 诺沃奇梅兹有限公司 用于在真菌细胞中表达基因的启动子
EP1711529A1 (en) 2004-01-21 2006-10-18 Novozymes A/S Production of a monoclonal antibody in a heterokaryon fungus or in a fungal host cell
EP2365068B1 (en) 2004-12-22 2017-03-01 Novozymes A/S Enzymes for starch processing
ATE514770T1 (de) 2005-10-17 2011-07-15 Novozymes As Verwendung von pilzmutanten zur expression von antikörpern
CN102224245B (zh) 2008-09-30 2016-01-13 诺维信股份有限公司 在丝状真菌细胞中使用阳性和阴性选择性基因的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223663A (zh) * 1996-07-05 1999-07-21 诺沃挪第克公司 转录因子
US20040146975A1 (en) * 2002-11-18 2004-07-29 Novozymes Biotech, Inc. Promoter variants for expressing genes in a fungal cell
CN101061224A (zh) * 2004-11-18 2007-10-24 金克克国际有限公司 在宿主细胞中表达基因的黑曲霉启动子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"AM270128";Pel H.J. 等;《EMBL-EBI》;20070128;第1页 *
"EY233752";Richardson P.等;《EMBL-EBI》;20071120;第1页 *

Also Published As

Publication number Publication date
EP2646558A2 (en) 2013-10-09
CN105420267A (zh) 2016-03-23
WO2012075151A2 (en) 2012-06-07
EP2646558B1 (en) 2016-07-20
WO2012075151A3 (en) 2012-09-07
DK2646558T3 (en) 2016-10-03
US20160251666A1 (en) 2016-09-01
US9359630B2 (en) 2016-06-07
US20130316399A1 (en) 2013-11-28
CN103339259A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
CN102224245B (zh) 在丝状真菌细胞中使用阳性和阴性选择性基因的方法
CN102414323B (zh) 用于生产感兴趣的重组多肽的方法
US7968312B2 (en) Production of polypeptides by improved secretion
CN102227502B (zh) 在镶片镰孢的酶缺陷突变体中产生多肽的方法
EP3293264A1 (en) Improved host cell for the production of a compound of interest
CN104395454A (zh) 改善的真菌选择
CN107090467A (zh) 丝状真菌中多个基因拷贝的同时位点特异性整合
CN104603273A (zh) 重组系统
EP3036324B1 (en) Regulated pepc expression
CN103596970A (zh) 载体-宿主系统
CN1953987B (zh) 在乳酸克鲁维酵母中构建和应用基本上缺少大肠杆菌转录能力的乳酸克鲁维酵母启动子变体的方法
US9701970B2 (en) Promoters for expressing genes in a fungal cell
CN103339259B (zh) 用于在真菌细胞中表达基因的启动子
CN103068989B (zh) 具有启动子活性的多核苷酸

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20171130