CN103325895B - Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method - Google Patents

Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method Download PDF

Info

Publication number
CN103325895B
CN103325895B CN201310281021.0A CN201310281021A CN103325895B CN 103325895 B CN103325895 B CN 103325895B CN 201310281021 A CN201310281021 A CN 201310281021A CN 103325895 B CN103325895 B CN 103325895B
Authority
CN
China
Prior art keywords
layer
gallium nitride
plane
growing
thickness
Prior art date
Application number
CN201310281021.0A
Other languages
Chinese (zh)
Other versions
CN103325895A (en
Inventor
梅劲
Original Assignee
江苏中谷光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中谷光电股份有限公司 filed Critical 江苏中谷光电股份有限公司
Priority to CN201310281021.0A priority Critical patent/CN103325895B/en
Publication of CN103325895A publication Critical patent/CN103325895A/en
Application granted granted Critical
Publication of CN103325895B publication Critical patent/CN103325895B/en

Links

Abstract

本发明提供了一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,包括以下步骤,S1,将非极性面的氮化镓单晶衬底升温至n型导电层的生长温度范围,生长氮化镓n型导电层;S2,于n型导电层上生长量子阱层;S3,于量子阱层上生长氮化镓p型导电层。 The present invention provides a method of non-polar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode, comprising the steps, S1, a non-polar plane gallium nitride single crystal substrate was warmed to n-type conductivity layer growth temperature range, growing a gallium nitride layer, n-type conductivity; S2, the quantum well layer is grown on the n-type conductive layer; S3, the quantum well layer is grown on the p-type conductivity gallium nitride layer. 本发明通过改变氮化镓衬底生长表面的晶体方向,减少量子阱层内由于压变极化电场和自然极化电场造成的电子和空穴在生长方向上的分离,从而提高载流子在发光层的光辐射复合效率。 By changing the direction of GaN substrate grown crystal surface, reducing separation of the quantum well layer and the electric field due to the pressure change of polarization caused by spontaneous polarization of the electric field of electrons and holes in the growth direction, the present invention is to improve carriers radiative recombination efficiency of the light emitting layer.

Description

氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法 Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method

技术领域 FIELD

[0001] 本发明涉及照明灯具领域,尤其涉及一种发光二极管的生产方法。 [0001] The present invention relates to lighting, and more particularly relates to a method of producing a light emitting diode.

背景技术 Background technique

[0002] 现有的氮化镓基外延层主要生长在<0001>c面蓝宝石或者SiC衬底上,蓝宝石和氮化镓同属六方系晶体,如图1a所示,上下两个晶格面为<0001>c面,侧方六个面为<10-10>m面。 [0002] The conventional gallium nitride-based epitaxial layer grown on the main <0001> c-plane sapphire or SiC substrate, a sapphire and gallium nitride crystals belong to the hexagonal system, as shown, the upper and lower surfaces of the lattice in FIG. 1a <0001> c surface, the side surface is a six <10-10> m plane. 在c面蓝宝石衬底上生长的氮化镓外延层能够获得足够好的晶体质量,可进一步获得具有较好的发光效率和可靠性的LED,所以目前<0001>c面蓝宝石衬底在LED外延生产中大量运用。 Gallium nitride epitaxial layer on a c-plane sapphire substrate grown sufficiently good crystal quality can be obtained, it can further be obtained with good light emitting efficiency and reliability of the LED, so the current <0001> c-plane sapphire substrate in the LED epitaxial production of extensive use. 但同样属于六方晶格的氮化镓晶体在<0001>c面上存在着自然极化电场,加上铟镓氮和镓氮异质结的应力产生的压变极化电场作用,导致电子和空穴在生长方向上(也即电流传输方向)的空间分离,进一步导致外延层中InGaN/GaN量子阱发光效率降低。 But also belong to the hexagonal gallium nitride crystal lattice in the presence of <0001> c face of the spontaneous polarization electric field, the polarization electric field coupled dilatant stress gallium nitride and indium gallium nitride heterojunction produced, leading to electrical and a hole (i.e., the direction of current transport) spatial separation in the growth direction, resulting in further reduction in the epitaxial layer InGaN / GaN quantum well light emitting efficiency. 如图3所示,I为P型导电层,2为η型导电层,3为量子阱层。 As shown in FIG. 3, I is a P-type conductive layer, the conductive layer 2 is η-type, 3 is a quantum well layer.

[0003] 申请人发现,如图1a所示,当改变氮化镓的生长晶面时,量子阱层内的极化电场大小发生变化。 [0003] Applicants have found that, when changing the growth of the gallium nitride crystal plane, the size of the polarization field within the quantum well layer is changed as shown in FIG 1a. 例如当采用与<0001>c面垂直的晶面如<10-10>m(图1a所示)或<ll_20>a面(图1b所示)时,由于极化电场方向和皇晶方向垂直,电子和空穴在生长方向上的空间分离最小,因而极化电场不会在LED器件通电工作条件下对载流子在电流方向上(电子和空穴)施加电场力,从而不会使载流子在传输方向上错位,如图4所示,I为P型导电层,2为η型导电层,3为量子阱层。 For example, when using the <0001> crystallographic plane perpendicular to the c-plane as <10-10> m <ll_20> (FIG. 1a) or a plane (FIG. 1b), the electric field due to the polarization direction and the direction perpendicular to Huang Jing , electrons and holes in the growth direction of the space separating the smallest, and thus will not polarization field carriers (electrons and holes) applying an electric field force in the direction of current operating conditions in the power LED devices, so as not to upload carrier offset in the transport direction, as shown in FIG, I is P-type conductivity layer, η-type conductive layer 2, 3 is a quantum well layer. 上述设置能有效提高量子阱层3的载流子辐射复合效率,大大提高发光效率。 The above arrangement can improve the quantum well layer of the carriers 3 efficiency of radiative recombination, greatly improving the emission efficiency.

[0004] <10-10>m面与<ll_20>a面,由于与<0001>c面垂直,生长过程方向与极化电场方向垂直,故称为无极性面。 [0004] <10-10> m plane <ll_20> a surface, due to the c-plane perpendicular to the growth direction perpendicular to the polarization direction of the electric field <0001>, it is called a nonpolar face. 申请人还发现,介于无极性面(a面)和极性面(c面)之间的晶面如<20-21>e2面和<20-2-l>e2'面,也可以得到合格的生长面。 Applicants have also discovered that the crystal plane of between nonpolar plane (a plane) and the polar plane (c plane) as <20-21> e2 surface and <20-2-l> e2 'surface, can be obtained qualified growth surface. 本领域以晶体表面以Ga为结束原子的<0001>c面的法线方向为正方向,<20-21>e2面的法线与正方向成75°角,<20-2-l>e2,面法线与正方向成105°角。 Those skilled in the crystal surface to the end of Ga atoms in the normal direction <0001> c plane as the positive direction <20-21> direction normal to the positive side of the 75 ° angle e2, <20-2-l> e2 , the positive direction of the surface normal 105 ° angle.

[0005] <20-21>e2面和〈20-2_l>e2'面极化电场强度介于极性面c面和无极性面a面或m面之间,本申请中称为半极性面,半极性面与无极性面统称为非极性面。 [0005] <20-21> e2 surface and <20-2_l> between e2 'polarization field strength between surface plane and the c plane polar surfaces nonpolar m-plane or a-plane, herein referred to as semi-polar surface semipolar plane and a nonpolar plane is a nonpolar face collectively.

[0006] 图2为生长面极性随着法线相对于正方向的夹角的变化趋势表,表中,X表示InxGa1 XN中Indium的x的取值,横轴表示晶面的法线相对于正方向的夹角,纵轴表示压变极化电场的大小,单位为库伦/平方米。 [0006] FIG. 2 as a growth surface polarity changes with respect to the normal line direction of the positive angle trend tables, the table, X represents the value of x in InxGa1 XN Indium and the horizontal axis represents crystal plane relative to the normal line the positive angle direction, and the vertical axis represents the magnitude of polarization voltage variable electric field, in units of coulombs / square meter.

[0007] 更进一步,在实际应用中,a面非极性和大部分半极性面GaN晶体较难获得合格的晶体质量以适用于氮化镓外延生长。 [0007] Furthermore, in practice, a is a non-polar surface and most of the semi-polar plane GaN crystal is difficult to obtain acceptable quality crystals to be suitable for epitaxial growth of gallium nitride. 单纯采用原有的c面外延工艺参数容易形成层错等晶体缺陷,因此在半极性或非极性面上的工艺条件有所区别。 Only using conventional epitaxial process parameters c-plane crystal defects and other fault easily formed, so the process conditions differ semipolar or nonpolar plane.

发明内容 SUMMARY

[0008] 本发明的目的提供一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,提高发光层的光辐射复合效率。 [0008] The object of the present invention to provide a non-polar plane gallium nitride single crystal substrate of gallium nitride growth method of a light emitting diode, to improve the radiative recombination efficiency of the light emitting layer.

[0009] 本发明提供了一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,包括以下步骤, [0009] The present invention provides a method of light-emitting diode nonpolar plane gallium nitride single crystal substrate for growing gallium nitride, comprising the steps of,

[0010] SI,将非极性面的氮化镓单晶衬底升温至η型导电层的生长温度范围,并在氨气的氛围下生长氮化镓η型导电层; [0010] SI, a non-polar plane gallium nitride single crystal substrate heated to a temperature range for growth η-type conductivity layer, and growing a gallium nitride η-type conductive layer in an atmosphere of ammonia;

[0011 ] S2,于η型导电层上生长量子阱层; [0011] S2, the quantum well layer is grown on the η-type conductive layer;

[0012] S3,于量子阱层上生长氮化镓P型导电层。 [0012] S3, the quantum well layer is grown on the P-type conductivity gallium nitride layer.

[0013] 本发明通过改变氮化镓衬底生长表面的晶体方向,减少量子阱层内由于压变极化电场和自然极化电场造成的电子和空穴在生长方向上的分离,从而提高载流子在发光层的光辐射复合效率。 [0013] The present invention, by changing the direction of the crystal growth surface of a gallium nitride substrate, the separation of the quantum well layer to reduce the pressure change due to the polarization field and an electric field caused by spontaneous polarization of electrons and holes in the growth direction, thereby improving the carrier carrier recombination efficiency in the light irradiation of the light emitting layer.

[0014] 在一些实施方式中,SI中非极性面为无极性面<ll_20>a面或<10-10>m面。 [0014] In some embodiments, SI nonpolar plane is a nonpolar plane <ll_20> a plane or <10-10> m plane. 由于a面、m面都与c面垂直,所以极化电场在生长方向上完全消失,目前m面的氮化镓同质衬底较易获得,而且在m面衬底上生长的氮化镓晶体质量较好。 Since the a-plane, m-plane are perpendicular to the c-plane, the polarization field in the growth direction disappeared completely, homogeneous gallium nitride substrates currently is easy to obtain an m-plane, m-plane but also in the growing gallium nitride substrate good crystal quality.

[0015] 在一些实施方式中,SI中非极性面为半极性面<20-21>e2面。 [0015] In some embodiments, SI nonpolar surface is a semipolar plane <20-21> e2 surface. 〈20_21>e2面法线方向与正方向成75°角,因而极化电场在生长方向上也较小。 <20_21> e2 normal direction of the surface of the positive direction of angle 75 °, and thus the polarization electric field is small in the growth direction. 同时在该面上生长波长较长(例如绿光)外延能够需要更少的铟,从而产生较小的应力,避免由于应力过大产生失配位错O Simultaneously growing a longer wavelength (e.g. green) can be epitaxially requires less indium in the face, resulting in less stress, avoid excessive stress misfit dislocations O

[0016] 在一些实施方式中,SI中非极性面为半极性面<20-2-l>e2'面。 [0016] In some embodiments, SI nonpolar surface is a semipolar plane <20-2-l> e2 'surface. 〈20-2_l>e2'面法线方向与正方向成105°角,因而极化电场在生长方向上也较小。 <20-2_l> e2 'direction of the surface normal direction of the positive angle of 105 °, so the polarization electric field in the growth direction is also smaller. 在获得同样波长的条件下,使用该半极性面衬底能够在较高的温度下生长,从而或得更好的结晶质量。 Obtained in the same wavelength conditions, the use of the semipolar surface of the substrate can be grown at a higher temperature, so that a good crystal quality, or more.

[0017] 在一些实施方式中,SI中生长氮化镓η型导电层之前先生长一无掺杂氮化镓的底层,底层的厚度为0.5〜lum。 [0017] In some embodiments, the SI grown undoped gallium nitride Mr a long before the underlying gallium nitride η-type conductive layer, the thickness of the underlayer is 0.5~lum. 为η型导电层生长的准备层。 Η-type conductive layer is a layer grown prepared.

[0018] 在一些实施方式中,SI中η型导电层的生长温度范围为900〜1000°C,η型导电层的杂质元素为Si,参杂浓度为IX 1is〜2X 10 1Vcm3,厚度为2〜4um以获得较好的η型接触。 [0018] In some embodiments, SI growth temperature in the range of η-type conductive layer 900~1000 ° C, η-type impurity element in the conductive layer is Si, doping concentration IX 1is~2X 10 1Vcm3, a thickness of 2 ~4um order to obtain better η-type contact. 本发明中所称参杂浓度以单位立方厘米内杂质原子的个数计。 The present invention is referred to in the doping concentration in the number of impurity atoms per unit cubic centimeter gauge.

[0019] 在一些实施方式中,S2还包括在生长量子阱层之前先生长无参杂的氮化镓的隔离层,隔离层的生长温度为750〜900°C,厚度为10〜40nm。 [0019] In some embodiments, S2 further comprising, prior to growing the quantum well layer no longer Mr. doped GaN barrier layer, the growth temperature of the barrier layer is 750~900 ° C, a thickness of 10~40nm. 为量子阱生长的准备层。 To prepare the quantum well layer grown.

[0020] 在一些实施方式中,S2中量子阱层包括铟镓氮的阱层和氮化镓的皇层,阱层厚度为2.0〜3.5nm,皇层厚度为6〜12nm,对数为6〜12对,量子阱层的生长温度为740〜860°C,生长气氛为氮气或氮气与氢气的混合气。 [0020] In some embodiments, S2 comprises a quantum well layer and a well layer of gallium indium gallium nitride layer Huang, the well layer thickness is 2.0~3.5nm, Huang layer thickness is 6~12nm, logarithmic 6 ~ 12 pairs, the growth temperature of the quantum well layer is 740~860 ° C, the growth atmosphere is nitrogen or a mixed gas of nitrogen and hydrogen.

[0021] 在一些实施方式中,S3中还包括生长P型导电层之前先生长电子阻挡层,电子阻挡层厚度为10〜30nm,参杂元素为镁,参镁浓度为IX 119〜lX102°/cm3。 [0021] In some embodiments, S3 comprises a further growth of P-type conductivity layer prior to Mr. long electron blocking layer, an electron blocking layer having a thickness of 10~30nm, doping element is magnesium, a magnesium concentration of the reference IX 119~lX102 ° / cm3. 以减少电子跃迀至P型层进行非辐射复合。 Electronic transitions to reduce the non-radiative recombination Gan to the P-type layer.

[0022] 在一些实施方式中,S3中P型导电层,厚度为100〜200nm,参镁浓度为IX 119〜IX 12Vcm3,以获得较好的P型电流扩散。 [0022] In some embodiments, S3 in the P-type conductivity layer, a thickness of 100~200nm, a magnesium concentration of the reference IX 119~IX 12Vcm3, to obtain a better P-type current diffusion.

[0023] 在一些实施方式中,本发明还包括S3后的S4,于P型导电层上生长接触层,接触层厚度为10〜20nm,参镁浓度为IX 102°〜IX 10 21/cm3。 [0023] In certain embodiments, the present invention further comprises the S3 S4, the contact layer is grown on a P-type conductive layer, the thickness of the contact layer 10~20nm, a magnesium concentration of the reference IX 102 ° ~IX 10 21 / cm3. 以获得较好的P型接触。 To obtain a better P-type contact.

附图说明 BRIEF DESCRIPTION

[0024] 图1a为六方系氮化镓的各面结构示意图; [0024] Figure 1a is a schematic view of the structure of each surface of the hexagonal gallium nitride;

[0025] 图1b为六方系氮化镓的a面位置示意图; [0025] FIG. 1b a schematic view of the surface position of the hexagonal gallium nitride;

[0026] 图1c为六方系氮化镓的e2面位置示意图,其中A向为正方向,B向为e2面法线方向; [0026] Figure 1c is a surface position of the hexagonal gallium nitride e2 schematic, wherein the positive direction A, B e2 is the surface normal direction;

[0027] 图1d为六方系氮化镓的e2'面位置示意图,其中A向为正方向,B'向为e2'面法线方向; [0027] FIG. 1d 'of a planar position, wherein the positive direction A, B' e2 hexagonal gallium nitride is to e2 'surface normal direction;

[0028] 图2为生长面极性随着法线相对于正方向的夹角的变化趋势表; [0028] FIG. 2 as a growth surface polarity changes with respect to the normal line direction of the positive angle of trend tables;

[0029] 图3为c面生长下量子阱层的结构示意图; [0029] FIG. 3 is a schematic view of the c-plane quantum well layer growth;

[0030] 图4为m面生长下量子阱层的结构示意图; [0030] FIG. 4 is a schematic structural diagram of the quantum well layer m-plane growth;

[0031]图5为本发明提供的一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法制得的产品的结构示意图。 [0031] FIG. 5 is a schematic configuration of a light emitting diode prepared as a product of non-polar plane gallium nitride single crystal substrate of the present invention provides the gallium nitride growth.

具体实施方式 Detailed ways

[0032] 实施例1: [0032] Example 1:

[0033] 本发明提供一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,包括以下步骤, [0033] The present invention provides a gallium nitride single crystal substrate for growing nonpolar plane GaN light emitting diode, comprising the steps of,

[0034] SI,将无极性面<ll-20>a面的氮化镓单晶衬底升温至950°C,并于氨气氛围下,先生长0.8um厚度的无掺杂氮化镓的底层4,再参杂5 X 10ls/cm3的Si生长3um厚度的η型导电层2 ο [0034] SI, warmed nonpolar plane <ll-20> a-plane gallium nitride single crystal substrate to 950 ° C, and at an ammonia atmosphere, Mr. long 0.8um thickness undoped gallium nitride the bottom 4, then mingled 5 X 10ls / cm3 of Si η-type conductive layer of a thickness of 2 ο grown 3um

[0035] S2,于η型导电层2上生长无参杂的氮化镓的隔离层5,隔离层5的生长温度为800°C,厚度为30nm,再于隔离层5上生长量子阱层3 ;量子阱层3包括铟镓氮的阱层和氮化镓的皇层,阱层厚度为2.5nm,皇层厚度为8nm,对数为9对,量子阱层3的生长温度为800 °C,载气为氮气。 [0035] S2, the growth of non-doped GaN barrier layer 5 2 η-type conductive layer, the spacer layer 5 a growth temperature of 800 ° C, with a thickness of 30 nm, the quantum well layer is regrown on the spacer layer 5 3; 3 comprises a well layer of indium gallium nitride quantum well layers and gallium nitride layer Huang, the well layer of 2.5nm thickness, a layer thickness of 8nm Huang, 9 on the logarithmic growth temperature of the quantum well layer 3 is 800 ° C, the carrier gas is nitrogen.

[0036] S3,于量子阱层3上先生长电子阻挡层6,电子阻挡层6厚度为20nm,参杂元素为镁,参镁浓度为5 X 11Vcn^再于电子阻挡层6上生长P型导电层I,厚度为150nm,参镁浓度为5 X 119/cm3氮化镓P型导电层I。 [0036] S3, the quantum well layer 3 Mr. long electron blocking layer 6, an electron blocking layer 6 having a thickness of 20 nm, doped element is magnesium, parameter a magnesium concentration of 5 X 11Vcn ^ then the electronic grown P-type 6 barrier layer conductive layer I, a thickness of 150nm, reference is magnesium concentration 5 X 119 / cm3 P-type conductivity gallium nitride layer I.

[0037] S4,于P型导电层I上生长接触层7,接触层7厚度为15nm,参镁浓度为5 X 120/ [0037] S4, on the P-type conductivity contact layer 7 grown I layer, the contact layer 7 of 15nm thickness, a magnesium concentration of reference 5 X 120 /

3 3

cm ο cm ο

[0038] 实施例2: [0038] Example 2:

[0039] 本发明提供一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法包括以下步骤, [0039] The present invention provides a non-polar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode comprising the steps of,

[0040] SI,将半极性面<20-21>e2的氮化镓单晶衬底升温至900°C,并于氨气氛围下,先生长0.5um厚度的无掺杂氮化镓的底层4,再参杂IX 1isVcm3的Si生长2um厚度的η型导电层2 ο [0040] SI, warmed semipolar plane gallium nitride single crystal substrate <20-21> e2 to 900 ° C, and at an ammonia atmosphere, Mr. long 0.5um thickness undoped gallium nitride η-type conductive layer 4 bottom layer, and then a Si-doped IX 1isVcm3 growth 2um thickness 2 ο

[0041] S2,于η型导电层2上生长无参杂的氮化镓的隔离层5,隔离层5的生长温度为750°C,厚度为10nm,再于隔离层5上生长量子阱层3 ;量子阱层3包括铟镓氮的阱层和氮化镓的皇层,阱层厚度为2.0nm,皇层厚度为6nm,对数为6对,量子阱层3的生长温度为740 °C,载气为氮气或氮气与少量氢气的混合气。 [0041] S2, the growth of non-doped GaN barrier layer 5 2 η-type conductive layer, the spacer layer 5 a growth temperature of 750 ° C, a thickness of 10 nm, the quantum well layer is regrown on the spacer layer 5 3; 3 quantum well layer including a well layer of indium gallium nitride and a gallium nitride layer Huang, well-layer thickness of 2.0 nm, a layer thickness of 6 nm Huang, for number of 6 on the growth temperature of the quantum well layer 3 is 740 ° C, the carrier gas is nitrogen or a mixed gas of nitrogen and small amounts of hydrogen.

[0042] S3,于量子阱层3上先生长电子阻挡层6,电子阻挡层6厚度为10nm,参杂元素为镁,参镁浓度为IX 11Vcn^再于电子阻挡层6上生长P型导电层I,厚度为lOOnm,参镁浓度为IX 119/cm3氮化镓P型导电层I。 [0042] S3, the quantum well layer 3 Mr. long electron blocking layer 6, an electron blocking layer 6 having a thickness of 10 nm, doped element is magnesium, the reference magnesium concentration of IX 11Vcn ^ then the electronic blocking P-type conductivity grown on the layer 6 layer I, a thickness of lOOnm, the reference concentration of magnesium IX 119 / cm3 P-type conductivity gallium nitride layer I.

[0043] S4,于P型导电层I上生长接触层7,接触层7厚度为10nm,参镁浓度为IX 120/ [0043] S4, on the P-type conductivity contact layer 7 grown I layer, the contact layer 7 of a thickness of 10 nm, a magnesium concentration of the reference IX 120 /

3 3

cm ο cm ο

[0044] 实施例3: [0044] Example 3:

[0045] 本发明提供一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,包括以下步骤, [0045] The present invention provides a gallium nitride single crystal substrate for growing nonpolar plane GaN light emitting diode, comprising the steps of,

[0046] SI,将半极性面<20-2-l>e2'面的氮化镓单晶衬底升温至1000°C,并于氨气氛围下,先生长Ium厚度的无掺杂氮化镓的底层4,再参杂2X 11Vcm3的Si生长4um厚度的η型导电层2。 [0046] SI, the semipolar plane and at an ammonia atmosphere, Mr. long Ium thickness no <20-2-l> e2 'plane gallium nitride single crystal substrate was heated to 1000 ° C, doped with nitrogen gallium underlayer 4, and then a Si-doped 2X 11Vcm3 growth 4um thickness η-type conductive layer 2.

[0047] S2,于η型导电层2上生长无参杂的氮化镓的隔离层5,隔离层5的生长温度为900°C,厚度为40nm,再于隔离层5上生长量子阱层3 ;量子阱层3包括铟镓氮的阱层和氮化镓的皇层,阱层厚度为3.5nm,皇层厚度为12nm,对数为12对,量子阱层3的生长温度为860°C,载气为氮气或氮气与少量氢气的混合气。 [0047] S2, the growth of non-doped GaN barrier layer 5 2 η-type conductive layer, the spacer layer 5 a growth temperature of 900 ° C, a thickness of 40nm, and then growing the quantum well layer on the isolation layer 5 3; 3 quantum well layer including a well layer of indium gallium nitride and a gallium nitride layer of Huang, the well layer thickness of 3.5 nm, a layer thickness of 12nm Huang, 12 for logarithmic growth temperature of the quantum well layer 3 is 860 ° C, the carrier gas is nitrogen or a mixed gas of nitrogen and small amounts of hydrogen.

[0048] S3,于量子阱层3上先生长电子阻挡层6,电子阻挡层6厚度为30nm,参杂元素为镁,参镁浓度为IX 102°/cm3。 [0048] S3, the quantum well layer 3 on the electron blocking layer 6 Mr. long, an electron blocking layer 6 having a thickness of 30 nm, doped element is magnesium, a magnesium concentration of the reference IX 102 ° / cm3. 再于电子阻挡层6上生长P型导电层I,厚度为200nm,参镁浓度为IX 120/Cm3氮化镓P型导电层I。 6 and then to the electron blocking layer is grown on P-type conductivity layer I, a thickness of 200nm, a magnesium concentration of the reference IX 120 / Cm3 P-type conductivity gallium nitride layer I.

[0049] S4,于P型导电层I上生长接触层7,接触层7厚度为10〜20nm,参镁浓度为IXlO2Vcm30 [0049] S4, on the P-type conductivity contact layer 7 grown I layer, the thickness of the contact layer 7 of 10~20nm, the reference concentration of magnesium IXlO2Vcm30

[0050] 实施例4: [0050] Example 4:

[0051] 本发明提供一种氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,包括以下步骤, [0051] The present invention provides a gallium nitride single crystal substrate for growing nonpolar plane GaN light emitting diode, comprising the steps of,

[0052] SI,将无极性面<10-10>m面的氮化镓单晶衬底升温至960°C,并于氨气氛围下,先生长0.9um厚度的无掺杂氮化镓的底层4,再参杂8 X 10ls/cm3的Si生长3um厚度的η型导电层2 ο [0052] SI, warmed nonpolar plane <10-10> m-plane gallium nitride single crystal substrate to 960 ° C, and at an ammonia atmosphere, Mr. long 0.9um thickness undoped gallium nitride the bottom 4, then mingled 8 X 10ls / cm3 of Si η-type conductive layer of a thickness of 2 ο grown 3um

[0053] S2,于η型导电层2上生长无参杂的氮化镓的隔离层5,隔离层5的生长温度为850°C,厚度为30nm,再于隔离层5上生长量子阱层3 ;量子阱层3包括铟镓氮的阱层和氮化镓的皇层,阱层厚度为2.5nm,皇层厚度为8nm,对数为9对,量子阱层3的生长温度为800 °C,载气为氮气。 [0053] S2, the growth of non-doped GaN barrier layer 5 2 η-type conductive layer, the spacer layer 5 a growth temperature of 850 ° C, with a thickness of 30 nm, the quantum well layer is regrown on the spacer layer 5 3; 3 comprises a well layer of indium gallium nitride quantum well layers and gallium nitride layer Huang, the well layer of 2.5nm thickness, a layer thickness of 8nm Huang, 9 on the logarithmic growth temperature of the quantum well layer 3 is 800 ° C, the carrier gas is nitrogen.

[0054] S3,于量子阱层3上先生长电子阻挡层6,电子阻挡层6厚度为20nm,参杂元素为镁,参镁浓度为5 X 11Vcn^再于电子阻挡层6上生长P型导电层I,厚度为150nm,参镁浓度为5 X 119/cm3氮化镓P型导电层I。 [0054] S3, the quantum well layer 3 Mr. long electron blocking layer 6, an electron blocking layer 6 having a thickness of 20 nm, doped element is magnesium, parameter a magnesium concentration of 5 X 11Vcn ^ then the electronic grown P-type 6 barrier layer conductive layer I, a thickness of 150nm, reference is magnesium concentration 5 X 119 / cm3 P-type conductivity gallium nitride layer I.

[0055] S4,于P型导电层I上生长接触层7,接触层7厚度为15nm,参镁浓度为5 X 120/ [0055] S4, on the P-type conductivity contact layer 7 grown I layer, the contact layer 7 of 15nm thickness, a magnesium concentration of reference 5 X 120 /

3 3

cm ο cm ο

[0056] 以上所述仅是本发明的优选方式,应当指出,对于本领域普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干相似的变形和改进,这些也应视为本发明的保护范围之内。 [0056] The above are only preferred embodiment of the present invention, it should be noted that those of ordinary skill in the art, without departing from the concept of the present invention to create a premise, can make various modifications and similar improvements, which are also It should be considered within the scope of the present invention.

Claims (4)

1.氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,其特征在于,包括以下步骤, SI,将非极性面的氮化镓单晶衬底升温至η型导电层的生长温度范围,生长氮化镓η型导电层⑵; S2,于所述η型导电层⑵上生长量子阱层(3); S3,于所述量子阱层(3)上生长氮化镓P型导电层(I); SI中所述生长氮化镓η型导电层(2)之前先生长一无掺杂的氮化镓的底层(4),所述底层⑷的厚度为0.5〜Ium ; SI中所述η型导电层⑵的生长温度范围为900〜100tC,所述η型导电层⑵的杂质元素为Si,掺杂浓度为IX 1is〜2X10 1Vcm3,厚度为2〜4um ; S2还包括在生长量子阱层(3)之前先生长无掺杂的氮化镓的隔离层(5),所述隔离层(5)的生长温度为750〜900°C,厚度为10〜40nm ; S2中所述量子阱层(3)包括铟镓氮的阱层和氮化镓的皇层,所述阱层厚度为2.0〜3.5nm,所述皇层厚度为6〜12nm,对数为6〜12对,所 1. The gallium nitride single crystal substrate for growing nonpolar plane GaN light emitting diodes, characterized in that it comprises the following steps, SI, a non-polar plane gallium nitride single crystal substrate was heated to η-type conductivity layer growth temperature range, growing a gallium nitride type conductive layer η ⑵; S2, growing the quantum well layer (3) on said η-type conductive layer ⑵; S3, to the quantum well layer grown on the nitride (3) P-type conductivity gallium layer (the I); SI in the underlying gallium nitride growth prior η-type conductive layer (2) a long Mr. undoped gallium nitride (4), the thickness of the underlayer is 0.5~ ⑷ Ium; SI η-type conductive layer in the growth temperature range ⑵ 900~100tC, η-type impurity element of said conductive layer is ⑵ Si, a doping concentration of IX 1is~2X10 1Vcm3, thickness 2~4um; S2 further comprising, prior to (3) Mr. long grown undoped gallium nitride quantum well layer insulating layer (5), the growth temperature of the spacer layer (5) is 750~900 ° C, a thickness of 10~40nm; S2, the quantum well layer (3) including a well layer of InGaN and GaN imperial layer, the well layer thickness is 2.0~3.5nm, the layer thickness is Huang 6~12nm, logarithmic 6 ~ 12 pairs, the 量子讲层(3)的生长温度为740〜860°C,载气为氮气或氮气与氢气的混合气; S3中还包括生长P型导电层(I)之前先生长电子阻挡层¢),所述电子阻挡层(6)厚度为10〜30nm,掺杂元素为镁,掺镁浓度为IX 119〜IX 10 2Vcm3; S3中所述P型导电层(2),厚度为100〜200_,掺镁浓度为1父1019〜IXlO2Vcm30 Quantum speaks layer (3) growth temperature of 740~860 ° C, the carrier gas is nitrogen or a mixed gas of nitrogen and hydrogen; S3 further comprises prior to growing the P-type conductivity layer (I) ¢ Mr. long electron blocking layer), the said electron blocking layer (6) having a thickness of 10~30nm, doping element is magnesium, magnesium-doped at a concentration of IX 119~IX 10 2Vcm3; S3 of the P-type conductivity layer (2), a thickness of 100~200_, a Mg-doped at a concentration of 1 parent 1019~IXlO2Vcm30
2.根据权利要求1所述氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,其特征在于,SI中所述非极性面为无极性面<ll-20>a面或<10-10>m面。 2. The method of growing a gallium nitride single crystal of gallium nitride light emitting diode nonpolar face substrate according to claim, characterized in that, in the SI nonpolar plane is a nonpolar plane <ll-20> a plane or <10-10> m plane.
3.根据权利要求1所述氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,其特征在于,SI中所述非极性面为半极性面<20-21>e2面。 1 according to the nonpolar plane gallium nitride single crystal substrate as claimed in claim growing a gallium nitride light emitting diode, characterized in that, the SI in the non-polar surface is a semipolar plane <20-21> e2 surface.
4.根据权利要求1所述氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法,其特征在于,SI中所述非极性面为半极性面<20-2-l>e2'面。 4. The method of growing a gallium nitride light emitting diode according to a nonpolar plane gallium nitride single crystal substrate as claimed in claim, characterized in that, the SI in the non-polar surface is a semipolar plane <20-2- l> e2 'surface.
CN201310281021.0A 2013-07-04 2013-07-04 Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method CN103325895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310281021.0A CN103325895B (en) 2013-07-04 2013-07-04 Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310281021.0A CN103325895B (en) 2013-07-04 2013-07-04 Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method

Publications (2)

Publication Number Publication Date
CN103325895A CN103325895A (en) 2013-09-25
CN103325895B true CN103325895B (en) 2016-04-20

Family

ID=49194541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310281021.0A CN103325895B (en) 2013-07-04 2013-07-04 Nonpolar plane gallium nitride single crystal substrate for growing gallium nitride light emitting diode method

Country Status (1)

Country Link
CN (1) CN103325895B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583831B (en) * 2016-05-31 2017-05-21 Nat Sun Yat-Sen Univ Fabrication of m-plane gallium nitride

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487603A (en) * 2002-09-30 2004-04-07 中国科学院物理研究所 Multiple quantum well structure and LED of the structure
CN1595670A (en) * 2004-06-25 2005-03-16 清华大学 Quanta dot active region structure of broad spectrum white light LED and epitaxial growth method thereof
CN101160669A (en) * 2005-02-18 2008-04-09 飞利浦拉米尔德斯照明设备有限责任公司 Reverse polarization light emitting region for a nitride light emitting device
CN101515700A (en) * 2008-02-22 2009-08-26 住友电气工业株式会社 Group-iii nitride light-emitting device and method for manufacturing group-iii nitride based semiconductor light-emitting device
CN102144294A (en) * 2008-08-04 2011-08-03 Soraa有限公司 White light devices using non-polar or semipolar gallium containing materials and phosphors
CN102292884A (en) * 2009-01-23 2011-12-21 住友电气工业株式会社 The method of making a nitride semiconductor light emitting device, the epitaxial substrate and the nitride semiconductor light emitting element
CN102792447A (en) * 2009-09-17 2012-11-21 天空公司 Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200950162A (en) * 2008-04-04 2009-12-01 Univ California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487603A (en) * 2002-09-30 2004-04-07 中国科学院物理研究所 Multiple quantum well structure and LED of the structure
CN1595670A (en) * 2004-06-25 2005-03-16 清华大学 Quanta dot active region structure of broad spectrum white light LED and epitaxial growth method thereof
CN101160669A (en) * 2005-02-18 2008-04-09 飞利浦拉米尔德斯照明设备有限责任公司 Reverse polarization light emitting region for a nitride light emitting device
CN101515700A (en) * 2008-02-22 2009-08-26 住友电气工业株式会社 Group-iii nitride light-emitting device and method for manufacturing group-iii nitride based semiconductor light-emitting device
CN102144294A (en) * 2008-08-04 2011-08-03 Soraa有限公司 White light devices using non-polar or semipolar gallium containing materials and phosphors
CN102292884A (en) * 2009-01-23 2011-12-21 住友电气工业株式会社 The method of making a nitride semiconductor light emitting device, the epitaxial substrate and the nitride semiconductor light emitting element
CN102792447A (en) * 2009-09-17 2012-11-21 天空公司 Low voltage laser diodes on {20-21} gallium and nitrogen containing substrates

Also Published As

Publication number Publication date
CN103325895A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR100525545B1 (en) Nitride semiconductor LED and fabrication method for thereof
WO2009124317A2 (en) Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes
CN102157657B (en) GaN-based light emitting diode and preparation method thereof
CN103236477B (en) An epitaxial structure and method for preparing led
Hsu et al. Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs
CN101593804B (en) High-brightness light emitting diode with GaN-based multiquantum-well structure and preparation method thereof
CN101488550B (en) Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure
CN102138227A (en) Semiconductor device
CN103066174A (en) Epitaxial structure and growing method for improving gallium nitride (GaN) based light-emitting diode (LED) lighting efficiency
JP5554826B2 (en) Manufacturing method of the epitaxial substrate and the epitaxial substrate
CN104134730B (en) Mg-doped electron blocking layer epitaxial wafer, LED growth method and structure
CN101847673A (en) GaN-based LED epitaxial wafer and growing method thereof
CN102832306B (en) A high-brightness light-emitting diode epitaxial structure and implementation method
CN103500780B (en) A gallium nitride-based epitaxial structure and preparation method led
JP5319628B2 (en) The nitride semiconductor device and a semiconductor optical device
CN103681985B (en) A light emitting diode manufacturing method of the epitaxial wafer and
CN102916096B (en) Epitaxial structure for improving luminous efficiency and preparation method thereof
Jinmin et al. Advances and prospects in nitrides based light-emitting-diodes
CN102157646A (en) Nitride LED structure and preparation method thereof
CN102280542B (en) Method for growing GaN-based light emitting diode multiquantum well
CN102738333B (en) Green light emitting diode and manufacturing method thereof
CN103035805B (en) An LED epitaxial wafer and preparation method
CN102623596A (en) Gallium nitride semiconductor light-emitting diode with tilt quantum well structure
CN102412351B (en) Preparation of a composite structure of a n-GaN layer to improve ESD
CN102842660B (en) An LED epitaxial wafer structure and method of preparing a gallium nitride-based

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model