CN103304754B - 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法 - Google Patents

一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法 Download PDF

Info

Publication number
CN103304754B
CN103304754B CN201310195466.7A CN201310195466A CN103304754B CN 103304754 B CN103304754 B CN 103304754B CN 201310195466 A CN201310195466 A CN 201310195466A CN 103304754 B CN103304754 B CN 103304754B
Authority
CN
China
Prior art keywords
poss
flask
pgma
preparation
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310195466.7A
Other languages
English (en)
Other versions
CN103304754A (zh
Inventor
戴李宗
陈江枫
许一婷
曾碧榕
罗伟昂
刘新瑜
何凯斌
毛杰
常迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201310195466.7A priority Critical patent/CN103304754B/zh
Publication of CN103304754A publication Critical patent/CN103304754A/zh
Application granted granted Critical
Publication of CN103304754B publication Critical patent/CN103304754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法,是通过可逆加成-断裂链转移聚合(Reversible?addition-fragmentation?transfer?polymerization,RAFT聚合),以二硫代枯酯(CDB)作为链转移剂制备了二硫代酯封端的甲基丙烯酸缩水甘油酯(PGMA)大分子转移剂。然后将POSS作为第二嵌段,在AIBN引发下共聚,获得不同比例的POSS-PGMA共聚物的方法。

Description

一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法
技术领域
本发明涉及一种基于有机无机杂化倍半硅氧烷的丙烯酸酯与功能性单体甲基丙烯酸缩水甘油酯共聚物的制备方法。
背景技术
多面体低聚倍半硅氧烷(Polyhedraloligomericsilsesquioxanes,简称POSS),是一个具有规则六面体结构,以硅氧为核心环绕着八个取代基团的大构筑单元。它被认为是最小的二氧化硅前驱体之一,氧化后将形成二氧化硅纳米结构。
共混加工是高分子加工方法中最简单、最常用的手段之一,POSS作为惰性的树脂纳米添加剂,直接加入到高分子体系的研究已经开展了十多年的时间[1],如何克服团聚,将POSS保持分子级别分散是物理共混法面临的最主要挑战。用反应性的POSS改性环氧网络是解决分散性的策略之一。因为当POSS以共价键形式结合到网络结构,容易形成亲环氧的链段结构从而克服相分离。基于环氧与固化剂的固化过程是逐步反应的机理,一旦反应性POSS与环氧齐聚体键合后就变成对环氧具有一定亲和性,成为部分相容于环氧基体的改性剂,使得POSS的纳米分散成为可能。反应性POSS按官能团可分成两类:i)带环氧基POSS,ii)带开环基POSS。
将POSS制成共聚物改性基体树脂是非常有效的纳米构筑方法,因为POSS顶角的取代基极性是固定的,因此只能通过不同的共聚单体改变共聚物极性。POSS基共聚物改性基体树脂的研究处于起步阶段,见诸报道的文献不多。例如Zheng[4]在辛酸亚锡(Sn(Oct)2)的催化下,以3-羟丙基七苯基POSS作为引发剂聚合ε-聚己内酯(CL),制备了POSS封端的聚己内酯聚合物。并将该聚合物引入到DGEBA/MOCA热固性基体中,与PCL改性的环氧体系相比,更少的PCL链在环氧基质中起作用。这导致了PCL对环氧基体的塑化作用明显减弱,环氧复合物显示出更高的Tg。Ni[5]利用上述合成的POSS封端PCL与α-环糊精(α-CD)通过超分子相互作用,制备了超分子络合物。由于聚合物链一头是疏水的POSS,因此络合物体系只能在PCL一段进行,PCL延伸进入α-CD的核心中。而且,该法也有一个较大缺点,即高分子改性剂对体系的实用性受限于基体的极性。例如PMMA共聚物改性的环氧/二胺基二苯基亚砜,环氧/二胺基苯基甲烷体系分散性很差,而在环氧/3-氯-2,6-二乙基二苯胺基甲烷[6,7]则可以获得很好的分散效果。因此,设计出一种具有良好的广谱使用性POSS共聚物具有重大的使用价值。
发明内容
本发明通过可逆加成-断裂链转移聚合(Reversibleaddition-fragmentationtransferpolymerization),以二硫代枯酯(CDB)作为链转移剂制备了二硫代酯封端的甲基丙烯酸缩水甘油酯(PGMA)大分子转移剂。然后将POSS作为第二嵌段,在AIBN引发下共聚,获得不同比例的POSS-PGMA共聚物。由于缩水甘油酯的环氧基团能与酸、酸酐、异氰酸酯、络合物等开环,因此可将该嵌段共聚物作为改性剂在多种材料中进行构筑,以得到POSS改性纳米材料。为本发明所选用的POSS为HybridPlastics公司所生产的苯基、异丁基、环己基取代POSS基甲基丙烯酸酯。
R=苯基,环己基,异丁基。
附图说明
图1.反应性倍半硅氧烷-缩水甘油酯嵌段共聚物改性环氧基体,成功获得直径为30nm左右的团簇,其中黑色部分为POSS,因硅元素的衬度较深因此显黑色。
具体实施方式
实施例1:
步骤1.将GMA(甲基丙烯酸缩水甘油酯,0.3g)注入在烧瓶中GMA,随后将引发剂AIBN0.01mmol溶于少量甲苯中配制的甲苯溶液注入安瓿中,链转移剂CDB0.3mmol溶于少量甲苯注入上述的混合物中。烧瓶经过三次抽真空-氩气循环,以去除氧气。将烧瓶浸入65℃油浴中进行反应。
步骤2.将苯甲醚加入到体系中配成溶液,然后滴到冰甲醇中进行沉淀,然后再经过两次上述的沉淀过程以去除单体。干燥后,即得到理论分子量为10k的聚甲基丙烯酸缩水甘油酯PGMA大分子转移剂。
步骤3.在装有磁力搅拌器的圆底烧瓶中,将PGMA(步骤2所得,0.1g)大分子链转移剂溶于0.5mlTHF,并且加入POSS(0.1g,R=异丁基)。然后将AIBN0.003mmol溶于少量THF中并加入到上述烧瓶中。该体系经两次抽真空-充氩气的过程,以排除氧气。该烧瓶加热到65℃并保持24h。
步骤4.然后将其冷却到室温,并通过甲醇沉淀,所得的白色粉末再经过两次THF溶解-甲醇沉淀的过程,以排除少量未反应的POSS残余。
实施例2:
步骤1:如实施例1中步骤1;
步骤2:如实施例1中步骤2;
步骤3.如实施例1中步骤2,使用的POSS(R=异丁基);
步骤4:如实施例1中步骤4;
实施例3:
步骤1:如实施例1中步骤1;
步骤2:如实施例1中步骤2;
步骤3.如实施例1中步骤2,使用的POSS(R=苯基);
步骤4:如实施例1中步骤4。
上述仅为本发明的具体实施例,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。
参考文献
1.Li,G.Z.,etal.,ViscoelasticandMechanicalPropertiesofEpoxy/MultifunctionalPolyhedralOligomericSilsesquioxaneNanocompositesandEpoxy/LadderlikePolyphenylsilsesquioxaneBlends.Macromolecules,2001.34(25):p.8686-8693.
2.Weickmann,H.,etal.,PMMAnanocompositesandgradientmaterialspreparedbymeansofpolysilsesquioxane(POSS)self-assembly.JournalofMaterialsScience,2007.42(1):p.87-92.
3.Misra,R.,B.X.Fu,andS.E.Morgan,Surfaceenergetics,dispersion,andnanotribomechanicalbehaviorofPOSS/PPhybridnanocomposites.JournalofPolymerSciencePartB-PolymerPhysics,2007.45(17):p.2441-2455.
4.Ni,Y.andS.Zheng,NanostructuredThermosetsfromEpoxyResinandanOrganic-inorganicAmphiphile.Macromolecules,2007.40(19):p.7009-7018.
5.Ni,Y.andS.Zheng,Supramolecularinclusioncomplexationofpolyhedraloligomericsilsesquioxanecappedpoly(ε-caprolactone)withα-cyclodextrin.JournalofPolymerSciencePartA:PolymerChemistry,2007.45(7):p.1247-1259.
6.Bonnet,A.,etal.,Epoxy-diaminethermoset/thermoplasticblends.1.Ratesofreactionsbeforeandafterphaseseparation.Macromolecules,1999.32(25):p.8517-8523.
7.Ritzenthaler,S.,E.Girard-Reydet,andJ.P.Pascault,Influenceofepoxyhardeneronmiscibilityofblendsofpoly(methylmethacrylate)andepoxynetworks.Polymer,2000.41(16):p.6375-6386。

Claims (3)

1.一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法,其特征在于通过可逆加成-断裂链转移聚合(Reversibleaddition-fragmentationtransferpolymerization),以二硫代枯酯(CDB)作为链转移剂制备二硫代酯封端的甲基丙烯酸缩水甘油酯(PGMA)大分子转移剂;然后将倍半硅氧烷丙烯酸酯POSS作为第二嵌段,在AIBN引发下共聚,获得POSS-PGMA共聚物;
该反应性倍半硅氧烷嵌段共聚物的流程及分子结构式如下:
2.如权利要求1中所述的一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法,其特征在于所述反应的步骤如下:
步骤1.将GMA注入在烧瓶中,随后将引发剂AIBN溶于少量甲苯中配制的甲苯溶液注入烧瓶中,链转移剂CDB溶于少量甲苯注入上述的混合物中;烧瓶经过三次抽真空-氩气循环,以去除氧气;将烧瓶浸入65℃油浴中进行反应;
步骤2.将苯甲醚加入到体系中配成溶液,然后滴到冰甲醇中进行沉淀,然后再经过两次上述的沉淀过程以去除单体;干燥后,即得到聚甲基丙烯酸缩水甘油酯PGMA大分子转移剂;
步骤3.在装有磁力搅拌器的圆底烧瓶中,将PGMA大分子链转移剂溶于THF,并且加入POSS;然后将AIBN溶于少量THF中并加入到上述烧瓶中;该体系经两次抽真空-充氩气的过程,以排除氧气,该烧瓶加热到65℃并保持24h;
步骤4.然后将其冷却到室温,并通过甲醇沉淀,所得的白色粉末再经过两次THF溶解-甲醇沉淀的过程,以排除少量未反应的POSS残余。
3.如权利要求1中所述的一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法,其特征在于所述的缩水甘油酯的环氧基团能与酸、酸酐、异氰酸酯、络合物开环,将该嵌段共聚物作为改性剂在多种材料中进行构筑,以得到POSS改性纳米材料。
CN201310195466.7A 2013-05-23 2013-05-23 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法 Active CN103304754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310195466.7A CN103304754B (zh) 2013-05-23 2013-05-23 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310195466.7A CN103304754B (zh) 2013-05-23 2013-05-23 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法

Publications (2)

Publication Number Publication Date
CN103304754A CN103304754A (zh) 2013-09-18
CN103304754B true CN103304754B (zh) 2016-03-09

Family

ID=49130504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310195466.7A Active CN103304754B (zh) 2013-05-23 2013-05-23 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法

Country Status (1)

Country Link
CN (1) CN103304754B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103642050B (zh) * 2013-11-04 2015-10-28 中国科学院化学研究所 具有poss基的树枝状聚合物及其制备方法
CN103819634B (zh) * 2014-01-28 2016-06-01 厦门大学 一种含磷硅嵌段共聚物及其制备方法
CN104262554B (zh) * 2014-09-19 2017-04-05 厦门大学 可自交联温度敏感型有机/无机杂化嵌段共聚物及其制备方法
CN104356284B (zh) * 2014-11-04 2016-02-17 江南大学 一种含环氧功能基的杂化聚合物环氧树脂纳米增强剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024751A (zh) * 2007-03-09 2007-08-29 厦门大学 一种含poss丙烯酸酯共聚物的涂层材料及其制备方法
CN102206315A (zh) * 2011-04-12 2011-10-05 厦门大学 一种多面体齐聚倍半硅氧烷基嵌段共聚物及制备方法
CN102775567A (zh) * 2012-07-20 2012-11-14 天津大学 含poss聚丙烯酸酯-聚硅氧烷嵌段共聚物及其制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024751A (zh) * 2007-03-09 2007-08-29 厦门大学 一种含poss丙烯酸酯共聚物的涂层材料及其制备方法
CN102206315A (zh) * 2011-04-12 2011-10-05 厦门大学 一种多面体齐聚倍半硅氧烷基嵌段共聚物及制备方法
CN102775567A (zh) * 2012-07-20 2012-11-14 天津大学 含poss聚丙烯酸酯-聚硅氧烷嵌段共聚物及其制备

Also Published As

Publication number Publication date
CN103304754A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
CN103304754B (zh) 一种反应性倍半硅氧烷-缩水甘油酯嵌段共聚物的制备方法
Carter et al. Highly branched poly (N-isopropylacrylamide) s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group
CN102206315B (zh) 一种多面体齐聚倍半硅氧烷基嵌段共聚物及制备方法
Zhang et al. Temperature and pH-dual responsive AIE-active core crosslinked polyethylene–poly (methacrylic acid) multimiktoarm star copolymers
Li et al. Photoinitiated Seeded RAFT Dispersion Polymerization: A Facile Method for the Preparation of Epoxy‐Functionalized Triblock Copolymer Nano‐Objects
CN106125503A (zh) 用于定向自组装的共聚物配制品、其制造方法以及包含其的物件
Zhang et al. Thermo‐responsive fluorescent micelles from amphiphilic A3B miktoarm star copolymers prepared via a combination of SET‐LRP and RAFT polymerization
CN106188547B (zh) 一种有机硅阻尼添加剂及其制备方法
CN103146146B (zh) 一种基于poss的具有可控相结构的环氧纳米复合材料
Chiou et al. Hydrogen bond interactions mediate hierarchical self-assembly of POSS-containing block copolymers blended with phenolic resin
Chen et al. Polymethylene‐b‐polystyrene diblock copolymer: Synthesis, property, and application
Ozturk et al. ATRP of methyl methacrylate initiated with a bifunctional initiator bearing bromomethyl functional groups: Synthesis of the block and graft copolymers
de Leon et al. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres
Singh et al. Reactive compatibilization of polycarbonate and poly (methyl methacrylate) in the presence of a novel transesterification catalyst SnCl2· 2H2O
Zheng et al. Synthesis and characterization of heptaphenyl polyhedral oligomeric silsesquioxane-capped poly (N-isopropylacrylamide) s
Tsou et al. Competing hydrogen bonding interaction creates hierarchically ordered self-assembled structures of PMMA-b-P4VP/PVPh-b-PS mixtures
Ma et al. Synthesis and characterization of PMMA/SiO2 organic–inorganic hybrid materials via RAFT‐mediated miniemulsion polymerization
Hussain et al. Recent developments in nanostructured polyhedral oligomeric silsesquioxane‐based materials via ‘controlled’radical polymerization
Yang et al. Hybrid amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane: Synthesis, characterization, and self‐assembly in solutions
Chen et al. Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial RAFT miniemulsion polymerization
Pan et al. Star mesogen-jacketed liquid crystalline polymers with silsesquioxane core: synthesis and characterization
Park et al. Microphase Separation of P3HT-Containing Miktoarm Star Copolymers
Monnaie et al. Synthesis and transfer of chirality in supramolecular hydrogen bonded conjugated diblock copolymers
Kuo et al. Star Poly (N‐isopropylacrylamide) Tethered to Polyhedral Oligomeric Silsesquioxane (POSS) Nanoparticles by a Combination of ATRP and Click Chemistry
Stavrouli et al. pH/thermosensitive hydrogels formed at low pH by a PMMA‐PAA‐P2VP‐PAA‐PMMA pentablock terpolymer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant