CN103288047A - 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法 - Google Patents

硼氢化物/氟化石墨纳米复合储氢材料及其制备方法 Download PDF

Info

Publication number
CN103288047A
CN103288047A CN2013102184908A CN201310218490A CN103288047A CN 103288047 A CN103288047 A CN 103288047A CN 2013102184908 A CN2013102184908 A CN 2013102184908A CN 201310218490 A CN201310218490 A CN 201310218490A CN 103288047 A CN103288047 A CN 103288047A
Authority
CN
China
Prior art keywords
fluorographite
hydroborate
storage material
hydrogen storage
composite hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102184908A
Other languages
English (en)
Other versions
CN103288047B (zh
Inventor
肖学章
张刘挺
陈立新
韩乐园
李露
李寿权
葛红卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510218718.2A priority Critical patent/CN104891434B/zh
Priority to CN201310218490.8A priority patent/CN103288047B/zh
Publication of CN103288047A publication Critical patent/CN103288047A/zh
Application granted granted Critical
Publication of CN103288047B publication Critical patent/CN103288047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种纳米硼氢化物/氟化石墨复合储氢材料及其制作方法,所述复合储氢材料包括硼氢化物和氟化石墨,其中氟化石墨占所述硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。所述复合储氢材料制备的复合方法为高能球磨法。本发明提供的硼氢化物/氟化石墨纳米复合储氢材料具有良好的中低温放氢动力学性能和较高的放氢容量,在200℃左右其放氢容量高达7.0wt.%以上。该复合储氢材料可应用于小型移动设备,笔记本电源,独立电堆系统的供氢源等领域。

Description

硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
技术领域
    本发明涉及储氢材料,尤其是,一种纳米硼氢化物/氟化石墨纳米复合储氢材料及其制备方法。
背景技术
能源是人类社会发展的源泉,氢是一种极为优越的新能源,也是世界上最干净的能源,致力于发展以氢作为能源载体的清洁可再生能源技术已成为全球的共识,其中与燃料电池氢源系统相关的新型高容量储氢材料的研究与应用受到世界各国的充分重视。迄今,储氢技术中的液氢、轻质高压容器以及金属氢化物系统均已在燃氢汽车或电动汽车上成功运行。上述三种储氢系统中固态储氢材料的安全性好、体积储氢密度最高,但传统金属氢化物(如LaNi5、TiMn2等)的重量储氢密度低于2.0 wt.%,难以满足实际应用的储氢密度要求;而MgH2虽然储氢容量高达7.6 wt.%,但MgH2需在300℃以上才能有效吸放氢,且其缓慢的吸放氢动力学性能限制其实际应用《L. Schlapbach, A. Züttel, Nature, 414 (2001) 353–358.》。
研究表明,由轻质元素组成的多种新型储氢材料,如铝氢化物、硼氢化物和氨基化合物等,具有较高的理论储氢容量(> 5.0 wt.%),为储氢材料应用技术的突破带来新的希望。其中,以LiBH4为典型代表的配位硼氢化物,其理论重量储氢密度高达18.4 wt.%,是一类极具应用潜力的高容量储氢材料。但是,LiBH4作为储氢应用尚存在两大难题:1)热力学性质过于稳定,其放氢平衡压达到1 bar所需的放氢温度约为400 °C;2)吸放氢动力学性能较差,快速放氢所需温度超过450 °C,且再吸氢所需压力超过35 MPa《J. Graetz. Chem. Soc. Rev., 2009, 38, 73–82.》。
发明内容
本发明的目的在于提供一种制备方法简单的纳米硼氢化物/氟化石墨复合储氢材料,可以在中低温条件下实现快速放氢性能。
为实现上述目的,本发明采用以下技术方案:
一种纳米硼氢化物/氟化石墨复合储氢材料,所述复合储氢材料包括硼氢化物和氟化石墨,其中氟化石墨占所述硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。
优选的,所述硼氢化物为LiBH4或NaBH4的碱金属硼氢化物中的任意一种。
进一步,所述硼氢化物的形态为纳米尺度的粉末颗粒,所述氟化石墨的形态为微米尺度的层片状的粉末固体,所述纳米硼氢化物粉末颗粒均匀分布在所述氟化石墨粉末固体表面上。
优选的,所述硼氢化物的颗粒尺寸为90nm。
前述的硼氢化物/氟化石墨复合储氢材料的制备方法,其包括以下步骤:
第一步,制备氟化石墨(通式为FGi),将聚四氟乙烯和碳黑细粉按重量比5 : 1混合后在一定压力下冷压成10 mm直径的圆片,然后放入管式电炉并通氩气保护,随后炉温从室温升至250℃,保温5 h并随炉冷却,可得到粉状的氟化石墨;
第二步,制备硼氢化物/氟化石墨纳米复合储氢材料,按质量比例称取硼氢化物和氟化石墨,将两者均匀混和后在高纯氢气条件下进行机械球磨。
优选的,前述方法中步骤二中,所述硼氢化物为LiBH4或NaBH4的碱金属硼氢化物中的任意一种。
优选的,氟化石墨占所述硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。
优选的,球磨时间为1~10 h,充氢保护压力为0.5~2.0 MPa。
更为优选的,球磨时间为2 h,充氢保护压力为1.0 MPa。
本发明采用机械球磨方法制备的硼氢化物/氟化石墨复合储氢材料,由扫描电子显微镜分析表明,复合储氢材料中硼氢化物的颗粒尺寸均小于100 nm,在放氢过程中,纳米化的硼氢化物与氟化石墨反应放出氢气和热量,如同无数个纳米点火器,瞬间使温度升高,点燃相应LiBH4的放氢反应,并形成连锁反应以快速放出氢气。本复合储氢材料无需活化过程,可直接进行储氢性能测量。在约200℃数秒钟内即可直接放出高达7.0 wt.%以上的氢气,具有良好的中低温固态放氢特性。
本发明具有以下优点:
(1)所用制备方法只需在室温下利用简单一步机械球磨技术,可将硼氢化物纳米颗粒均匀地分布在氟化石墨的表面,以制备出高分散颗粒的纳米复合储氢材料,制备过程能够使硼氢化物的颗粒尺寸降低到100 nm以下,由此显著改善该硼氢化物体系的放氢热力学性能。
(2)与硼氢化物改性技术相比,本发明制备的复合储氢材料无需掺入特定的催化剂,所用的氟化石墨中的C-F功能团可与硼氢化物固体材料发生一定的相互作用使其均匀地附着在石墨表面,且C-F功能团可有效限制硼氢化物纳米颗粒的进一步长大,使得硼氢化物的颗粒尺寸保持在100nm以下。
(3)该复合储氢材料具有良好中低温放氢性能,同时由于石墨自身具有良好的导热性可有效地提高纳米复合储氢材料的放氢动力学性能,该复合储氢材料可在200℃左右快速放出最高为7.0 wt.%以上的纯氢气,不含其它杂质气体。
(4)所用的氟化石墨制备简单,原料成本低,可适用于大规模开发应用。所制备的复合储氢材料可应用于小型移动电话,笔记本电源以及独立电堆系统的供氢源氢等领域。
附图说明
图1是实施例1中LiBH4(a),FGi(b),LiBH4/40FGi球磨2 h复合材料(c)的XRD图谱。
图2a是实施例1中LiBH4(a)的SEM图谱。
图2b是实施例1中FGi(b)的SEM图谱。
图2c是实施例中LiBH4/40FGi球磨2 h复合材料(c)的SEM图谱。
图3是实施例2中LiBH4(a),LiBH4/50FGi球磨10 h复合材料(b)以5℃/分钟升温速率从室温到200℃的放氢曲线。
图4是实施例2中LiBH4/50FGi球磨10 h复合材料以5℃/分钟升温速率从室温到500℃的质谱曲线。(I) 氢气;(II) 乙硼烷;(III) 氟气;(IV) 氟化氢。
图5是LiBH4(a),实施例3中LiBH4/30FGi球磨2 h复合材料(b),实施例2中LiBH4/50FGi球磨1 0h复合材料(c)以5℃/分钟升温速率从室温到200℃的放氢曲线对比图。
图6是实施例4中NaBH4/45FGi球磨2 h复合材料以5℃/分钟升温速率从室温到250℃的放氢曲线。
具体实施方式
以下将结合附图详细说明本发明所提供的硼氢化物/氟化石墨复合储氢材料及其制备方法。
本技术方案所提供的硼氢化物/氟化石墨复合储氢材料,其包括硼氢化物和氟化石墨。该硼氢化物是通式为LiBH4或NaBH4的碱金属硼氢化物中的任意一种,该氟化石墨的通式为FGi。氟化石墨占该硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。
实施例1
第一步,制备氟化石墨(通式:FGi)。
将聚四氟乙烯和碳黑细粉按重量比5 : 1混合后在12 MPa压力下冷压成10 mm直径的圆片,然后放入管式电炉并通氩气保护,随后炉温从室温升至250℃,保温5 h进行反应,并随炉冷却,可制得粉状的氟化石墨。该氟化石墨化学通式为FGi。
第二步,制备硼氢化物/氟化石墨复合储氢材料。
实验所用LiBH4为商用材料,其纯度≥95%。将质量百分比为6 : 4的LiBH4与FGi(即:FGi占该硼氢化物/氟化石墨复合储氢材料总体质量的百分比为40%)均匀混和后在2.0 MPa高纯氢气条件下进行机械球磨,球磨时间为2 h,最终制备出硼氢化物/氟化石墨复合储氢材料,即:LiBH4/40FGi复合储氢材料。
图1是所制备出LiBH4/40FGi复合储氢材料的XRD图谱。由图1可看出,LiBH4/40FGi复合储氢材料的主相仍由LiBH4与FGi两相组成,且LiBH4的XRD衍射峰发生明显宽化,由此表明所制备复合储氢材料中LiBH4的晶粒尺寸有所减小。
图2a为LiBH4原材料的SEM照片,图2b为FGi原材料的SEM照片,图2c是制备的LiBH4/40FGi复合储氢材料的SEM照片。从图2a-2c中可以看出,LiBH4与FGi经过复合球磨后,LiBH4的颗粒尺寸明显减小,其平均颗粒尺寸为90 nm,且LiBH4纳米颗粒可均匀地分布在氟化石墨表面上,没有发生团聚现象。而一般利用未经氟处理的石墨与LiBH4进行复合,均无法达到使LiBH4在石墨表面形成均匀分散的纳米颗粒的效果。
实施例2
实验所用LiBH4与FGi的制备原料参数同实施例1,将质量百分比为5 : 5的LiBH4与FGi(即:FGi占该硼氢化物/氟化石墨复合储氢材料总体质量的百分比为50%)均匀混和后在0.5 MPa高纯氢气条件下进行机械球磨,球磨时间为10 h,最终制备出LiBH4/50FGi复合储氢材料,其中LiBH4硼氢化物的平均颗粒尺寸为80 nm。
所制备的复合储氢材料均采用“恒容-压差法”测定其吸放氢性能。其放氢条件为:在真空条件以5℃/min的升温速率从25℃加热到200℃。图3中曲线(a)是LiBH4(a)以5℃/分钟升温速率从室温到200℃的放氢曲线,横轴为时间(分钟),纵轴为放氢容量(wt%);曲线(b)为LiBH4/50FGi球磨10 h复合材料(b)以5℃/分钟升温速率从室温到200℃的放氢曲线,同样横轴为时间(分钟),纵轴为放氢容量(wt%);第三条线为LiBH4/50FGi球磨10 h复合材料(b)的温度变化曲线,横轴为时间(分钟),纵轴为温度(℃)。从图3可看出,制备的LiBH4/50FGi复合储氢材料首次放氢过程在100℃即可开始放氢,其在195℃时发生大量放氢反应,5秒钟以内即可放出高达7.2 wt.%的氢气,具有十分优异的热力学性能和放氢动力学特性。图4是LiBH4/50FGi球磨10 h复合材料以5℃/分钟升温速率从室温到500℃的质谱曲线。从图4还可看出,所制备的LiBH4/50FGi复合储氢材料放出的气体为纯氢气,不含其它任何杂质气体。
实施例3
实验所用LiBH4与FGi的制备原料参数同实施例1,将质量百分比为7 : 3的LiBH4与FGi(即:FGi占该硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%)均匀混和后在1.0 MPa高纯氢气条件下进行机械球磨,球磨时间为1 h,最终制备出LiBH4/30FGi复合储氢材料,其中LiBH4硼氢化物的平均颗粒尺寸为95 nm。
所制备的复合储氢材料均采用“恒容-压差法”测定其吸放氢性能。其放氢条件为:在真空条件以5℃/min的升温速率从25℃加热到200℃。图5是LiBH4(a),LiBH4/50FGi球磨10 h复合材料(b)和LiBH4/30FGi球磨1h复合材料(c)三者的放氢曲线对比图。图5中最左侧图片中曲线(a)是LiBH4(a)以5℃/分钟升温速率从室温到200℃的放氢曲线,横轴为时间(分钟),纵轴为放氢容量(wt%),另一条线为LiBH4(a)的温度变化曲线,横轴为时间(分钟),纵轴为温度(℃);图5中间图片中曲线(b)为LiBH4/50FGi球磨10 h复合材料(b)以5℃/分钟升温速率从室温到200℃的放氢曲线,同样横轴为时间(分钟),纵轴为放氢容量(wt%),另一条线为LiBH4/50FGi球磨10 h复合材料(b)的温度变化曲线,横轴为时间(分钟),纵轴为温度(℃);图5最右侧图片中曲线(c)LiBH4/30FGi球磨1h复合材料(c)的变温放氢(TPD)曲线同样横轴为时间(分钟),纵轴为放氢容量(wt%),另一条线为LiBH4/30FGi球磨1h复合材料(c)的温度变化曲线,横轴为时间(分钟),纵轴为温度(℃)。从图5中可以看出,制备的LiBH4/30FGi复合储氢材料首次放氢过程在140℃即可开始放氢,其在199℃时发生大量放氢反应,8秒钟以内即可放出高达3.2 wt.%的纯氢气。
实施例4
实验所用NaBH4为商用材料, FGi的制备原料参数同实施例1,将质量百分比为5.5 : 4.5的NaBH4与FGi(即:FGi占该硼氢化物/氟化石墨复合储氢材料总体质量的百分比为45%)均匀混和后在2.0 MPa高纯氢气条件下进行机械球磨,球磨时间为2 h,最终制备出NaBH4/45FGi复合储氢材料,其中NaBH4硼氢化物的平均颗粒尺寸为76 nm。
所制备的复合储氢材料均采用“恒容-压差法”测定其吸放氢性能,其放氢条件为:在真空条件以5℃/min的升温速率从25℃加热到250℃。图6中三角形数据点组成的曲线为NaBH4/45FGi球磨2 h复合材料以5℃/分钟升温速率从室温到250℃的放氢曲线,横轴为时间(分钟),纵轴为放氢容量(wt%);另一条线为NaBH4/45FGi球磨2 h复合材料的温度变化曲线,横轴为时间(分钟),纵轴为温度(℃)。从图6中可以看出在215℃时发生大量放氢反应,NaBH4/45FGi球磨2 h复合材料10秒钟以内即可放出高达5.0 wt.%的纯氢气。

Claims (9)

1.一种纳米硼氢化物/氟化石墨复合储氢材料,其特征在于:所述复合储氢材料包括硼氢化物和氟化石墨,其中氟化石墨占所述硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。
2.如权利要求1所述的硼氢化物/氟化石墨复合储氢材料,其特征在于:所述硼氢化物为LiBH4或NaBH4的碱金属硼氢化物中的任意一种。
3.如权利要求1或2所述的硼氢化物/氟化石墨复合储氢材料,其特征在于:所述硼氢化物的形态为纳米尺度的粉末颗粒,所述氟化石墨的形态为微米尺度的层片状的粉末固体,所述纳米硼氢化物粉末颗粒均匀分布在所述氟化石墨粉末固体表面上。
4.如权利要求3所述的硼氢化物/氟化石墨复合储氢材料,其特征在于:所述硼氢化物的颗粒尺寸为90nm。
5.如权利要求1所述的硼氢化物/氟化石墨复合储氢材料的制备方法,其特征在于,其包括以下步骤:
第一步,制备氟化石墨,将聚四氟乙烯和碳黑细粉按重量比5 : 1混合后在一定压力下冷压成10 mm直径的圆片,然后放入管式电炉并通氩气保护,随后炉温从室温升至250℃,保温5 h并随炉冷却,可得到粉状的氟化石墨;
第二步,制备硼氢化物/氟化石墨纳米复合储氢材料,按质量比例称取硼氢化物和氟化石墨,将两者均匀混和后在高纯氢气条件下进行机械球磨。
6.如权利要求5所述的硼氢化物/氟化石墨复合储氢材料的制备方法,其特征在于,所述第二步中,所述硼氢化物为LiBH4或NaBH4的碱金属硼氢化物中的任意一种。
7.如权利要求6所述的硼氢化物/氟化石墨复合储氢材料的制备方法,其特征在于,氟化石墨占所述硼氢化物/氟化石墨复合储氢材料总体质量的百分比为30%~50%。
8.如权利要求5-7任意一项所述的硼氢化物/氟化石墨复合储氢材料的制备方法,其特征在于,球磨时间为1~10 h,充氢保护压力为0.5~2.0 MPa。
9.如权利要求8任意一项所述的硼氢化物/氟化石墨复合储氢材料的制备方法,其特征在于,球磨时间为2 h,充氢保护压力为1.0 MPa。
CN201310218490.8A 2013-06-04 2013-06-04 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法 Active CN103288047B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510218718.2A CN104891434B (zh) 2013-06-04 2013-06-04 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
CN201310218490.8A CN103288047B (zh) 2013-06-04 2013-06-04 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310218490.8A CN103288047B (zh) 2013-06-04 2013-06-04 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510218718.2A Division CN104891434B (zh) 2013-06-04 2013-06-04 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103288047A true CN103288047A (zh) 2013-09-11
CN103288047B CN103288047B (zh) 2015-07-08

Family

ID=49089663

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510218718.2A Active CN104891434B (zh) 2013-06-04 2013-06-04 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
CN201310218490.8A Active CN103288047B (zh) 2013-06-04 2013-06-04 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510218718.2A Active CN104891434B (zh) 2013-06-04 2013-06-04 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法

Country Status (1)

Country Link
CN (2) CN104891434B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649224A (zh) * 2015-02-06 2015-05-27 桂林电子科技大学 一种膨胀石墨/LiBH4复合储氢材料及其制备方法
CN109148831A (zh) * 2018-09-11 2019-01-04 安徽工业大学 一种氟化物钠离子电池电极材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198932A (zh) * 2011-04-13 2011-09-28 上海交通大学 含ErF3的稀土复合可逆储氢材料及其制备方法
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198932A (zh) * 2011-04-13 2011-09-28 上海交通大学 含ErF3的稀土复合可逆储氢材料及其制备方法
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG, ZHAN-ZHAO ET AL: "Improved hydrogen storage properties of LiBH4 by mechanical milling with various carbon additives", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
YIN L ET AL: "Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage: A density functional study", 《CHEMICAL PHYSICS LETTERS》 *
徐淘等: "《石墨制品工艺学》", 30 November 1992 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649224A (zh) * 2015-02-06 2015-05-27 桂林电子科技大学 一种膨胀石墨/LiBH4复合储氢材料及其制备方法
CN109148831A (zh) * 2018-09-11 2019-01-04 安徽工业大学 一种氟化物钠离子电池电极材料的制备方法

Also Published As

Publication number Publication date
CN103288047B (zh) 2015-07-08
CN104891434A (zh) 2015-09-09
CN104891434B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Ding et al. LiBH4 for hydrogen storage-new perspectives
Yuan et al. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4
Xia et al. Facile synthesis of NiCo 2 O 4-anchored reduced graphene oxide nanocomposites as efficient additives for improving the dehydrogenation behavior of lithium alanate
Huang et al. Improved dehydrogenation performance of NaAlH4 using NiFe2O4 nanoparticles
CN101920936A (zh) 金属锂基复合储氢材料及其制备方法与用途
CN103101880B (zh) 一种硼氢化锂/稀土镁基合金复合储氢材料及其制备方法
El-Eskandarany et al. Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt% TiMn2 binary system
Song et al. Thermodynamics study of hydrogen storage materials
El-Eskandarany et al. Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications
CN102556963A (zh) 轻金属高容量复合储氢材料及其制备方法
Liu et al. Recent advance of metal borohydrides for hydrogen storage
Mustafa et al. Enhanced the hydrogen storage properties and reaction mechanisms of 4MgH2+ LiAlH4 composite system by addition with TiO2
Kong et al. Mechanochemical synthesis of sodium borohydride by recycling sodium metaborate
CN106756361B (zh) 一种纳米晶镁铝基贮氢材料及制备方法
Congwen et al. Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism
CN102935997B (zh) 金属硼氢化物-金属氢化物反应复合储氢材料及制备方法
Wang et al. Sodium fluotitanate with the formation of multicomponent catalytic species for superior hydrogen storage of magnesium hydride
CN103288047B (zh) 硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
Lu et al. Layered niobium carbide enabling excellent kinetics and cycling stability of Li-Mg-BH hydrogen storage material: Layered niobium carbide enabling excellent kinetics
CN102765723B (zh) 一种合成钾硅储氢合金的方法
CN102059090B (zh) CaF2掺杂LiBH4的高储氢量可逆储氢材料及制备方法
CN101817504A (zh) 固-液硼氢化物复合储氢材料及其制备方法
CN101406843B (zh) 铝氢化钠配位氢化物的纳米催化剂及其制备方法与应用
Chourashiya et al. Effects of the preparative parameters of hydriding combustion synthesis on the properties of Mg–Ni–C as hydrogen storage material
CN101412495B (zh) 铝氢化钠和稀土-镍基合金复合储氢材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant