CN103278759A - 分离soi器件中两种效应导致阈值电压漂移的方法 - Google Patents

分离soi器件中两种效应导致阈值电压漂移的方法 Download PDF

Info

Publication number
CN103278759A
CN103278759A CN2013101577030A CN201310157703A CN103278759A CN 103278759 A CN103278759 A CN 103278759A CN 2013101577030 A CN2013101577030 A CN 2013101577030A CN 201310157703 A CN201310157703 A CN 201310157703A CN 103278759 A CN103278759 A CN 103278759A
Authority
CN
China
Prior art keywords
threshold voltage
hci
stress
soi
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101577030A
Other languages
English (en)
Other versions
CN103278759B (zh
Inventor
安霞
冯慧
黄良喜
黄如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201310157703.0A priority Critical patent/CN103278759B/zh
Priority to US14/359,531 priority patent/US20150219698A1/en
Priority to PCT/CN2013/076748 priority patent/WO2014176812A1/zh
Publication of CN103278759A publication Critical patent/CN103278759A/zh
Application granted granted Critical
Publication of CN103278759B publication Critical patent/CN103278759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • G01R31/2628Circuits therefor for testing field effect transistors, i.e. FET's for measuring thermal properties thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种分离HCI直流应力下SOI器件阈值电压漂移量的方法,属于半导体可靠性测试领域。该方法在SOI PMOSFET栅端和漏端同时加应力偏置下将HCI直流应力下HCI效应与NBTI效应对阈值电压漂移量影响分离,分别得到HCI效应和NBTI效应对应的阈值电压漂移量。采用本发明可以有助于更好的理解在VG=VD应力下HCI效应的退化机制,从而更好的对器件建模并更精确的预测器件的寿命。

Description

分离SOI器件中两种效应导致阈值电压漂移的方法
技术领域
本发明涉及半导体可靠性测试领域,主要针对SOI PMOSFET提出一种分别测出HCI与NBTI两种效应导致的阈值电压漂移的方法。
背景技术
从集成电路的发展来说,高性能和高可靠性是其发展的两个制高点。集成电路技术一方面朝着更大集成度和更高性价比的方向发展;另一方面,来自技术和市场的驱动要求可靠性不断提高,VLSI的可靠性研究日益受到人们的关注。集成电路的可靠性受到器件发展的不断影响,随着集成电路技术的不断进步,器件的特征尺寸不断减小和氧化层不断减薄,这就导致了器件内部电场和电流密度的不断增加,器件特性对缺陷的敏感度增加,使得诸多可靠性问题如热载流子效应(HCI)、负偏置不稳定性(NBTI)、栅氧经时击穿(TDDB)、电迁移(EM)等更加突出。
SOI是英文silicon on Insulator的缩写,指的是绝缘层上的硅。SOI CMOS器件具有功耗低、抗干扰能力强、集成密度高、速度高、工艺简单、抗辐射能力强,并彻底消除了体硅CMOS器件的寄生闩锁效应等优点。但是,由于SOI隐埋氧化层的低热导率,SOI器件存在自热效应,因此SOI器件可靠性研究比体硅复杂的多。
器件进入深亚微米阶段后,SOI器件的最坏应力偏置条件为VG=VD,此时器件性能退化最严重。当SOI PMOSFET加HCI直流应力VG=VD=Vstress时,由于其隐埋氧化层热导率较差,器件沟道温度升高,则在栅电压的垂直电场下会引发NBTI效应,两者共同引起器件阈值电压漂移,导致器件性能退化。因此分离出两种可靠性效应不仅有助于理解HCI直流应力下器件的退化机制,也有利于更精确的预测器件寿命。
发明内容
本发明在于提供一种在SOI PMOSFET栅端和漏端同时加应力偏置下分离出HCI效应与NBTI效应对阈值电压漂移影响的方法。
本方法的技术方案如下:
一种HCI直流应力下SOI器件中两种可靠性效应导致阈值电压漂移量的分离方法,具体方案流程如图1所示:
1)在SOI PMOS器件A的栅端和漏端施加HCI直流应力VG=VD=Vstress,VS=0测出阈值电压的漂移量
Figure BDA00003133792400021
同时用栅电阻法提取出器件的自热温度ΔTSH
2)取与SOI PMOS器件A相同工艺及尺寸的SOI PMOS器件B加NBTI应力偏置VG=Vstress,VD=VS=0,应力温度T取器件A自热温度ΔTSH,测出SOI PMOS器件B的阈值电压漂移量该阈值电压漂移量等于SOI PMOS器件A中HCI直流应力下NBTI效应所产生的阈值电压漂移量;
3)用SOI PMOS器件A测出的HCI直流应力下测出的阈值电压漂移量减去SOI PMOS器件B测出的NBTI阈值电压漂移量即可分离出HCI效应导致的阈值电压漂移量,计算公式4如下:
ΔV TH _ HCI pure = Δ V TH _ HCI TSET - ΔV TH _ NBTI pure - - - ( 4 )
其中,
Figure BDA00003133792400024
为分离出的HCI效应导致的阈值电压漂移量,为HCI直流应力下测试出的阈值电压漂移量,
Figure BDA00003133792400026
为NBTI效应造成的阈值电压的漂移量。
本发明在SOI PMOSFET栅端和漏端同时加应力偏置,将HCI直流应力下HCI效应与NBTI效应对阈值电压漂移量影响分离,分别得到HCI效应和NBTI效应对应的阈值电压漂移量。采用本发明有助于更好的理解在VG=VD应力下HCI效应的退化机制,从而更好的对器件建模并更精确的预测器件的寿命。
附图说明
图1本发明技术方案流程示意图;
图2不同电压偏置下栅电阻随硅片温度的变化曲线;
图3提取自热温度与电压偏置的关系。
具体实施方式
下面通过具体的案例对本发明做进一步解释。
选取工艺为0.18μm的栅电极双引出PDSOI PMOSFET。
本发明采用栅电阻法提取SOI PMOSFET自热温度,假设栅电极温度等同于沟道温度。为防止多晶硅栅内在自热,栅电压选为VG1=VG+ΔVVG2=VG-ΔV,通过测量栅中流过的微小电流提取出栅电阻。公式1即为热阻与自热温度的关系。
ΔTSH=Rth×PdispPdisp=ID×VD   (1)
①ΔTSH为器件自热温度,Rth为器件热阻,Pdisp为器件功耗,ID为器件漏端电流,VD为器件工作电压首先测试VG=VD=0没有自热效应时电阻随硅片温度变化的关系,提取出栅电阻变化量随温度的变化系数α,如公式2所示。不同电压偏置下栅电阻随衬底温度的变化曲线,如图2所示。
α = ( Rg ( T high ) - Rg ( T ref ) ) / Rg ( T ref ) T high - T ref , ( V GS = V DS = 0 )
α为VGS=VDS=0时栅电阻变化量随温度的变化系数,Rg(Thigh)为VGS=VDS=0时高硅片温度下器件栅电阻,Rg(Tref)为VGS=VDS=0参照硅片温度下器件栅电阻,Thigh为高硅片温度,Tref为参照硅片温度
②选取器件A在室温下施加HCI直流应力VG1=-2.8V+20mV,VG2=-2.8V-20mV,VD=-2.8V,VS=0V经过t=6000s应力后撤去应力电压,测得阈值电压漂移量
Figure BDA00003133792400032
并且测量出器件栅电阻Rth=331.6Ω。根据公式(3)得出自热温度ΔTSH=141℃,其中取参照硅片温度为室温,提取出的室温下自热温度与偏置电压的关系如图3所示。
( SH ) = ( Rth - Rg ( T ref ) ) / Rg ( T ref ) α ( 3 )
ΔT(SH)为器件自热温度,Rth为HCI应力参照硅片温度下器件栅电阻,Rg(Tref)为VGS=VDS=0时参照硅片温度下器件栅电阻,α为VGS=VDS=0时栅电阻变化量随温度的变化系数
③选取器件B施加NBTI应力VG=-2.8V,VD=VS=0V,T=ΔTSH=141℃,经过t=6000s应力后,去掉应力电压测量出阈值电压漂移量
Figure BDA00003133792400034
该阈值电压漂移量约等于器件A中HCI直流应力下NBTI效应产生的阈值电压漂移量。
④利用以下公式分离出HCI直流应力下HCI效应所产生的阈值电压漂移量
Figure BDA00003133792400035
ΔV TH _ HCI pure = ΔV TH _ HCI TSET - ΔV TH _ NBTI pure
其中,
Figure BDA00003133792400037
为分离出的HCI效应导致的阈值电压漂移量,
Figure BDA00003133792400038
为HCI直流应力下测试出的阈值电压漂移量,
Figure BDA00003133792400039
为NBTI效应造成的阈值电压的漂移量。
上面描述的实施例并非用于限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,可做各种的更动和润饰,因此本发明的保护范围视权利要求范围所界定。

Claims (2)

1.一种HCI直流应力下SOI器件中两种可靠性效应导致阈值电压漂移量的分离方法,具体步骤为:
1)在SOI PMOS器件A的栅端和漏端施加HCI直流应力VG=VD=Vstress,VS=0测出阈值电压的漂移量量同时提取出器件的自热温度ΔTSH
2)取与SOI PMOS器件A相同工艺及尺寸的SOI PMOS器件B加NBTI应力偏置VG=Vstress,VD=VS=0,应力温度T取SOI PMOS器件A自热温度ΔTSH,测出SOI PMOS器件B的阈值电压漂移量
Figure FDA00003133792300012
该阈值电压漂移量等于SOI PMOS器件A中HCI直流应力下NBTI效应所产生的阈值电压漂移量;
3)通过
Figure FDA00003133792300013
计算出SOI PMOS器件A中HCI效应导致的阈值电压漂移量
Figure FDA00003133792300014
2.如权利要求1所述的方法,其特征在于,采用栅电阻法提取出SOI PMOS器件的自热温度ΔTSH,具体步骤包括:
1)通过测量栅中流过的微小电流提取出栅电阻;
2)测试VG=VD=0没有自热效应时电阻随硅片温度变化的关系,提取出栅电阻变化量随温度的变化系数α;
3)器件施加HCI直流应力,测量出器件栅电阻,根据公式
Figure FDA00003133792300015
得出自热温度ΔTSH
CN201310157703.0A 2013-05-02 2013-05-02 分离soi器件中两种效应导致阈值电压漂移的方法 Active CN103278759B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310157703.0A CN103278759B (zh) 2013-05-02 2013-05-02 分离soi器件中两种效应导致阈值电压漂移的方法
US14/359,531 US20150219698A1 (en) 2013-05-02 2013-06-05 Method for separating threshold voltage shifts caused by two effects in soi device
PCT/CN2013/076748 WO2014176812A1 (zh) 2013-05-02 2013-06-05 分离soi器件中两种效应导致阈值电压漂移的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310157703.0A CN103278759B (zh) 2013-05-02 2013-05-02 分离soi器件中两种效应导致阈值电压漂移的方法

Publications (2)

Publication Number Publication Date
CN103278759A true CN103278759A (zh) 2013-09-04
CN103278759B CN103278759B (zh) 2016-02-17

Family

ID=49061334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310157703.0A Active CN103278759B (zh) 2013-05-02 2013-05-02 分离soi器件中两种效应导致阈值电压漂移的方法

Country Status (3)

Country Link
US (1) US20150219698A1 (zh)
CN (1) CN103278759B (zh)
WO (1) WO2014176812A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388353A (zh) * 2015-11-26 2016-03-09 中国工程物理研究院电子工程研究所 一种抗噪声soi晶体管光电流测试系统设计
CN112560380A (zh) * 2019-09-25 2021-03-26 天津大学 一种使用基于知识的神经网络的mos晶体管的射频参数退化模型

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507560B (zh) * 2018-11-08 2021-02-02 上海华力集成电路制造有限公司 Mos管阈值电压的wat测试方法
CN112557734A (zh) * 2020-12-07 2021-03-26 广州市耀安实业发展有限公司 风机电流检测方法、系统、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441245A (zh) * 2007-11-19 2009-05-27 中芯国际集成电路制造(上海)有限公司 一种测试负偏压下温度不稳定性的方法
CN101865971A (zh) * 2009-04-14 2010-10-20 中芯国际集成电路制造(北京)有限公司 半导体场效应晶体管的测试方法及测试结构
CN102073004A (zh) * 2009-11-25 2011-05-25 北京大学 测试半导体器件可靠性的方法
US8063655B2 (en) * 2005-07-19 2011-11-22 Cypress Semiconductor Corporation Method and circuit for reducing degradation in a regulated circuit
CN102680875A (zh) * 2012-03-14 2012-09-19 北京大学 从soi pmosfet中分离两种可靠性效应导致阈值电压漂移的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650336A (en) * 1994-09-19 1997-07-22 Matsushita Electric Industrial Co., Ltd. Method of presuming life time of semiconductor device
US7504847B2 (en) * 2006-10-19 2009-03-17 International Business Machines Corporation Mechanism for detection and compensation of NBTI induced threshold degradation
CN102236063B (zh) * 2010-04-21 2013-08-07 中国科学院微电子研究所 一种预测绝缘体上硅器件热载流子寿命的方法
CN102420189B (zh) * 2011-06-15 2013-12-04 上海华力微电子有限公司 一种改善后栅极工艺高k栅电介质cmos可靠性的方法
CN103063995B (zh) * 2011-10-21 2015-02-11 北京大学 一种预测soi mosfet器件可靠性寿命的方法
US9086448B2 (en) * 2011-10-21 2015-07-21 Peking University Method for predicting reliable lifetime of SOI mosfet device
CN102621473B (zh) * 2012-04-13 2014-11-05 北京大学 一种实时监控nbti效应界面态产生的测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063655B2 (en) * 2005-07-19 2011-11-22 Cypress Semiconductor Corporation Method and circuit for reducing degradation in a regulated circuit
CN101441245A (zh) * 2007-11-19 2009-05-27 中芯国际集成电路制造(上海)有限公司 一种测试负偏压下温度不稳定性的方法
CN101865971A (zh) * 2009-04-14 2010-10-20 中芯国际集成电路制造(北京)有限公司 半导体场效应晶体管的测试方法及测试结构
CN102073004A (zh) * 2009-11-25 2011-05-25 北京大学 测试半导体器件可靠性的方法
CN102680875A (zh) * 2012-03-14 2012-09-19 北京大学 从soi pmosfet中分离两种可靠性效应导致阈值电压漂移的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIEN-MARC ROUX等: "HCI Lifetime Correction Based on Self-Heating Characterization for SOI Technology", 《IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388353A (zh) * 2015-11-26 2016-03-09 中国工程物理研究院电子工程研究所 一种抗噪声soi晶体管光电流测试系统设计
CN105388353B (zh) * 2015-11-26 2018-03-30 中国工程物理研究院电子工程研究所 一种抗噪声soi晶体管光电流测试系统
CN112560380A (zh) * 2019-09-25 2021-03-26 天津大学 一种使用基于知识的神经网络的mos晶体管的射频参数退化模型

Also Published As

Publication number Publication date
CN103278759B (zh) 2016-02-17
WO2014176812A1 (zh) 2014-11-06
US20150219698A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
CN103063995B (zh) 一种预测soi mosfet器件可靠性寿命的方法
Rodriguez et al. A model for gate-oxide breakdown in CMOS inverters
Wei et al. Effect of floating-body charge on SOI MOSFET design
CN103278759B (zh) 分离soi器件中两种效应导致阈值电压漂移的方法
Ioannidis et al. Drain-current flicker noise modeling in nMOSFETs from a 14-nm FDSOI technology
Ning et al. Bias dependence of TID radiation responses of 0.13 μm partially depleted SOI NMOSFETs
Nirschl et al. The tunnelling field effect transistors (TFET): the temperature dependence, the simulation model, and its application
CN102680875B (zh) 从soi pmosfet中分离两种可靠性效应导致阈值电压漂移的方法
Boutchacha et al. Improved modeling of low-frequency noise in MOSFETs—Focus on surface roughness effect and saturation region
Zhu et al. Numerical study of self-heating effects of MOSFETs fabricated on SOAN substrate
CN106961266A (zh) 电源开启重置电路
Vandemaele et al. The influence of gate bias on the anneal of hot-carrier degradation
CN104881520B (zh) 一种三栅FinFET电势和亚阈值摆幅的提取方法
Bartra et al. Process and temperature impact on single-event transients in 28nm FDSOI CMOS
Galy et al. Preliminary results on TFET—Gated diode in thin silicon film for IO design & ESD protection in 28nm UTBB FD-SOI CMOS technology
Sayed et al. A subthreshold swing model for thin-film fully depleted SOI four-gate transistors
Zhang et al. Charge pumping and DCIV currents in SOI FinFETs
Shu et al. TID Effects on Soft-breakdown and Self-heating Characteristics of 400V SOI NLDMOSFETs
Liu et al. Enhanced Total Ionizing Dose Susceptibility in Narrow Channel Devices
Younis et al. Modeling and simulation of static power dissipation in CMOS with SELBOX structure
Huo et al. Dynamic Analysis of the Negative OFF-State Current in Thin-film Transistors
Kilchytska et al. MOSFETs scaling down: advantages and disadvantages for high temperature applications
Mukhopadhyay et al. Prevention of highly power-efficient circuits due to short-channel effects in MOSFETs
Gao et al. TCAD Analysis on Suppression of Hot-Carrier Degradation of the Four-terminal Poly-Si TFTs
Biju et al. Dual gate enhancement-mode JFET (DG-JFET) for ultra low power applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant