CN103254951A - 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法 - Google Patents

一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法 Download PDF

Info

Publication number
CN103254951A
CN103254951A CN2012100381127A CN201210038112A CN103254951A CN 103254951 A CN103254951 A CN 103254951A CN 2012100381127 A CN2012100381127 A CN 2012100381127A CN 201210038112 A CN201210038112 A CN 201210038112A CN 103254951 A CN103254951 A CN 103254951A
Authority
CN
China
Prior art keywords
gallic acid
diesel oil
piperazine
compositions
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100381127A
Other languages
English (en)
Other versions
CN103254951B (zh
Inventor
蔺建民
张永光
张建荣
李航
李率
李宝石
刘金胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201210038112.7A priority Critical patent/CN103254951B/zh
Publication of CN103254951A publication Critical patent/CN103254951A/zh
Application granted granted Critical
Publication of CN103254951B publication Critical patent/CN103254951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Lubricants (AREA)

Abstract

本发明提供了一种添加剂组合物和含有该添加剂组合物的柴油组合物以及使用该添加剂组合物提高生物柴油氧化安定性的方法。所述添加剂组合物含有组分a和组分b,所述组分a为烷基酚、醛和哌嗪型多胺反应生成的曼尼西碱;所述组分b为酚型抗氧剂。本发明提供的柴油组合物具有较好的氧化安定性。

Description

一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
技术领域
本发明是关于一种添加剂组合物和含有该添加剂组合物的柴油组合物以及使用该添加剂组合物提高生物柴油氧化安定性的方法。
背景技术
随着世界范围内车辆柴油化趋势的加快,柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,生物柴油以其优越的环保性能和可再生性受到了各国的重视。
生物柴油(BD100)又称脂肪酸甲酯(Fatty Acid Methyl Ester),是以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物的油脂以及动物油脂、废餐饮油等作原料,与醇类(甲醇、乙醇)经酯交换反应获得,是一种洁净的生物燃料。生物柴油具有可再生、清洁和安全三大优势,对我国农业结构调整、能源安全和生态环境综合治理有十分重大的战略意义。而我国目前是一个石油净进口国,石油储量又很有限,大量进口石油对我国的能源安全造成威胁;因此,生物柴油的研究和生产对我国有着重要的现实意义。
但是,由于原料和加工工艺的原因,有些生物柴油的氧化安定性很差,对生物柴油的使用和贮存都造成很大的困难。氧化安定性差的生物柴油易生成如下老化产物:1)不溶性聚合物(胶质和油泥),这会造成发动机滤网堵塞和喷射泵结焦,并导致排烟增大、启动困难;2)可溶性聚合物,其可在发动机中形成树脂状物质,可能会导致熄火和启动困难;3)老化酸,这会造成发动机金属部件腐蚀;4)过氧化物,这会造成橡胶部件的老化变脆而导致燃料泄漏等。
欧洲生物柴油标准EN 14214:2003、澳大利亚生物柴油标准(Draft2003)、新西兰生物柴油标准NZS 7500:2005、巴西生物柴油标准ANP255(2003)、印度生物柴油标准IS 15607:2005、南非生物柴油标准SANS1935:2004以及我国柴油机燃料调合用生物柴油(BD100)国家标准GB/T20828-2007都规定生物柴油的氧化安定性为110℃下的诱导期不低于6小时,测定方法为EN 14112:2003。
众所周知,石油柴油(即通常意义的柴油,此处为了与生物柴油相区分,特引入石油柴油)中的烯烃、双烯烃以及硫化物、氮化物等非烃化合物在氧的作用下,生成一系列的氧化中间产物,并经缩合作用产生不溶性的沉淀。这些在石油柴油储存过程中生成的不溶性颗粒会影响到燃料的使用性能,造成过滤系统堵塞,引起燃油系统部件故障,影响喷油雾化,导致不完全燃烧,甚至在发动机中形成过多积炭,使喷嘴堵塞。而生物柴油由于氧化安定性比石油柴油差,与石油柴油调合后会加重上述问题。最为明显的表现是含生物柴油的调合燃料的稳定性和清净分散性比石油柴油要差。
上述问题可通过加入添加剂解决或缓解。一种方式是向纯生物柴油中加入抗氧剂以减缓其氧化,从而缓解老化产物的危害;另一种方式是向石油柴油或含生物柴油的调合燃料中加入稳定剂和清净分散剂,以改善调合燃料的稳定性和清净分散性。稳定剂可终止、减弱、或干扰各种氧化反应,以抑制油品变质,改善其安定性;清净分散剂可把喷嘴上已形成的积炭清洗下来,并在喷嘴表面形成保护膜,防止新的积炭产生,同时还可分散油中已形成的沉渣,改善滤清器和喷嘴堵塞,并改善尾气排放。
CN 1742072A公开了一种提高生物柴油储存稳定性的方法,该方法包括将含有以原液计为15-60重量%的溶于生物柴油的2,4-二叔丁基羟甲苯(BHT)的液态原液加入到待稳定化的生物柴油中,直至以生物柴油的总溶液计,2,4-二叔丁基羟甲苯的浓度达到0.005-2重量%。
CN 1847368A公开了一种提高生物柴油的氧化稳定性的方法,该方法包括将双酚型抗氧剂如4,4`-亚甲基二[2,6-二叔丁基苯酚]、2,2`-亚甲基二[6-叔丁基-4-甲基苯酚]以10-20000ppm(w/w)的量加入到待稳定的生物柴油中。
CN 1847369A公开了一种提高生物柴油的氧化稳定性的方法,该方法包括将熔点小于或等于40℃的主抗氧化剂以10-20000ppm(w/w)的量加入到待稳定的生物柴油中,其中所述主抗氧化剂含有烷基酚。
US 2007/113467A1公开了一种具有改进的氧化稳定性的燃料组合物,该组合物含有生物柴油和至少一种抗氧剂,所述抗氧剂选自没食子酸丙酯、1,2,3-三羟基苯、2,6-二叔丁基对甲基苯酚、丁基化羟基茴香醚、硫代二丙酸月桂酯、生育酚、喹啉衍生物中的一种。
US 2009/0094887A1公开了由下述式(I)所示的烷基酚与式(II)所示的醛和式(III)所示的多胺反应生成的曼尼西碱与受阻酚抗氧剂复合作为生物柴油抗氧剂的应用,
Figure BDA0000136565270000031
式(I)中,R4和R5相同或不同,各自独立地为碳原子数为1-20的烷基、芳基、烷芳基或芳烷基,x为0或1;式(II)中,R8为氢或碳原子数为1-8的烷基;式(III)中,Z为正整数,R6和R7相同或不同,各自独立地为氢、碳原子数为1-20的烷基、芳基、烷芳基或芳烷基,y为0或1。其中式(III)所示的多胺特别优选为乙二胺,酚型抗氧剂优选2,6-二叔丁基对甲基苯酚(BHT)和2,6-二叔丁基苯酚(DTBP)。
以上使用传统的抗氧剂来提高生物柴油氧化安定性的方法有一定效果,但效果不太明显或者需要较大用量的抗氧剂才能获得明显的改善效果。
发明内容
本发明的目的是为了克服上述现有技术提高生物柴油氧化安定性的方法效果不太明显或者需要较大用量的抗氧剂才能获得明显的改善效果的缺点,提供一种在较少用量的情况下即可明显改善柴油组合物氧化安定性的添加剂组合物和含有该添加剂组合物的柴油组合物以及提供一种提高生物柴油氧化安定性的方法。
本发明提供了一种添加剂组合物,其特征在于,该添加剂组合物含有组分a和组分b,所述组分a为烷基酚、醛和哌嗪型多胺反应生成的曼尼西碱;所述组分b为酚型抗氧剂。
本发明还提供了一种柴油组合物,该柴油组合物含有基础柴油和添加剂,所述基础柴油含有生物柴油,其中,所述添加剂为本发明提供的上述添加剂组合物。
本发明同时还提供一种提高生物柴油氧化安定性的方法,该方法包括,在含有生物柴油的基础柴油中,加入添加剂,其中,所述添加剂为本发明提供的上述添加剂组合物。
通过使用本发明提供的添加剂组合物,无论是以纯生物柴油作为基础柴油还是以含有生物柴油的调合燃料作为基础柴油,在较小的用量下即可获得优异的氧化安定性,组分a与组分b之间令人惊异的出现协同效应,抗氧化效果比单独使用抗氧剂要好很多。组分a可以看作是辅助抗氧剂,其可以使抗氧剂的效果出人意料地大大增强。因此,在达到相同的氧化安定性要求时,组分b在生物柴油组合物中的量可以大大减少,尤其是在组分b特别昂贵或组分b有一定毒性或腐蚀性的情况下,减少了其用量具有很大意义。
具体实施方式
根据本发明提供的添加剂组合物,所述组分b与组分a的重量比可以为0.01-100∶1,优选为0.01-10∶1,进一步优选为0.2-5∶1。
组分a
所述组分a是烷基酚、醛和哌嗪型多胺反应生成的曼尼西碱无灰分散剂。
由烷基酚、醛与胺反应生成所述曼尼西碱的反应称为曼尼西反应。三者摩尔比一般为1∶0.1-10∶0.1-10,优选为0.2-5∶0.2-5,进一步优选为1∶0.5-3∶0.5-3。曼尼西反应温度一般为50-200℃,最好在80-150℃范围之内。反应时间可以根据分水量来确定,优选为0.5-8小时。反应介质可以是芳烃溶剂如苯、甲苯、二甲苯、乙苯、芳烃稀释油(馏程为159-185℃)、溶剂汽油或矿物油(沸点在120℃以上),或者是它们的混合物。溶剂用量一般是反应物料总重量的30-150重量%。反应体系内可用氮气保护,或者让体系在回流分水条件下进行。反应结束时可以蒸出溶剂,再用重芳烃溶剂调配成溶剂含量为20-50重量%的稀释液使用。添加量统一以干剂量核算(即不含溶剂的加入量)。有关曼尼希反应可以进一步参见US 3,413,347、US 3,649,229、US3,798,165、US 4,116,644、US 4,553,979等专利文献。
本发明中,所述烷基酚优选为碳原子数为11-22的烷基酚,进一步优选为碳原子数为11-22的单取代的一元酚,更进一步优选为碳原子数为11-22的直链烷基单取代的一元酚。所述取代基例如为戊基、己基、庚基、辛基、壬基、癸基、十二烷基、十四烷基、十五烷基或十六烷基。更优选烷基取代基位于酚羟基的对位。具体优选所述烷基酚为庚基酚、辛基酚、壬基酚、癸基酚、十二烷基酚中的一种或多种,更优选为对位的上述烷基酚,特别优选为4-壬基酚和/或4-十二烷基酚。
所述醛优选为碳原子数为1-8的醛,更优选为甲醛、多聚甲醛、乙醛、丙醛、丁醛、戊醛、己醛中的一种或几种,还可以是其它醛如苯甲醛、水杨醛中的一种或几种。更进一步优选甲醛、福尔马林和多聚甲醛中的一种或几种。
所述哌啶型多胺是含有哌嗪结构的氮杂环多胺,包括但不限于哌嗪型多胺为哌嗪、2-甲基哌嗪、N-甲基哌嗪、N-乙基哌嗪、N-苯基哌嗪、N-苄基哌嗪、N-(2-羟乙基)哌嗪、1-氨基-4-甲基哌嗪、N-氨乙基哌嗪、N-氨丙基哌嗪、N,N′-二(氨乙基)哌嗪、N,N′-二(氨丙基)哌嗪、1-(2-吡啶基)哌嗪、1-(4-吡啶基)哌嗪、1-(2-二异丙基氨乙基)哌嗪中的一种或多种。
组分b
组分b为酚型抗氧剂,是指分子中含有酚羟基的可以用作抗氧剂的物质。
所述酚型抗氧剂可以是单酚、双酚或多酚,也可以是它们任意比例的混合物。
其中单酚是有一个苯环/并且苯环上有一个羟基的取代的苯酚,而且取代基中至少有一个是叔丁基,其它取代基可以是烃基或含有杂原子的取代基,其中的烃基选自C1-C10烷基,例如甲基、乙基、烯丙基、正丁基、仲丁基、壬基等,含有杂原子的取代基选自含氧的取代基如甲氧基、甲氧基取代的甲基、羟甲基,含氮的取代基如α-二甲胺基甲基。例如可以是下面结构的单酚:邻叔丁基苯酚、对叔丁基苯酚、2-叔丁基-4-甲基苯酚、6-叔丁基-2-甲基苯酚、6-叔丁基-3-甲基苯酚;4-叔丁基-2,6-二甲基苯酚、6-叔丁基-2,4-二甲基苯酚;2,4-二叔丁基苯酚、2,5-二叔丁基苯酚、2,6-二叔丁基苯酚;2,5-二叔丁基-4-甲基苯酚、2,6-二叔丁基-4-甲基苯酚(BHT,抗氧剂T501)、4,6-二叔丁基-2-甲基苯酚;2,4,6-三叔丁基苯酚、2-烯丙基-4-甲基-6-叔丁基苯酚、2-仲丁基-4-叔丁基苯酚、4-仲丁基-2,6-二叔丁基苯酚、4-壬基-2,6-二叔丁基苯酚、2,6-二叔丁基-4-乙基苯酚(抗氧剂DBEP)、2,6-二叔丁基-4-正丁基苯酚(抗氧剂678);叔丁基羟基茴香醚(BHA)、2,6-二叔丁基-α-甲氧基-对甲酚(BHT-MO)、4-羟甲基-2,6-二叔丁基苯酚(抗氧剂754)、2,6-二叔丁基-α-二甲氨基-对甲酚(抗氧剂703)、各种3,5-二叔丁基-4-羟基苯基丙酸酯和3,5-二叔丁基-4-羟基苯基丙酸酰胺等。
其中单酚抗氧剂优选至少有一个叔丁基在酚羟基邻位的受阻单酚,如:
2-叔丁基-4-甲基苯酚、6-叔丁基-2,4-二甲基苯酚、2,6-二叔丁基苯酚、2,6-二叔丁基-4-甲基苯酚(BHT,抗氧剂T501)、2,4,6-三叔丁基苯酚、4-仲丁基-2,6-二叔丁基苯酚、4-壬基-2,6-二叔丁基苯酚、2,6-二叔丁基-4-乙基苯酚(抗氧剂DBEP)、叔丁基羟基茴香醚(BHA)、2,6-二叔丁基-α-甲氧基-对甲酚(BHT-MO)、4-羟甲基-2,6-二叔丁基苯酚(抗氧剂754)、2,6-二叔丁基-α-二甲氨基-对甲酚(抗氧剂703)中的一种或几种。
双酚是指由两个单酚通过硫或碳原子相连的酚型抗氧剂,例如:
(1)由碳原子相连的双酚
4,4’-异丙叉双酚(双酚A);
2,2’-双-(3-甲基-4羟基苯基)丙烷(双酚C);
4,4’-二羟基联苯(抗氧剂DOD);
4,4’-二羟基-3,3’,5,5’-四-叔丁基联苯(抗氧剂712);
2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)(抗氧剂双酚2246);
4,4’-亚甲基-双-(2-甲基-6-叔丁基苯酚)(抗氧剂甲叉736);
2,2’-亚甲基-双-(4-乙基-6-叔丁基苯酚)(抗氧剂425);
2,2’-亚甲基-双-(4-甲基-6-环己基苯酚)(抗氧剂ZKF);
2,2’-亚甲基-双[4-甲基-6-(α-甲基环己基)苯酚](抗氧剂WSP);
2,2’-亚甲基-双-(6-α-甲基苄基对甲酚);
4,4’-亚甲基-双-(2,6-二叔丁基苯酚)(抗氧剂T511);
4,4’-亚甲基-双-(2-叔丁基苯酚)(抗氧剂702);
2,2’-亚乙基-双-(4-甲基-6-叔丁基苯酚);
4,4’-亚乙基-双-(2-甲基-6-叔丁基苯酚);
4,4’-亚乙基-双-(2,6-二叔丁基苯酚);
4,4’-亚丁基-双-(6-叔丁基-间甲酚)(抗氧剂BBM、抗氧剂TCA);
4,4’-亚异丁基-双-(2,6-二叔丁基苯酚)等。
(2)由硫原子相连的双酚
4,4’-硫代双-(3-甲基-6-叔丁基苯酚)(抗氧剂300或AO-1);
2,2’-硫代双-(4-甲基-6-叔丁基苯酚)(抗氧剂2246-S);
4,4’-硫代双-(2-甲基-6-叔丁基苯酚)(抗氧剂736);
4,4’-硫代双-(5-甲基-2-叔丁基苯酚);
4,4’-硫代双-(2,6-二叔丁基苯酚)(Nocrac 300);
2,2’-硫代双-(4-辛基苯酚)等。
(3)由碳原子相连但含有杂原子的双酚
N,N’-六甲撑双-(3,5-二叔丁基-4-羟基苯丙酰胺)(抗氧剂1098);
己二醇双[β-(3,5-二叔丁基-4-羟基苯基)丙酸酯](抗氧剂259);
双-(3,5-二叔丁基-4-羟基苯基丙酸丙酰)联氨(抗氧剂BPP);
双-(3,5-二叔丁基-4-羟基苄基)硫醚(抗氧剂甲叉4426-S);
2,2’-亚硫基乙二醇双[β-(3,5-二叔丁基-4-羟基苯基)丙酸酯](抗氧剂1035);
三甘醇双-3-(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯(抗氧剂245)等。
双酚型抗氧剂优选由至少有一个叔丁基在酚羟基邻位的单酚通过亚甲基或硫相连的双酚,例如:
2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)(抗氧剂2246);
4,4’-亚甲基-双-(2-甲基-6-叔丁基苯酚)(抗氧剂甲叉736);
4,4’-亚甲基-双-(2,6-二叔丁基苯酚)(抗氧剂T511);
4,4’-亚甲基-双-(2-叔丁基苯酚)(抗氧剂702);
4,4’-硫代双-(3-甲基-6-叔丁基苯酚)(抗氧剂300或AO-1);
2,2’-硫代双-(4-甲基-6-叔丁基苯酚)(抗氧剂2246-S);
4,4’-硫代双-(2-甲基-6-叔丁基苯酚)(抗氧剂736);
4,4’-硫代双-(2,6-二叔丁基苯酚)(Nocrac 300);
双-(3,5-二叔丁基-4-羟基苄基)硫醚(抗氧剂甲叉4426-S)等。
所述多酚抗氧剂指分子中含有多个酚羟基的酚型抗氧剂,多个酚羟基可以位于同一个苯环上,也可以位于不同苯环上,可以表示分子中由至少三个单酚基团的大分子抗氧剂优选由至少有一个叔丁基在酚羟基邻位的单酚基团组成的多酚,尤其优选有两个叔丁基在酚羟基邻位的受阻多酚,例如:
1,3,5-三甲基-2,4,6-三-(4’-羟基-3’,5’-二叔丁基)苯(抗氧剂330);
三[2-(3,5-二叔丁基-4-羟基苯基)丙酰基氧乙基]异氰酸酯(抗氧剂3125);
四(3,5-二叔丁基-4-羟基苯基丙酸)季戊四醇酯(抗氧剂1010);
1,3,5-三(3,5-二叔丁基-4-羟基苄基)均三嗪-2,4,6-(1H,3H,5H)(抗氧剂3114);
1,1,3-三-(2-甲基-4-羟基-5-叔丁基苯基)丁烷(抗氧剂CA);
1,3,5-三(2,6-二甲基-4-叔丁基-3-羟基苄基)均三嗪-2,4,6-(1H,3H,5H)(抗氧剂1790);
双[3,3-双-(3’-叔丁基-4’-羟基苄基)丁酸]乙二醇酯等。
作为组分b的所述酚型抗氧剂还可以是苯环中带有三个羟基的酚,例如焦性没食子酸以及没食子酸单酯或二酯如没食子酸甲酯、没食子酸乙酯、没食子酸丙酯、没食子酸丁酯、没食子酸戊酯、没食子酸己酯、没食子酸庚酯、没食子酸辛酯、没食子酸壬酯、没食子酸癸酯、没食子酸十二酯、没食子酸十四酯、没食子酸十六酯、没食子酸十八酯、没食子酸十八烯酯等,优选没食子酸丙酯;以及中国专利申请号200810115581.8所公开的没食子酸酰胺或氨盐。
作为所述组分b的没食子酸酰胺可以是没食子酸与各种氨和/或胺形成的酰胺,具体可参见CN 101613630A。优选情况下,所述没食子酰胺为下述式(1)所示的没食子酸酰胺中的一种或几种,
式1中,R1和R2独立地为H、式(3)、式(4)或(5)所示的基团
Figure BDA0000136565270000102
式(3)中,x为2或3,y为0到5的整数,R6为C1-C24的烃基;式(4)中,x1为2或3,y1为0到5的整数,R7为C1-C24的烃基;式(5)中,y2为0到5的整数,R8为C1-C24的烃基。优选R1和R2中的一个为H,另一个为式(3)、式(4)或式(5)所示的基团,更优选R1和R2中的一个为H,另一个为式(3)所示的基团。
对于式(3),优选y为0或1。
当y等于0时,式(3)为R6,即C1-C24的烃基,优选为C4-C22的烃基。该烃基可以是饱和的烷基,也可以是带有双键的烯基或带有苯环的芳基。烷基可以是直链正构烷基,也可以是带有侧链的异构烷基,该烷基的例子包括正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一烷基、正十二烷基、正十四烷基、正十六烷基、正十八烷基、正二十烷基、正二十二烷基;异丁基、叔丁基、异戊基、新戊基,异己基、异庚基、异辛基(2-乙基己基)、异壬基、异癸基、异十二烷基、异十四烷基、异十六烷基、异十八烷基和异二十烷基。烯基的例子包括9-十八烯基。带有苯环的芳基的例子包括苯甲基(苄基)、苯乙基和苯丙基。其中,更优选C6-C20的烷基。
当y等于1时,式(3)为-CH2CH2NHR6或-CH2CH2CH2NHR6,优选-CH2CH2CH2NHR6基团,R6的定义与上述相同。例如式(3)的基团可以为,
-CH2CH2CH2NHC10H21(3-(正癸氨基)丙基),
-CH2CH2CH2NHC12H25(3-(正十二氨基)丙基),
-CH2CH2CH2NHC14H29(3-(正十四氨基)丙基),
-CH2CH2CH2NHC16H33(3-(正十六氨基)丙基),
-CH2CH2CH2NHC18H37(3-(正十八氨基)丙基)和
-CH2CH2CH2NHC18H35(3-(油氨基)丙基)。
根据本发明,对于式(4),优选y1为1-5的整数。进一步优选x1为2,y1为1-4的整数,R7与上述R6的定义相同。例如式(4)的基团可以为:
-CH2CH2NHCOC11H23
-CH2CH2NHCOC13H27
-CH2CH2NHCOC15H31
-CH2CH2NHCOC17H35
-CH2CH2NHCOC17H33
-CH2CH2NHCH2CH2NHCOC11H23
-CH2CH2NHCH2CH2NHCOC13H27
-CH2CH2NHCH2CH2NHCOC15H31
-CH2CH2NHCH2CH2NHCOC17H35
-CH2CH2NHCH2CH2NHCOC17H33
-CH2CH2NHCH2CH2NHCH2CH2NHCOC11H23
-CH2CH2NHCH2CH2NHCH2CH2NHCOC13H27
-CH2CH2NHCH2CH2NHCH2CH2NHCOC15H31
-CH2CH2NHCH2CH2NHCH2CH2NHCOC17H35
-CH2CH2NHCH2CH2NHCH2CH2NHCOC17H33
-CH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NHCOC11H23
-CH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NHCOC13H27
-CH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NHCOC15H31
-CH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NHCOC17H35
-CH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NHCOC17H33
根据本发明提供的组合物,对于式(5),优选y2为0-2的整数。R8与上述R6的定义相同。例如式(5)的基团可以为:
Figure BDA0000136565270000121
进一步优选没食子酸酰胺为没食子酸辛酰胺、没食子酸壬酰胺、没食子酸癸酰胺、没食子酸月桂酰胺、没食子酸十四酰胺、没食子酸十六酰胺、没食子酸十八酰胺、没食子酸油基酰胺、没食子酸(N-椰子基)丙酰胺、没食子酸(N-牛脂基)丙酰胺、没食子酸(N-氢化牛脂基)丙酰胺和没食子酸(N-油基)丙酰胺中的一种或多种。
上述酚型抗氧剂优选至少有一个叔丁基在酚羟基邻位的双酚型抗氧剂,特别是通过亚甲基或硫相连的双酚型抗氧剂以及多酚抗氧剂中没食子酸酯、没食子酸酰胺或铵盐。
组分b还可以是上述芳胺型抗氧剂与上述酚型抗氧剂的复合抗氧剂。本发明最优选所述组分a为N,N’-二庚基对苯二胺、N,N’-二仲丁基对苯二胺、N,N’-二辛基对苯二胺、N,N’-双-(1-甲基庚基)对苯二胺、2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)、4,4’-亚甲基-双-(2-甲基-6-叔丁基苯酚)、4,4’-亚甲基-双-(2,6-二叔丁基苯酚)、4,4’-亚甲基-双-(2-叔丁基苯酚)、4,4’-硫代双-(3-甲基-6-叔丁基苯酚)、2,2’-硫代双-(4-甲基-6-叔丁基苯酚)、4,4’-硫代双-(2-甲基-6-叔丁基苯酚)、4,4’-硫代双-(2,6-二叔丁基苯酚)、双-(3,5-二叔丁基-4-羟基苄基)硫醚、没食子酸甲酯、没食子酸乙酯、没食子酸丙酯、没食子酸丁酯、没食子酸戊酯、没食子酸己酯、没食子酸庚酯、没食子酸辛酯、没食子酸壬酯、没食子酸癸酯、没食子酸十二酯、没食子酸十四酯、没食子酸十六酯、没食子酸十八酯、没食子酸十八烯酯、没食子酸辛酰胺、没食子酸壬酰胺、没食子酸癸酰胺、没食子酸月桂酰胺、没食子酸十四酰胺、没食子酸十六酰胺、没食子酸十八酰胺、没食子酸油基酰胺、没食子酸(N-椰子基)丙酰胺、没食子酸(N-牛脂基)丙酰胺、没食子酸(N-氢化牛脂基)丙酰胺和没食子酸(N-油基)丙酰胺中的一种或几种。
本发明人惊喜的发现,所述组分a与上述组分b复合后,出现明显的协同效应,对含生物柴油燃料氧化安定性的改善作用大大增强。
优选情况下,本发明的添加剂组合物还含有组分c,组分c为金属钝化剂。
组分c
所述组分c可以为各种能与金属表面反应的金属减活剂和/或与金属或金属离子反应或者结合的金属螯合剂。
优选情况下,所述组分a与所述组分c的重量比为1∶0.01-1。
所述组分c可以为苯三唑与脂肪胺形成的铵盐,苯三唑、甲醛与脂肪胺通过曼尼西反应得到的产物,席夫碱和有机多元羧酸中的一种或几种。
具体的,所述组分c可以为苯三唑及其衍生物、噻二唑及其衍生物、8-羟基喹啉、乙二胺四羧酸、酰肼、β-二酮、β-酮酯、席夫碱(Schiff bases)、有机多元羧酸及其衍生物中的一种或几种。由于苯三唑本身在生物柴油中的溶解性并不非常优异,因此,为了增加其在生物柴油中的溶解性,通常对苯三唑进行改性,改性的方法主要通过在苯三唑中引入油溶性基团如长链烃基。因此,所述苯三唑衍生物可以是各种在生物柴油中的溶解性较苯三唑本身好的各种衍生物。具体的,所述苯三唑衍生物可以是苯三唑与脂肪胺形成的铵盐以及苯三唑、甲醛与脂肪胺通过曼尼西反应得到的产物中的一种或几种。所述乙二胺四羧酸可以是乙二胺四乙酸(EDTA),所述酰肼可以是N-水杨叉-N’-水杨酰肼和/或N,N’-二乙酰基己二酰基二酰肼。所述β-二酮如乙酰丙酮,所述β-酮酯如乙酰乙酸辛酯。所述席夫碱可以是N,N’-二水杨叉-1,2-乙二胺、N,N’-二水杨叉-1,2-丙二胺、N,N’-二水杨叉-1,2-环己二胺、N,N’-二水杨叉-N’-甲基二丙烯三胺中的一种或几种。所述有机多元羧酸及其衍生物例如可以是柠檬酸、酒石酸、苹果酸、琥珀酸(丁二酸)、马来酸、植酸等及其衍生物中的一种或几种。
本发明中,优选所述组分c为苯三唑与脂肪胺形成的铵盐,苯三唑、甲醛与脂肪胺通过曼尼西反应得到的产物(例如商品名为T551的商品添加剂),席夫碱和有机多元羧酸及其与脂肪胺、或脂肪醇的缩合反应产物(即有机多元羧酸的酰胺类、酯类衍生物)中的一种或几种。
根据使用需要,本发明提供的添加剂组合物还可以含有其它添加剂,如高分子胺型无灰分散剂、流动改进剂、十六烷值改进剂、抗静电剂、防腐剂、防锈剂、破乳剂等中的一种或几种。
本发明中,所述流动改进剂优选含(甲基)丙烯酸酯的聚合物。十六烷值改进剂可以是硝酸酯或者过氧化物,如硝酸异辛酯、二叔丁基过氧化物等。
本发明提供的添加剂组合物的制备简单,只需将组成添加剂组合物的各组分混合均匀即可。
本发明提供的添加剂组合物优选以相对于基础柴油的含量为50-10000重量ppm,更优选50-5000重量ppm,更进一步优选100-3000重量ppm的用量使用。
根据本发明提供的柴油组合物,该柴油组合物含有基础柴油和添加剂,所述基础柴油含有生物柴油,其中,所述添加剂为本发明提供的上述添加剂组合物。
本发明中,所述基础柴油可以全部为生物柴油,也可以部分为生物柴油,同时还含有其它柴油,所述其它柴油为石油柴油、费-托合成柴油、加氢裂化生物柴油、含氧柴油调合物中的一种或几种。优选情况下,所述生物柴油与其它柴油的体积比为1∶2-99。
本发明提供的柴油组合物的制备简单,只需将组成柴油组合物的各组分混合均匀即可。可以直接将各添加剂成分与基础柴油混合,也可以先将各种添加剂成分混合均匀,得到添加剂组合物后,再将所得添加剂组合物与基础柴油混合。为了操作方便,在将各种添加剂成分混合均匀时,可以在溶剂存在下进行,这里的溶剂可以是极性溶剂如N,N-二甲基甲酰胺(DMF)、1,4-二氧六环、四氢呋喃(THF)、二甲基亚砜(DMSO)、吡咯烷酮和甲基吡咯烷酮中的一种或几种。也可以是烃类尤其是芳烃如苯、甲苯、二甲苯、芳烃稀释油及其混合物,还可以是生物柴油。
在本发明中,所述生物柴油是指油脂与低碳醇(如C1-C5脂肪醇)经酯交换(醇解)反应而生成的脂肪酸低碳醇酯,一般为脂肪酸甲酯,即油脂与甲醇的酯交换产物。
所述的酯交换反应工艺可以是任何已知或未知的通过油脂与低碳醇的酯交换反应得到生物柴油的工艺方法,例如酸催化法、碱催化法、酶催化法、超临界法,等等。具体可参考CN1473907A、DE3444893、CN1472280A、CN1142993C、CN1111591C、CN1594504A等文献。
所述的油脂具有本领域公知的一般含义,是油和脂的总称,主要成分是脂肪酸甘油三酯。一般常温为液体的称为油,常温为固体或半固体的称为脂肪(简称脂)。所述油脂包括植物油以及动物油,另外,还包括来自微生物、藻类等物质中的油料,甚至还可以是废油脂,例如餐饮废油、地沟油、泔水油、油脂厂的酸化油等使用过的油脂或变质的油脂。所述植物油可以是草本植物油也可以是木本植物油,如花生油、玉米油、棉籽油、菜子油、大豆油、棕榈油、红花油、亚麻籽油、椰子油、橡树油、杏仁油、核桃油、蓖麻油、芝麻油、橄榄油、妥尔油(Tall Oil)、向日葵油、麻风树油、桐油、文冠果油、黄连木油、盐土植物如海滨锦葵、油莎豆等植物的油。所述动物油可以是猪油、鸡油、鸭油、鹅油、羊油、马油、牛油、鲸鱼油、鲨鱼油等。
在本发明的生物柴油组合物中,所述基础柴油也可以含有其它柴油,所述其它柴油为石油柴油、费-托合成柴油、加氢裂化生物柴油、含氧柴油调合物中的一种或几种,所述生物柴油与其它柴油的体积比优选为1∶2-99。
其中石油柴油是指原油(石油)经炼油厂的各种炼制工艺如常减压、催化裂化、催化重整、焦化、加氢精制、加氢裂化等装置处理后的馏程在160-380℃之间的馏分,并经过调配而成的满足普通柴油国家标准GB 252或车用柴油国家标准GB/T 19147的压燃式内燃机用燃料。
费-托合成柴油主要指以天然气或煤为原料经费-托(F-T)合成方法而生产的GTL柴油(Gas To Liquid)或CTL柴油(Coal To Liquid),还可以是植物纤维经费-托合成方法而生产的BTL柴油(Biomass To Liquid)。费-托合成柴油基本上不含硫和芳烃,是非常洁净的燃料,但其润滑性却极差,与生物柴油调合后润滑性大大改善,但调合油的氧化安定性有可能变差,因此含生物柴油的调合燃料也需要加入抗氧剂。
加氢裂化生物柴油也称为第二代生物柴油,是指由动植物油脂经过加氢和裂化反应后生成的以C8-C24烷烃为主,尤其是以C12-C20正构烷烃为主要成分的反应产物,这种加氢裂化生物柴油十六烷值高,硫和芳烃含量极低,作为柴油发动机燃料或调合组分可大大降低柴油机污染物的排放。
含氧柴油调合组分是指可与各种柴油机燃料调配成符合一定规范要求的含氧化合物或含氧化合物的混合物,通常是醇类和醚类或其混合物,醇类例如C1-C18脂肪醇、优选C1-C12一元脂肪醇,如甲醇、乙醇、丙醇、丁醇、戊醇、己醇、庚醇、辛醇、壬醇、癸醇、十一碳醇、月桂醇及其各种异构体。醚类可以是二甲醚、甲基叔丁基醚、乙基叔丁基醚、C6-C14脂肪醇聚氧乙烯醚、C6-C14脂肪醇聚氧丙烯醚、C6-C14烷基酚聚氧乙烯醚、C6-C14烷基酚聚氧丙烯醚、聚氧化亚甲基二甲醚(Polyoxymethylene Dimethyl Ethers,CH3O(CH2O)xCH3,x=1-8)等及其混合物。
本发明中,所述基础柴油为含生物柴油的调合燃料时,所述柴油组合物可以通过将所述添加剂、生物柴油和其它柴油直接混合而得到,也可以先将所述添加剂与生物柴油混合,然后再与其它柴油调合而得到。可以将添加剂的各种组分直接与基础柴油混合,也可以先将添加剂的各种组分预先混合,得到添加剂混合物后再与基础柴油。对添加剂的各种组分以及生物柴油和其它柴油的混合顺序没有特别限定,可以以各种顺序混合。混合的条件可以在各种不对柴油组合物造成不利影响的条件下进行,例如,可以在环境温度下混合。
本发明提供的提高生物柴油氧化安定性的方法包括,在含有生物柴油的基础柴油中,加入添加剂,所述添加剂为本发明提供的上述添加剂组合物。
优选情况下,所述添加剂相对于基础柴油的加入量为50-10000重量ppm,更优选50-5000重量ppm,更进一步优选100-3000重量ppm。
关于基础柴油和添加剂组合物已在上文中进行了描述,本发明在此不再赘述。
下面的实施例将对本发明做进一步的说明。
制备例1-4用于说明组分a曼尼西碱的合成。
制备例1
在三颈瓶中,将66g 4-壬基酚(日本TCI公司)和38.7g N-氨乙基哌嗪加入到114g甲苯中,加热搅拌至80℃,将36重量%的甲醛溶液在30分钟内滴加到反应体系中。滴完后升温到100℃,并在100℃计时反应2小时。然后减压蒸馏除去溶剂和水,得到104.1g产物,再补加104g芳烃稀释油(馏程为159-185℃),配成50重量%的稀释液。
制备例2
在三颈瓶中,加入52.4g 4-十二烷基酚((SIGMA-ALDRICH公司))、68.8gN,N′-二(氨乙基)哌嗪和150g甲苯,加热搅拌至60℃,将40.0g克30重量%的甲醛溶液在1.5小时内滴加到反应体系中。滴完后升温回流分水反应5小时,然后减压蒸馏除去甲苯溶剂得到产物,取100.0g产物,加入100g芳烃稀释油(馏程为159-185℃),配成约50重量%的稀释液。
制备例3
在三颈瓶中,将38.4g庚基酚和60.1g哌嗪加入到二甲苯中,加热搅拌至80℃,将9.0g多聚甲醛加到反应体系中(二甲苯的用量是反应物料总重量的120%)。加后升温到95℃,并在95℃通氮气计时反应5小时。然后用减压蒸馏除去未反应的原料、溶剂和水得到产物,取50.0g,产物,再补加50g芳烃稀释油(馏程为159-185℃),配成50重量%的稀释液。
制备例4
在三颈瓶中,将23.4g癸基酚和21.5g 1-(2-吡啶基)哌嗪加入到芳烃稀释油(馏程为159-185℃)中,加热搅拌至80℃,将24.5g正戊醛在20分钟内滴加到反应体系中(芳烃稀释油的用量是反应物料总重量的50重量%)。滴完后升温到100℃,并在100℃计时反应2小时。然后加热到120℃常压蒸馏除去未反应的原料和水,得到产物。
制备例5
该制备例用于说明组分b的制备。
在500ml的三颈瓶中加入52.4g N-椰子基-1,3-丙二胺,加热至120℃并通入氮气,将37.6g一水合没食子酸溶解于45g N,N-二甲基甲酰胺后用滴液漏斗缓慢滴入反应器中,反应温度保持在120-130℃之间,氮气吹水反应5小时,分出水相物12.6g,收集该三颈瓶中的反应产物共101.2g。
制备对比例1
按照制备例1的方法制备曼尼西碱,不同的是,N-氨乙基哌嗪由相同摩尔量的乙二胺代替。
实施例1-5和对比例1-8用于说明添加剂组合物的组成。
按照表1所示的重量比制备添加剂组合物。
表1
Figure BDA0000136565270000201
性能测试
以下测试中,所用酸化油生物柴油是中海油新能源(海南)生物能源化工有限公司提供的生物柴油产品,所用地沟油生物柴油均由福建龙岩卓越新能源有限公司提供,石油柴油均为中石化燕山分公司生产的京标B柴油。添加量统一以干剂量核算(即不含溶剂的加入量)。
(1)纯生物柴油作为基础柴油的生物柴油组合物的氧化安定性测试
用EN14112:2003方法(Racimat法)测定110℃下的诱导期来评定生物柴油氧化安定性,使用仪器为瑞士万通公司的743型油脂氧化稳定性测定仪,其中,诱导期越长则说明柴油组合物的抗氧化性越好,反之诱导期越短则说明柴油组合物的抗氧化性越差。其测试结果示于表2、表3中。
表2
Figure BDA0000136565270000211
表3
Figure BDA0000136565270000221
从表2、表3中的数据可以看出,本发明提供的由烷基酚和甲醛以及哌嗪多胺反应生成的曼尼西碱作为组分a与双酚或多酚抗氧剂(组分b)复合后对生物柴油氧化安定性有很好的改善效果,二者出现令人意想不到的协同作用,效果大大好于其单独使用,而且本发明添加剂组合物的效果令人惊奇的明显好于对比例所用的烷基酚和甲醛以及直链的多烯多胺反应生成的曼尼西碱与酚型抗氧剂的复合。
(2)以生物柴油和石油柴油的混合物作为基础柴油的调合柴油组合物的抗氧化性的测试,所用生物柴油为酸化油生物柴油。
采用EN15751:2009的方法分别测定各柴油组合物、石油柴油和调合柴油在110℃下的诱导期,使用仪器为瑞士万通公司的743型油脂氧化稳定性测定仪,诱导期越长则说明生物柴油组合物的抗氧化性越好,反之诱导期越短则说明生物柴油组合物的抗氧化性越差。其测试结果示于表4中。
表4
Figure BDA0000136565270000231
由表4的结果可以看出,加入生物柴油后,含生物柴油的调合燃料的氧化安定性差。本发明提供由烷基酚和甲醛以及哌嗪多胺的缩合反应产物作为组分a与双酚或多酚抗氧剂复合后对改善生物柴油调合燃料氧化安定性有很好的效果,明显优于作为对比的由烷基酚和甲醛以及直链的多烯多胺的缩合反应产物与酚型抗氧剂的复合。

Claims (18)

1.一种添加剂组合物,其特征在于,该添加剂组合物含有组分a和组分b,所述组分a为烷基酚、醛和哌嗪型多胺反应生成的曼尼西碱;所述组分b为酚型抗氧剂。
2.根据权利要求1所述的添加剂组合物,其中,所述组分b与组分a的重量比为0.01-10∶1。
3.根据权利要求1或2所述的添加剂组合物,其中,所述组分b为至少有一个叔丁基在酚羟基邻位的受阻酚型抗氧剂中的一种或几种。
4.根据权利要求3所述的添加剂组合物,其中,所述组分b为通过亚甲基或硫相连的双酚型抗氧剂以及多酚型抗氧剂中的一种或几种。
5.根据权利要求4所述的添加剂组合物,其中,所述组分b为2,2’-亚甲基-双-(4-甲基-6-叔丁基苯酚)、4,4’-亚甲基-双-(2-甲基-6-叔丁基苯酚)、4,4’-亚甲基-双-(2,6-二叔丁基苯酚)、4,4’-亚甲基-双-(2-叔丁基苯酚)、4,4’-硫代双-(3-甲基-6-叔丁基苯酚)、2,2’-硫代双-(4-甲基-6-叔丁基苯酚)、4,4’-硫代双-(2-甲基-6-叔丁基苯酚)、4,4’-硫代双-(2,6-二叔丁基苯酚)、双-(3,5-二叔丁基-4-羟基苄基)硫醚、1,3,5-三甲基-2,4,6-三-(4’-羟基-3’,5’-二叔丁基)苯、三[2-(3,5-二叔丁基-4-羟基苯基)丙酰基氧乙基]异氰酸酯、四(3,5-二叔丁基-4-羟基苯基丙酸)季戊四醇酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)均三嗪-2,4,6-(1H,3H,5H)、1,1,3-三-(2-甲基-4-羟基-5-叔丁基苯基)丁烷、1,3,5-三(2,6-二甲基-4-叔丁基-3-羟基苄基)均三嗪-2,4,6-(1H,3H,5H)、双[3,3-双-(3’-叔丁基-4’-羟基苄基)丁酸]乙二醇酯、没食子酸甲酯、没食子酸乙酯、没食子酸丙酯、没食子酸丁酯、没食子酸戊酯、没食子酸己酯、没食子酸庚酯、没食子酸辛酯、没食子酸壬酯、没食子酸癸酯、没食子酸十二酯、没食子酸十四酯、没食子酸十六酯、没食子酸十八酯、没食子酸十八烯酯、没食子酸辛酰胺、没食子酸壬酰胺、没食子酸癸酰胺、没食子酸月桂酰胺、没食子酸十四酰胺、没食子酸十六酰胺、没食子酸十八酰胺、没食子酸油基酰胺、没食子酸(N-椰子基)丙酰胺、没食子酸(N-牛脂基)丙酰胺、没食子酸(N-氢化牛脂基)丙酰胺和没食子酸(N-油基)丙酰胺中的一种或多种。
6.根据权利要求1所述的添加剂组合物,其中,所述组分a为烷基酚、醛和哌嗪型多胺以摩尔比1∶0.2-5∶0.2-5在50-200℃下回流分水反应0.5-8小时生成的曼尼西碱。
7.根据权利要求1或6所述的添加剂组合物,其中,所述组分a为碳原子数为11-22的烷基酚、碳原子数为1-8的醛和哌嗪型多胺反应生成的曼尼西碱。
8.根据权利要求1或6所述的添加剂组合物,其中,所述烷基酚为庚基酚、辛基酚、壬基酚、癸基酚、十二烷基酚中的一种或多种;所述醛为甲醛、多聚甲醛、乙醛、丙醛、丁醛、戊醛、己醛中的一种或多种;所述哌嗪型多胺为哌嗪、2-甲基哌嗪、N-甲基哌嗪、N-乙基哌嗪、N-苯基哌嗪、N-苄基哌嗪、N-(2-羟乙基)哌嗪、1-氨基-4-甲基哌嗪、N-氨乙基哌嗪、N-氨丙基哌嗪、N,N′-二(氨乙基)哌嗪、N,N′-二(氨丙基)哌嗪、1-(2-吡啶基)哌嗪、1-(4-吡啶基)哌嗪、1-(2-二异丙基氨乙基)哌嗪中的一种或多种。
9.根据权利要求1或6所述的添加剂组合物,其中,所述烷基酚为壬基酚和/或十二烷基酚,所述醛为甲醛和/或多聚甲醛,所述哌嗪型多胺为N-氨乙基哌嗪、N-氨丙基哌嗪、N,N′-二(氨乙基)哌嗪、N,N′-二(氨丙基)哌嗪中的一种或多种。
10.根据权利要求1所述的添加剂组合物,其中,所述添加剂还含有组分c,所述组分c为金属钝化剂。
11.根据权利要求10所述的添加剂组合物,其中,所述组分a与所述组分c的重量比为1∶0.01-1。
12.根据权利要求10或11所述的添加剂组合物,其中,所述组分c为苯三唑与脂肪胺形成的铵盐,苯三唑、甲醛与脂肪胺通过曼尼西反应得到的产物,席夫碱和有机多元羧酸中的一种或几种。
13.一种柴油组合物,该柴油组合物含有基础柴油和添加剂,所述基础柴油含有生物柴油,其特征在于,所述添加剂为权利要求1-12中任意一项所述的添加剂组合物。
14.根据权利要求13所述的柴油组合物,其中,所述添加剂相对于基础柴油的含量为50-10000重量ppm。
15.根据权利要求13所述的柴油组合物,其中,所述基础柴油还含有其它柴油,所述其它柴油为石油柴油、费-托合成柴油、加氢裂化生物柴油、含氧柴油调合物中的一种或几种,所述生物柴油与其它柴油的体积比为1∶2-99。
16.一种提高生物柴油氧化安定性的方法,该方法包括,在含有生物柴油的基础柴油中加入添加剂,其特征在于,所述添加剂为权利要求1-12中任意一项所述的添加剂组合物。
17.根据权利要求16所述的方法,其中,所述添加剂相对于基础柴油的加入量为50-10000重量ppm。
18.根据权利要求16所述的方法,其中,所述基础柴油还含有其它柴油,所述其它柴油为石油柴油、费-托合成柴油、加氢裂化生物柴油、含氧柴油调合物中的一种或几种,所述生物柴油与其它柴油的体积比为1∶2-99。
CN201210038112.7A 2012-02-17 2012-02-17 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法 Active CN103254951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210038112.7A CN103254951B (zh) 2012-02-17 2012-02-17 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210038112.7A CN103254951B (zh) 2012-02-17 2012-02-17 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法

Publications (2)

Publication Number Publication Date
CN103254951A true CN103254951A (zh) 2013-08-21
CN103254951B CN103254951B (zh) 2015-03-18

Family

ID=48959174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210038112.7A Active CN103254951B (zh) 2012-02-17 2012-02-17 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法

Country Status (1)

Country Link
CN (1) CN103254951B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760151A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 可生物降解的润滑脂组合物及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721891B (zh) * 2016-08-17 2019-05-14 宁波百思佳医药科技有限公司 一种bihobs的绿色制备方法及其在防腐保鲜领域中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501595A (en) * 1984-05-25 1985-02-26 Texaco Inc. Middle distillate fuel oil of improved storage stability containing condensate of Mannich base and alkenyl succinic acid anhydride
US20090094887A1 (en) * 2007-10-16 2009-04-16 General Electric Company Methods and compositions for improving stability of biodiesel and blended biodiesel fuel
CN101768483A (zh) * 2008-12-29 2010-07-07 中国石油化工股份有限公司 一种柴油组合物
CN101768481A (zh) * 2008-12-29 2010-07-07 中国石油化工股份有限公司 一种柴油组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501595A (en) * 1984-05-25 1985-02-26 Texaco Inc. Middle distillate fuel oil of improved storage stability containing condensate of Mannich base and alkenyl succinic acid anhydride
US20090094887A1 (en) * 2007-10-16 2009-04-16 General Electric Company Methods and compositions for improving stability of biodiesel and blended biodiesel fuel
CN101768483A (zh) * 2008-12-29 2010-07-07 中国石油化工股份有限公司 一种柴油组合物
CN101768481A (zh) * 2008-12-29 2010-07-07 中国石油化工股份有限公司 一种柴油组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760151A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 可生物降解的润滑脂组合物及其制备方法
CN112760151B (zh) * 2019-10-21 2022-04-12 中国石油化工股份有限公司 可生物降解的润滑脂组合物及其制备方法

Also Published As

Publication number Publication date
CN103254951B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
CN105143416B (zh) 用于改善液体烃燃料或氧化剂的氧化稳定性和/或存储稳定性的添加剂
CN102051239B (zh) 生物柴油组合物及提高生物柴油氧化安定性的方法
CN101768484B (zh) 一种柴油组合物
CN101899330A (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN101768481A (zh) 一种柴油组合物
CN101372638B (zh) 提高生物柴油抗氧性能的方法
CN101768483B (zh) 一种柴油组合物
CN103254951B (zh) 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
CN101899332B (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN102443448B (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN101993743B (zh) 添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
CN101899331A (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN101987980B (zh) 添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
CN101619246B (zh) 柴油组合物以及酚酰胺和/或酚酯作为抗氧剂的用途
CN103215091A (zh) 生物柴油组合物及提高含生物柴油燃料氧化安定性的方法
CN102051240B (zh) 添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
CN103254945A (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN102443447B (zh) 柴油组合物和提高生物柴油氧化安定性的方法
CN101768482B (zh) 一种柴油组合物
CN103254950A (zh) 一种添加剂组合物和柴油组合物及提高生物柴油氧化安定性的方法
CN101275089B (zh) 提高生物柴油氧化安定性的方法
CN103254944B (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN101613630A (zh) 生物柴油组合物及提高含生物柴油燃料氧化安定性的方法
CN101928614A (zh) 一种柴油组合物和提高生物柴油氧化安定性的方法
CN101993744B (zh) 生物柴油组合物及提高生物柴油氧化安定性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant