CN103189727A - 液体感测器及液体识别系统 - Google Patents

液体感测器及液体识别系统 Download PDF

Info

Publication number
CN103189727A
CN103189727A CN2010800685297A CN201080068529A CN103189727A CN 103189727 A CN103189727 A CN 103189727A CN 2010800685297 A CN2010800685297 A CN 2010800685297A CN 201080068529 A CN201080068529 A CN 201080068529A CN 103189727 A CN103189727 A CN 103189727A
Authority
CN
China
Prior art keywords
liquid
optical fiber
light
bend
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800685297A
Other languages
English (en)
Other versions
CN103189727B (zh
Inventor
奥田敦司
藤田庆一
丸博史
关谷达夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Scube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Scube Co Ltd filed Critical IHI Scube Co Ltd
Publication of CN103189727A publication Critical patent/CN103189727A/zh
Application granted granted Critical
Publication of CN103189727B publication Critical patent/CN103189727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres
    • G01N2021/432Dip refractometers, e.g. using optical fibres comprising optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

该液体感测器(1)具备:多个光纤(11A、11B、11C),设置有弯曲部;发光元件(12A、12B、12C),个别地设置在所述光纤(11A、11B、11C)的每一个,将与外部输入的电信号对应的光入射到所述光纤(11A、11B、11C)的一端;以及光接收元件(13A、13B、13C),个别地设置在所述光纤(11A、11B、11C)的每一个,对与从所述光纤(11A、11B、11C)的另一端射出的光对应的电信号进行外部输出,各光纤(11A、11B、11C)的弯曲部的弯曲半径(Ra、Rb、Rc)根据各自负责的感测对象液体的折射率进行设定。

Description

液体感测器及液体识别系统
技术领域
本发明涉及液体感测器及液体识别系统。
本申请基于2010年8月10日在日本申请的日本特愿2010-179523号要求优先权,并将再次引用其内容。
背景技术
如众所周知的那样,光纤是成为光的传播路径的高折射率的纤芯(core)和覆盖该纤芯的低折射率的包覆层(clad)的二重构造,通过利用在两者的边界面产生的全反射将向纤芯外部的光泄漏抑制在最小限度,从而实现光的远距离传输。
当将这样的光纤的包覆层剥离一部分而露出纤芯的部分配置在水中时,因为水的折射率比纤芯低,所以光不会泄漏到纤芯的外部(严密地说,泄漏的是极微量)而在纤芯内部传播。可是,当油附着在露出的纤芯时,因为油的折射率比纤芯高,所以光会从附着有油的部分泄漏到纤芯外部。
近年来,利用这样的光纤的特性,基于光纤的透射光量的变化,感测向水中的油泄漏的油泄漏感测器正在实用化(参考下述专利文献1)。
现有技术文献
专利文献
专利文献1:日本国专利第4008910号公报。
发明内容
发明要解决的课题
在上述专利文献1公开的油泄漏感测器在其原理上不限于油,只要是折射率比光纤的纤芯高的液体就能进行感测,但是在多种感测对象液体的情况下,不能识别附着在光纤上的液体是什么。在有可能液体泄漏的液体(感测对象液体)存在多种的情形下,由于根据实际泄漏的液体的种类操作员应采取的对策不同,所以识别泄漏的液体是什么极为重要。
本发明是鉴于上述的情况而完成的,其目的在于提供一种即使在感测对象液体存在多种的情况下,也能识别附着在光纤上的液体的液体感测器及液体识别系统。
用于解决课题的方案
为了解决上述课题,在本发明中作为液体感测器的第一解决方案采用如下方案,其具备:多个光纤,设置有弯曲部;发光元件,个别地设置在所述光纤的每一个,将与外部输入的电信号对应的光入射到所述光纤的一端;以及光接收元件,个别地设置在所述光纤的每一个,对与从所述光纤的另一端射出的光对应的电信号进行外部输出,各光纤的弯曲部的弯曲半径根据各自负责的感测对象液体的折射率进行设定。
像已经叙述的那样,光纤是成为光的传播路径的高折射率的纤芯和覆盖该纤芯的低折射率的包覆层的二重构造。即使使这样的光纤弯曲,只要在该弯曲部的纤芯中传播的光的反射角比临界角小,光就不会泄漏到纤芯外部而在纤芯内部传播。可是,当使光纤较大地弯曲,在该弯曲部的纤芯中传播的光的反射角变得比临界角大时,光漏出到纤芯外部。
本申请的发明人着眼于像上述那样的光纤的特性,在光纤设置弯曲部,通过测定使液体附着在该弯曲部之前和附着之后的透射光量,从而对多种液体仔细验证了弯曲部的弯曲半径与透射光量的变化率(即液体的附着导致的光泄漏量)的关系。
其结果是,得知弯曲部的弯曲半径越小,液体的附着导致的光泄漏量变得越大,即使是折射率比纤芯低的液体或折射率与纤芯接近的液体也能感测(当然,即使是折射率比纤芯高的液体也能感测)。
然而,当假如只使用一根光纤,假定配合折射率比纤芯低的液体设定了弯曲部的弯曲半径时,因为不仅是该液体,只要是折射率比该液体高的液体,就会在透射光量产生变化(产生光泄漏),所以在感测对象的液体存在多种的情况下,不能识别附着的液体是什么。
因此,本申请的发明人通过采用使用作为液体感测器的结构设置有弯曲部的多个光纤,根据感测对象液体的折射率设定各光纤的弯曲部的弯曲半径的方案,从而解决了上述课题。
例如,假定作为感测对象液体存在折射率比纤芯低的液体A、折射率与纤芯接近的液体B以及折射率比纤芯高的液体C这三种液体,第一光纤的弯曲部的弯曲半径根据液体A的折射率进行设定,第二光纤的弯曲部的弯曲半径根据液体B的折射率进行设定,第三光纤的弯曲部的弯曲半径根据液体C的折射率进行设定。
在该情况下,在第一光纤中,当附着有具有液体A以上的折射率的液体(即,液体A、B、C)时产生透射光量的变化。此外,在第二光纤中,当附着有具有液体B以上的折射率的液体(即,液体B、C)时产生透射光量的变化。此外,在第三光纤中,当附着有具有液体C以上的折射率的液体(即,液体C)时产生透射光量的变化。
因此,在三个光纤中只有第一光纤中产生透射光量的变化的情况下,能判断为附着有液体A。此外,只有第一和第二光纤中同时产生透射光量的变化的情况下,能判断为附着有液体B。进而,在第一~第三光纤的全部中同时产生透射光量的变化的情况下,能判断为附着有液体C。即,能识别附着在光纤上的液体。
此外,在本发明中,作为液体感测器的第二解决方案采用如下方案,即,在上述第一解决方案中,对所述光纤的每一个设置有多个所述弯曲部。
由此,因为越是增加设置在1根光纤的弯曲部的数量,光泄漏量就变得越大,所以液体的感测精度会提升。可是,当光泄漏量变得过大时,存在光纤的射出光量大幅降低,感测精度反而降低的危险。因而,优选使设置在1根光纤的弯曲部的数量为2~3个左右。
此外,在本发明中,作为液体感测器的第三解决方案采用如下方案,即,在上述第1或第二解决方案中,在所述弯曲部的每一个安装有吸收各自负责的感测对象液体的吸收材料。
由此,因为附着在弯曲部的感测对象液体的量增大,所以液体的感测精度会提升。例如,当使用上述例子时,只要在第一光纤的弯曲部安装吸收液体A的吸收材料,在第二光纤的弯曲部安装吸收液体B的吸收材料,在第三光纤的弯曲部安装吸收液体C的吸收材料即可。
另一方面,在本发明中,作为液体识别系统的解决方案,其特征在于,具备具有上述第一~第三的任一个解决方案的液体感测器以及识别装置,所述识别装置对设置在所述液体感测器的所述发光元件的每一个输出使具有基准光量的光产生的电信号,并且基于从设置在所述液体感测器的所述光接收元件的每一个输入的电信号,求取各光接收元件的光接收量作为各光纤的透射光量,基于各光纤的透射光量的变化进行所述感测对象液体的识别。
根据这样的液体识别系统,能自动地进行附着在液体感测器的光纤上的液体的识别。
发明效果
根据本发明,能提供即使在感测对象液体存在多种的情况下也能识别附着在光纤上的液体的液体感测器及液体识别系统。
附图说明
图1是本实施方式的液体识别系统的结构概略图。
图2A是示出第一感测单元1A的详细结构的第一图。
图2B是观察第一感测单元1A具备的壳体(casing)31的底部31b的图。
图3是表示第一感测单元1A的详细结构的第二图。
图4A是关于在本实施方式中采用的液体感测/识别原理的说明图。
图4B是表示液体的种类与透射光量的关系的图。
图5是表示在各光纤的弯曲部压接有液体的吸收材料的样子的图。
具体实施方式
以下,一边参考附图一边对本发明的一个实施方式进行说明。
图1是本实施方式的液体识别系统的结构概略图。如该图1所示,本实施方式的液体识别系统由液体感测器1及识别装置2构成。另外,在本实施方式中,假想作为感测对象液体存在折射率比后述的光纤的纤芯低的液体A(例如水)、折射率与纤芯接近的液体B(例如煤油类燃料)以及折射率比纤芯高的液体C(例如油)这三种液体的情况。
液体感测器1由具备第一光纤11A、第一发光元件12A以及第一光接收元件13A的第一感测单元1A、具备第二光纤11B、第二发光元件12B以及第二光接收元件13B的第二感测单元1B、以及具备第三光纤11C、第三发光元件12C以及第三光接收元件13C的第三感测单元1C构成。
第一光纤11A、第二光纤11B以及第三光纤11C分别是成为光的传播路径的高折射率(例如1.492)的纤芯和覆盖该纤芯的低折射率(例如1.417)的包覆层的二重构造,并且分别设置有具有与感测对象液体的折射率对应的弯曲半径的弯曲部。
设置在第一光纤11A的弯曲部的弯曲半径Ra根据液体A的折射率(例如1.33)进行设定,与其它的光纤相比设定为最小的值。
设置在第二光纤11B的弯曲部的弯曲半径Rb根据液体B的折射率(例如1.44)进行设定,与其它的光纤相比设定为中间程度的值。
设置在第三光纤11C的弯曲部的弯曲半径Rc根据液体C的折射率(例如1.50)进行设定,与其它的光纤相比设定为最大的值。
第一发光元件12A是对第一光纤11A个别地设置的发光二极管,将对应于来自识别装置2的外部输入的电信号的光向第一光纤11A的一端入射。
第二发光元件12B是对第二光纤11B个别地设置的发光二极管,将对应于来自识别装置2的外部输入的电信号的光向第二光纤11B的一端入射。
第三发光元件12C是对第三光纤11C个别地设置的发光二极管,将对应于来自识别装置2的外部输入的电信号的光向第三光纤11C的一端入射。
第一光接收元件13A是对第一光纤11A个别地设置的光电二极管,将对应于从第一光纤11A的另一端射出的光的电信号对识别装置2进行外部输出。
第二光接收元件13B是对第二光纤11B个别地设置的光电二极管,将对应于从第二光纤11B的另一端射出的光的电信号对识别装置2进行外部输出。
第三光接收元件13C是对第三光纤11C个别地设置的光电二极管,将对应于从第三光纤11C的另一端射出的光的电信号对识别装置2进行外部输出。
识别装置2对设置在液体感测器1的第一发光元件12A、第二发光元件12B以及第三发光元件12C的每一个输出使具有基准光量的光产生的电信号。此外,虽然在后面详细叙述细节,但是该识别装置2具有如下功能,即,基于从设置在液体感测器1的第一光接收元件13A、第二光接收元件13B以及第三光接收元件13C的每一个输入的电信号,求取各光接收元件的光接收量作为第一光纤11A、第二光纤11B以及第三光纤11C各自的透射光量,基于各光纤的透射光量的变化进行感测对象液体的识别,将该识别结果提供给外部装置。
接下来,一边参考图2A、图2B以及图3一边对具备上述的第一光纤11A、第一发光元件12A以及第一光接收元件13A的第一感测单元1A的详细结构进行说明。另外,虽然在图2A、图2B以及图3中代表性地图示了第一感测单元1A,但是第二感测单元1B以及第三感测单元1C也是同样的结构。
如这些图2A、图2B以及图3所示,第一感测单元1A构成为除了第一光纤11A、第一发光元件12A以及第一光接收元件13A以外,还包括壳体31、盖体32、光纤连接器33、34、电缆连接器35、信号电缆36、电路基板37以及保护罩38。
壳体31是在上端设置有凸缘(flange)31a并且在下端设置有底部31b的形成圆筒形状的树脂制框体,在内部收容有第一发光元件12A、第一光接收元件13A以及电路基板37。盖体32是具有与壳体31的凸缘31a相同的直径的圆板形状构件,在夹着未图示的O形密封圈的状态下被螺栓固定于凸缘31a。
光纤连接器33发挥如下作用,即将第一光纤11A的一端机械地连接于盖体32的上表面,并且将从内含于壳体31的第一发光元件12A射出的光导入到第一光纤11A的一端。光纤连接器34发挥如下作用,即将第一光纤11A的另一端机械地连接于盖体32的上表面,并且将从第一光纤11A的另一端射出的光导入到内含于壳体31的第一光接收元件13A。
第一光纤11A在一端与光纤连接器33连接,另一端与光纤连接器34连接的状态下,以一边被设置在壳体31的侧壁面的引导构件31c所引导一边绕壳体31的外周一周的方式配置。图2B是观察壳体31的底部31b的图,如该图所示,第一光纤11A弯曲配置成在壳体31的底部31b形成2个弯曲部。这些2个弯曲部的弯曲半径根据液体A的折射率进行设定。
另外,虽然在图1中图示为在第一光纤11A设置有一个弯曲部,但是这不过是为了使附图的记载容易而适宜地图示为那样,实际上如图2B所示那样设置有2个弯曲部。
电缆连接器35发挥如下作用,即将信号电缆36的一端机械地连接于盖体32的上表面,并且对内含于壳体31的电路基板37与信号电缆36进行电连接。信号电缆36的一端经由电缆连接器35与电路基板37连接,并且另一端与识别装置2连接,发挥将从识别装置2输出的电信号向电路基板37传递,并且将从电路基板37输出的电信号向识别装置2传递的作用。
电路基板37经由信号电缆36与识别装置2连接,在其上表面配置有第一发光元件12A和第一光接收元件13A,并且形成有对第一发光元件12A供给电力的电源电路和对第一光接收元件13A的输出进行放大的放大电路等。第一发光元件12A产生与经由该电路基板37从识别装置2输入的电信号对应的光。此外,第一光接收元件13A经由电路基板37对识别装置2输出与从第一光纤11A的另一端射出的光对应的电信号。
保护罩38以覆盖上述的光纤连接器33、34以及电缆连接器35的方式设置在盖体32的上表面,保护各连接器类。
这样构成的第一感测单元1A在感测对象液体有可能液体泄漏的处所,以泄漏的液体附着在第一光纤11A的弯曲部那样的姿势被固定设置。此外,第二感测单元1B和第三感测单元1C也以同样的状态被固定设置。
以上是关于本实施方式的具备液体感测器1的液体识别系统的结构的说明,以下对利用液体识别系统的液体感测/识别工作详细地进行说明。
首先,在进入利用液体识别系统的液体感测/识别工作的说明之前,作为其前提对在本实施方式中采用的液体感测/识别原理进行说明。
如上述那样,光纤是成为光的传播路径的高折射率的纤芯和覆盖该纤芯的低折射率的包覆层的二重构造。即便使这样的光纤弯曲,只要在该弯曲部的纤芯中传播的光的反射角比临界角小,光就不会泄漏到纤芯外部而在纤芯内部传播。可是,如图4A所示,当使光纤弯曲较大,在该弯曲部的纤芯中传播的光的反射角变得比临界角大时,光向纤芯外部泄漏。
本申请的发明人着眼于上述那样的光纤的特性,通过在光纤设置弯曲部,对使液体附着在该弯曲部之前和附着之后的透射光量进行测定,从而针对多种液体仔细验证了弯曲部的弯曲半径与透射光量的变化率(即液体的附着导致的光泄漏量)的关系。
结果,可知弯曲部的弯曲半径越小,液体的附着导致的光泄漏量变得越大,即使是折射率比纤芯低的液体或折射率与纤芯接近的液体也能感测到(当然,即使是折射率比纤芯高的液体也能感测到)。
可是,当假定只使用一根光纤,配合折射率比纤芯低的液体设定了弯曲部的弯曲半径时,由于不仅是该液体,只要是折射率比该液体高的液体就会在透射光量产生变化(产生光泄漏),所以在感测对象的液体存在多种的情况下,不能识别附着的液体是什么。
于是,本申请发明人采用了如下方案,即作为液体感测器的结构使用设置有弯曲部的多根光纤,根据感测对象液体的折射率设定各光纤的弯曲部的弯曲半径。
在本实施方式中,由于根据折射率比纤芯低的液体A的折射率对设置在液体感测器1的第一光纤11A的弯曲部的弯曲半径进行设定,所以当附着有具有液体A以上的折射率的液体(即,液体A、B、C)时产生透射光量的变化(参考图4B)。
此外,由于根据折射率与纤芯接近的液体B的折射率对设置在液体感测器1的第二光纤11B的弯曲部的弯曲半径进行设定,所以当附着有具有液体B以上的折射率的液体(即,液体B、C)时会产生透射光量的变化(图参考4B)。
进而,由于根据折射率比纤芯高的液体C的折射率对设置在液体感测器1的第三光纤11的弯曲部的弯曲半径进行设定,所以当附着有具有液体C以上的折射率的液体(即,液体C)时会产生透射光量的变化(参考图4B)。
因此,在三根光纤内仅有第一光纤11A中产生透射光量的变化的情况下,能判断为附着有液体A(液体A在泄漏)。
此外,在仅有第一光纤11A以及第二光纤11B中同时产生透射光量的变化的情况下,能判断为附着有液体B(液体B在泄漏)。
进而,在第一光纤11A、第二光纤11B以及第三光纤11C的全部中同时产生透射光量的变化的情况下,能判断为附着有液体C(液体C在泄漏)。即,能进行附着在各光纤的液体的识别。
那么,将上述的液体感测、识别原理作为前提,在以下说明利用液体识别系统的液体感测/识别工作。
首先,识别装置2对设置在液体感测器1的第一发光元件12A、第二发光元件12B以及第三发光元件12C的每一个输出使具有基准光量的光产生的电信号。
由此,从第一发光元件12A射出的光在第一光纤11A内传播后,由第一光接收元件13A进行光接收。此外,从第二发光元件12B射出的光在第二光纤11B内传播后,由第二光接收元件13B进行光接收。进而,从第三发光元件12C射出的光在第三光纤11C内传播后,由第三光接收元件13C进行光接收。
第一光接收元件13A、第二光接收元件13B以及第三光接收元件13C分别对识别装置2输出与光接收量对应的电信号。
识别装置2基于从第一光接收元件13A、第二光接收元件13B以及第三光接收元件13C的每一个输入的电信号,求取各光接收元件的光接收量作为第一光纤11A、第二光纤11B以及第三光纤11C的各自的透射光量,监视各透射光量的时间推移。
在此,在设置有第一感测单元1A、第二感测单元1B以及第三感测单元1C的处所中未发生液体泄漏的情况下,由于在液体没有附着在设置于第一光纤11A、第二光纤11B以及第三光纤11C的每一个的弯曲部,所以各透射光量示出大致固定的值。
另一方面,因为在发生液体泄漏的情况下,由于泄漏的液体附着在设置于第一光纤11A、第二光纤11B以及第三光纤11C的每一个的弯曲部,所以根据该液体的折射率在第一光纤11A、第二光纤11B以及第三光纤11C的任一个中产生透射光量的变化。
此时,在仅有第一光纤11A中产生透射光量的变化的情况下,识别装置2判断为在各光纤附着有液体A(即,液体A泄漏)。
此外,在仅有第一光纤11A和第二光纤11B中同时产生透射光量的变化的情况下,识别装置2判断为在各光纤附着有液体B(即,液体B泄漏)。
此外,在第一光纤11A、第二光纤11B以及第三光纤11C的全部中同时产生透射光量的变化的情况下,识别装置2判断为在各光纤附着有液体C(即,液体C泄漏)。
如以上说明的那样,根据本实施方式的具备液体感测器1的液体识别系统,即使在感测对象液体存在多种的情况下,也能识别附着在光纤上的液体。
另外,本发明并不被上述实施方式限定,可举出像以下那样的变形例。(1)在上述实施方式中例示说明了在1根光纤设置有2个弯曲部的情况,但是弯曲部的数量并不限定于此,也可以设置1个或3个以上。另外,虽然越是增加在1根光纤设置的弯曲部的数量,液体的附着宽度也越增加,但是存在光泄漏量变得过大,光纤的射出光量大幅降低,感测精度反而降低的危险。因而,优选在1根光纤设置的弯曲部的数量为2~3个左右。
(2)也可以如图5所示,在设置于各光纤的每个弯曲部安装有吸收各自负责的感测对象液体的吸收材料41。由此,因为附着在弯曲部的感测对象液体的量增大,所以液体的感测精度会提升。例如,只要在第一光纤11A的弯曲部安装吸收液体A的吸收材料,在第二光纤11B的弯曲部安装吸收液体B的吸收材料,在第三光纤11C的弯曲部安装吸收液体C的吸收材料即可。
(3)在上述实施方式中,例示说明了液体感测器1由第一感测单元1A、第二感测单元1B以及第三感测单元1C这3个感测单元构成的情况,但是不限于此,也可以将液体感测器1构成为一个单元。
(4)在上述实施方式中,例示说明了感测对象液体存在3种的情况,但是本发明也能应用于感测对象液体存在2种或4种以上的情况。
(5)在上述实施方式中,在用包覆层覆盖纤芯的状态下使光纤弯曲设置了弯曲部,但是也可以只对弯曲部剥离包覆层。由此,因为弯曲部处的光泄漏量变大,所以液体的感测精度会提升。
产业上的可利用性
根据本发明的液体感测器及液体识别系统,即使在感测对象液体存在多种的情况下,也能识别附着在光纤上的液体。
附图标记说明
1 液体感测器;
2  识别装置;
1A 第一感测单元;
11A第一光纤;
12A第一发光元件;
13A第一光接收元件;
1B第二感测单元;
11B第二光纤;
12B第二发光元件;
13B第二光接收元件;
1C第三感测单元;
11C第三光纤;
12C第三发光元件;
13C第三光接收元件。

Claims (4)

1.一种液体感测器,其中,具备:
多个光纤,设置有弯曲部;
发光元件,个别地设置在所述光纤的每一个,将与外部输入的电信号对应的光入射到所述光纤的一端;以及
光接收元件,个别地设置在所述光纤的每一个,对与从所述光纤的另一端射出的光对应的电信号进行外部输出,
各光纤的弯曲部的弯曲半径根据各自负责的感测对象液体的折射率进行设定。
2.根据权利要求1所述的液体感测器,其中,对所述光纤的每一个设置有多个所述弯曲部。
3.根据权利要求1或2所述的液体感测器,其中,在所述弯曲部的每一个安装有吸收各自负责的感测对象液体的吸收材料。
4.一种液体识别系统,其中,具备:
权利要求1~3的任一项所述的液体感测器;以及
识别装置,对设置在所述液体感测器的所述发光元件的每一个输出使具有基准光量的光产生的电信号,并且基于从设置在所述液体感测器的所述光接收元件的每一个输入的电信号,求取各光接收元件的光接收量作为各光纤的透射光量,基于各光纤的透射光量的变化进行所述感测对象液体的识别。
CN201080068529.7A 2010-08-10 2010-10-14 液体感测器及液体识别系统 Active CN103189727B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-179523 2010-08-10
JP2010179523A JP5755853B2 (ja) 2010-08-10 2010-08-10 液体検知器及び液体識別システム
PCT/JP2010/068073 WO2012020514A1 (ja) 2010-08-10 2010-10-14 液体検知器及び液体識別システム

Publications (2)

Publication Number Publication Date
CN103189727A true CN103189727A (zh) 2013-07-03
CN103189727B CN103189727B (zh) 2015-07-29

Family

ID=45567491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080068529.7A Active CN103189727B (zh) 2010-08-10 2010-10-14 液体感测器及液体识别系统

Country Status (6)

Country Link
EP (1) EP2604991B1 (zh)
JP (1) JP5755853B2 (zh)
KR (1) KR20130043669A (zh)
CN (1) CN103189727B (zh)
DK (1) DK2604991T3 (zh)
WO (1) WO2012020514A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914518A (zh) * 2014-03-14 2015-09-16 浜松光子学株式会社 半导体激光器模块、半导体激光器光源和半导体激光器系统
CN106932364A (zh) * 2017-03-10 2017-07-07 吉林大学 宏弯曲错位拉锥型光纤液体折射率传感器
CN109900637A (zh) * 2017-12-07 2019-06-18 詹尼斯柯有限公司 光学测量设备、折射计和用于光学测量的布置
CN110579319A (zh) * 2019-10-08 2019-12-17 中北大学 一种基于准分布式检测液漏的光纤传感器及检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198267B2 (ja) * 2012-07-17 2017-09-20 株式会社Ihi検査計測 風車
DE102013218860A1 (de) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Sensor zum Bestimmen eines flüssigen oder gasförmigen Mediums
JP2016102771A (ja) * 2014-11-29 2016-06-02 東横化学株式会社 漏液センサ
GB2616457A (en) * 2022-03-09 2023-09-13 Draexlmaier Lisa Gmbh Optical liquid detection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196134A (en) * 1981-05-28 1982-12-02 Furukawa Electric Co Ltd:The Liquid identifying method
JPS6076646A (ja) * 1983-09-30 1985-05-01 Shimadzu Corp 液体屈折率センサヘツド
JPH04149042A (ja) * 1990-10-11 1992-05-22 Ishikawajima Harima Heavy Ind Co Ltd 漏洩油検知光ファイバセンサ用被覆材
JP2002296141A (ja) * 2001-03-30 2002-10-09 T & T:Kk 漏液センサー
CN1611924A (zh) * 2003-10-30 2005-05-04 通电株式会社 漏液传感器及漏液检测系统
JP2006308305A (ja) * 2005-04-26 2006-11-09 Yamatake Corp 液体の状態検出装置
CN101194160A (zh) * 2005-05-26 2008-06-04 三菱电机株式会社 光纤传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025939U (ja) * 1983-07-27 1985-02-21 古河電気工業株式会社 油等の検知用光ファイバ
SE9602960D0 (sv) * 1996-08-09 1996-08-09 Siemens Elema Ab Narkosvätskeidentifiering
JP2000089042A (ja) * 1998-09-16 2000-03-31 Furukawa Electric Co Ltd:The 光ファイバセンサとそれを用いた情報検出方法
DE102004037883B3 (de) * 2004-08-05 2006-03-09 Forschungszentrum Rossendorf E.V. Faseroptischer Sensor zur Bestimmung von Stoff- und Phasenverteilungen
CN100472187C (zh) * 2006-03-20 2009-03-25 东京电力株式会社 光学式漏油检测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196134A (en) * 1981-05-28 1982-12-02 Furukawa Electric Co Ltd:The Liquid identifying method
JPS6076646A (ja) * 1983-09-30 1985-05-01 Shimadzu Corp 液体屈折率センサヘツド
JPH04149042A (ja) * 1990-10-11 1992-05-22 Ishikawajima Harima Heavy Ind Co Ltd 漏洩油検知光ファイバセンサ用被覆材
JP2002296141A (ja) * 2001-03-30 2002-10-09 T & T:Kk 漏液センサー
CN1611924A (zh) * 2003-10-30 2005-05-04 通电株式会社 漏液传感器及漏液检测系统
JP2006308305A (ja) * 2005-04-26 2006-11-09 Yamatake Corp 液体の状態検出装置
CN101194160A (zh) * 2005-05-26 2008-06-04 三菱电机株式会社 光纤传感器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914518A (zh) * 2014-03-14 2015-09-16 浜松光子学株式会社 半导体激光器模块、半导体激光器光源和半导体激光器系统
CN106932364A (zh) * 2017-03-10 2017-07-07 吉林大学 宏弯曲错位拉锥型光纤液体折射率传感器
CN109900637A (zh) * 2017-12-07 2019-06-18 詹尼斯柯有限公司 光学测量设备、折射计和用于光学测量的布置
CN109900637B (zh) * 2017-12-07 2021-07-30 芬兰维萨拉有限责任公司 光学测量设备、折射计和用于光学测量的布置
CN110579319A (zh) * 2019-10-08 2019-12-17 中北大学 一种基于准分布式检测液漏的光纤传感器及检测方法

Also Published As

Publication number Publication date
JP2012037453A (ja) 2012-02-23
CN103189727B (zh) 2015-07-29
KR20130043669A (ko) 2013-04-30
EP2604991A4 (en) 2016-10-26
DK2604991T3 (da) 2020-11-30
EP2604991B1 (en) 2020-09-09
JP5755853B2 (ja) 2015-07-29
EP2604991A1 (en) 2013-06-19
WO2012020514A1 (ja) 2012-02-16

Similar Documents

Publication Publication Date Title
CN103189727A (zh) 液体感测器及液体识别系统
CN101258379A (zh) 与光纤通信线连接的光纤传感器
WO2014200902A1 (en) Optical fiber cable assembly comprising optical tracer fiber
ATE547730T1 (de) Vorkonnektorisiertes faseroptisches verteilerkabel mit übergossener zugangsstelle
CN101298992A (zh) 基于光纤腔衰荡技术的分布式光纤传感器
Hou et al. Polymer optical fiber twisted macro-bend coupling system for liquid level detection
CN102538702B (zh) 侧掺杂弯曲增敏型光纤曲率传感器
CN109073841A (zh) 具有光电检测器的光连接器、用于光连接器的适配器、以及系统
Dumke et al. Power transmission by optical fibers for component inherent communication
JP2009276627A (ja) 通信光検知器
CN103985466A (zh) 高灵敏度的光纤应力传感光电复合缆
CN104101953A (zh) 用于光纤到户的光纤连接组件
GB2621276A (en) Extending fiber optic sensing
CN106949954A (zh) 一种光纤振动信号检测装置与方法
CN108508546A (zh) 一种光模块
CN107525579A (zh) 一种基于光纤双模式耦合的多防区振动探测装置
RU2015141479A (ru) Устройство и способ определения импульсов с использованием интерферометра саньяка в телеметрической системе с высокой скоростью передачи данных
US20150268416A1 (en) Sensor system with optical source for power and data
CN202126258U (zh) 一种光栅静力水准仪
CN102562158A (zh) 一种本质安全的分布式全光纤井下监测系统
CN102033226A (zh) 提高单芯反馈式光纤传感技术监测距离的方法及光纤干涉结构
CN202362072U (zh) 一种加强振动信号感应的光缆处理装置
CN104748772B (zh) 定位型光纤光栅传感装置
Wilson et al. All-optical downhole sensing for subsea completions
US20160116633A1 (en) System and method of locating underground utility

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: IHI INSPECTION + INSTRUMENTATION CO., LTD.

Free format text: FORMER OWNER: IHI SCUBE CO., LTD.

Effective date: 20140128

TA01 Transfer of patent application right

Effective date of registration: 20140128

Address after: Tokyo, Japan, Japan

Applicant after: Ihi Inspection And Instrumenta

Address before: Tokyo, Japan, Japan

Applicant before: Ihi Scube Co., Ltd.

TA01 Transfer of patent application right
C14 Grant of patent or utility model
GR01 Patent grant