CN103178271A - 用于电极面涂层的替代材料 - Google Patents

用于电极面涂层的替代材料 Download PDF

Info

Publication number
CN103178271A
CN103178271A CN2012105575523A CN201210557552A CN103178271A CN 103178271 A CN103178271 A CN 103178271A CN 2012105575523 A CN2012105575523 A CN 2012105575523A CN 201210557552 A CN201210557552 A CN 201210557552A CN 103178271 A CN103178271 A CN 103178271A
Authority
CN
China
Prior art keywords
ionomer
electrode
finishing coat
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105575523A
Other languages
English (en)
Other versions
CN103178271B (zh
Inventor
S.L.彼得斯
A.纳亚
R.姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN103178271A publication Critical patent/CN103178271A/zh
Application granted granted Critical
Publication of CN103178271B publication Critical patent/CN103178271B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及具有降低的气体穿透的燃料电池电极、膜电极组件及该燃料电池电极的制造方法。该燃料电池电极包括具有催化剂和电化学活性的第一离聚物的电极层以及布置在该电极层上的面涂层。该面涂层由相对于电极层的第一离聚物相同或者不同的第二离聚物制成,该第二离聚物具有至少一种降低的气体穿透的特性。

Description

用于电极面涂层的替代材料
技术领域
本发明通常涉及燃料电池,并且具体涉及到具有改进的电池效率的燃料电池电极。
背景技术
燃料电池,也称作电化学转化电池,通过加工反应物例如通过氢气和氧气的氧化还原反应来产生电能。氢气是一种非常吸引人的燃料,因为它是清洁的,并且它能够用于在燃料电池中有效地产生电。汽车工业已经花费了许多资源用于开发氢燃料电池作为车辆的动力源。通过氢燃料电池供能的车辆将比今天使用内燃机的车辆更有效率,并且产生更少的排放。
在典型的燃料电池系统中,氢气或者富含氢气的气体作为反应物通过流道供给到燃料电池的阳极侧,而氧气(例如大气氧气的形式)作为反应物通过分开的流道供给到燃料电池的阴极侧。催化剂,典型的是贵金属例如铂(Pt)或者钯(Pd)的形式,置于阳极和阴极处,来促进反应物电化学转化成电子和带正电的离子(对于氢气)和带负电的离子(对于氧气)。在一种公知的燃料电池形式中,该阳极和阴极可以由导电气态扩散介质(GDM)材料组成,催化剂沉积到其上来形成催化剂涂覆的扩散介质(CCDM)。电解质层(也称作离聚物层)将阳极与阴极隔开,来允许质子从阳极选择性通到阴极,而与此同时阻止反应物气体的通过。阳极处的催化反应所产生的电子也被阻止流过电解质层,取而代之的是强迫其流过外部导电电路(例如负载)来在与带电离子于阴极重新结合之前作有用功。带正电和带负电的离子在阴极的结合导致产生了作为所述反应副产物的非污染性水。在另一种公知的燃料电池形式中,该阳极和阴极可以直接在电解质层上形成,来形成称作催化剂涂覆膜(CCM)的层状结构。膜电极组件(MEA)在一种形式中可以包括在相对侧被相应的阳极和阴极GDM所包围的CCM,而在另外一种形式中可以包括在相对侧被相应的阳极和阴极CCDM所包围的由电解质层构成的膜。
一种类型的燃料电池,称作质子交换膜(PEM)燃料电池,已经表现出在车辆和相关移动应用方面的特别的前景。PEM燃料电池的电解质层是固态质子传输电解质膜(例如全氟磺酸(PFSA)膜,其市售品的例子是Nafion®)的形式。不管是采用上述的CCM-基方案还是CCDM-基方案,由电解质层分隔开的阳极和阴极的存在形成了单PEM燃料电池;许多这样的单电池可以组合形成燃料电池组,这提高了其功率输出。多个电池组可以偶合在一起来进一步提高功率输出。
同时促进质子转移并降低气体穿透(gas crossover,窜气)是许多这样的燃料电池面临的问题。为了实现这些竟合的目标,目前的电极设计可以另外包括沉积在电极层顶上的PFSA离聚物面涂层(overcoat)。这样的面涂层溶液典型地是用溶剂例如水-醇混合物或者有机溶剂(例如二甲基乙酰胺(DMAC))稀释的离聚物溶液(例如5wt%的固体浓度)。作为例子,如果是涂覆到无孔基底上,则将面涂层负荷量为0.16mg/cm2(在它的干态)的固体PFSA离聚物转变成1微米厚的面涂层。尽管存在着PFSA面涂层,但是仍然会出现附着性、界面阻力和相关的问题。
发明内容
根据本发明的教导,公开了使用具有离聚物的燃料电池电极面涂层的系统和方法,该离聚物表现出降低的气体穿透。
在一种实施方案中,燃料电池电极可以包含质子传导性基底和偶合(couple)到该基底上的电极层以及布置在该电极层上的面涂层,其中该电极层可以包含催化剂和电化学活性的第一离聚物。该面涂层可以包含相对于第一离聚物相同或者不同的第二离聚物,其具有至少一种降低的气体穿透的特性。这样的电极可以配置作为CCDM-基燃料电池或者CCM-基燃料电池的一部分。
在另外一种实施方案中,膜电极组件可以包含质子传导性膜和偶合到该膜上的多个电极。该多个电极中的每个可以包含电极层和布置在该电极层上的面涂层,该电极层含有催化剂和电化学活性的第一离聚物。该面涂层可以包含相对于第一离聚物相同或者不同的第二离聚物,其具有至少一种降低的气体穿透的特性。
在又一种实施方案中,制造燃料电池电极的方法可以包括放置偶合到基底上的包含催化剂和电化学活性的第一离聚物的电极层,和放置布置到该电极层上的面涂层。该面涂层可以包含相对于第一离聚物相同或者不同的第二离聚物,其具有至少一种降低的气体穿透的特性。
具体地,本发明提供了以下方面的技术方案:
1. 燃料电池电极,其包含:
质子传导性基底;
偶合到所述基底上的电极层,所述电极层包含催化剂和电化学活性的第一离聚物;和
布置在所述电极层上的面涂层,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
2. 方面1的燃料电池电极,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
3. 方面1的燃料电池电极,其中所述第二离聚物包含全氟环丁烷。
4. 方面3的燃料电池电极,其中所述第二离聚物进一步包含聚偏二氟乙烯。
5. 方面1的燃料电池电极,其中所述第二离聚物包含磺化的聚醚醚酮。
6. 方面1的燃料电池电极,其中所述第二离聚物包含磺化的聚对亚苯基。
7. 方面1-6中任一项的燃料电池电极,其中所述质子传导性基底包含质子传导性膜。
8. 方面1和3-7中任一项的燃料电池电极,其中所述第一离聚物和所述第二离聚物包含相同的材料。
9. 膜电极组件,其包含:
质子传导性膜;和
偶合到所述膜上的多个电极,所述多个电极中的每个包含:
包含催化剂和电化学活性的第一离聚物的电极层;和
布置在所述电极层上的面涂层,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
10. 方面9的膜电极组件,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
11. 方面9的膜电极组件,其中所述第二离聚物包含全氟环丁烷。
12. 方面11的膜电极组件,其中所述第二离聚物进一步包含聚偏二氟乙烯。
13. 方面9的膜电极组件,其中所述第二离聚物包含磺化的聚醚醚酮。
14. 方面9的膜电极组件,其中所述第二离聚物包含磺化的聚对亚苯基。
15. 方面9和11-14中任一项的膜电极组件,其中所述第一离聚物和所述第二离聚物包含相同的材料。
16. 方面9-15中任一项的膜电极组件,其中所述多个电极中的至少一个进一步包含质子传导性基底,在该基底上偶合有所述电极层和所述面涂层中的至少一个。
17. 制作燃料电池电极的方法,其包括:
将包含催化剂和电化学活性的第一离聚物的电极层偶合到基底上;和
将面涂层布置到所述电极层上,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
18. 方面17的方法,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
19. 方面17的方法,其中所述第二离聚物包含全氟环丁烷。
20. 方面19的方法,其中所述第二离聚物进一步包含聚偏二氟乙烯。
21. 方面17的方法,其中所述第二离聚物包含磺化的聚醚醚酮。
22. 方面17的方法,其中所述第二离聚物包含磺化的聚对亚苯基。
23. 方面17和19-22中任一项的方法,其中所述第一离聚物和所述第二离聚物包含相同的材料。
24. 方面17-23中任一项的方法,其中所述基底是扩散介质。
25. 方面17-24中任一项的方法,其中所述基底是质子传导性膜。
26. 方面17-25中任一项的方法,其进一步包括将邻近所述电极层布置的所述面涂层热压到膜上来形成膜电极组件,所述膜包含所述第一离聚物,和所述面涂层包含所述第二离聚物。
27. 方面17-26中任一项的方法,其中所述基底是贴花基底,和所述方法进一步包括在将邻近所述电极层布置的所述面涂层热压到所述膜上之后,除去所述贴花基底。
附图说明
图1A显示了一种实施方案的燃料电池的示意性截面,该燃料电池具有在相对侧上被CCDM所包围的自立式(free-standing)PEM;
图1B显示了另外一种实施方案的燃料电池的示意性截面,该燃料电池具有CCM形式的自立式PEM;
图2是显示气体(H2、O2、N2)对于不同的面涂层材料的渗透性的图;
图3是显示对于不同厚度和类型的面涂层材料所测量的燃料电池MEA的H2穿透;
图4A显示了用于制造根据本发明一方面的CCDM燃料电池电极的步骤;和
图4B显示了用于制造根据本发明一方面的CCM燃料电池电极的步骤。
具体实施方式
本发明的示意性实施方案是针对电极设计来描述的,其降低了气体(例如H2、O2、N2)穿透,提高了电池效率和降低了成本。该电极设计包括催化活性的基层,其具有位于电极表面上的面涂/顶涂层,该电极与PEM的相对侧接触或者位于其上。
本发明人发现,通过将与在电极层和膜的一者或者两者中所用的PFSA离聚物材料不同的离聚物材料用于电极面涂层,能够降低反应物气体的穿透。本发明人发现一种特定的材料全氟环丁烷(PFCB),作为面涂/顶涂层用在电极层的表面上,已经表现出比传统材料显著的穿透降低。本发明人还发现在电极层和膜的一者或者两者中,以及在电极层表面上的面涂/顶涂层中,使用相同的离聚物材料例如PFCB已经表现出显著的穿透降低。可以通过将PFCB-基面涂/顶涂层施涂到电极层上来实现降低的穿过MEA的气体穿透。在本发明的上下文中,用于面涂层、电极层和膜的不同的离聚物意味着包括了不同化学类型的离聚物,例如PFCB对PFSA,以及相同化学类型的、具有不同性质例如不同当量重量(EW)或多不同当量重量的离聚物或者具有不同弹性体比率的离聚物,例如PFCB+聚偏二氟乙烯(PVDF)共混物。所以,取决于所施涂的面涂层厚度以及用作面涂层和用在电极层和膜的一者或两者中的相同或者不同的离聚物,例如作为电极层表面上的面涂/顶涂层的PFCB+PVDF共混物和在电极层和膜的一者或两者中的PFSA,气体穿透降低了至少大约5%,或者至少大约10%,或者至少大约15%,或者至少大约20%。
在一种实施方案中,用于面涂层的离聚物是PFCB,用在电极层和膜的一者或两者中的离聚物是PFSA。用于面涂层以及用在电极层和膜的一者或两者中的可选择的离聚物材料可以包括但不限于与PVDF弹性体共混的PFCB,磺化的聚醚醚酮(SPEEK)和磺化的聚对亚苯基(SParmax)。这种布置表现出降低的气体穿透和能够降低电极成本,因为PFCB的成本比PFSA低了大约30%。可选择地,较厚的PFCB面涂层可以用于将气体穿透降低甚至更多,同时保持相同的材料成本。合适的PFCB离聚物描述在美国申请序列号12/549881,12/549885和12/549904中,其中每个都属于本申请的申请人,并且通过引用并入本文。
在另外一种实施方案中,将相同的离聚物材料,与PVDF弹性体共混的PFCB,用于面涂层以及用在电极层和膜的一者或两者中。用于面涂层以及用在电极层和膜的一者或两者中的可选择的离聚物材料可以包括但不限于PFCB、SPEEK和SParmax。这种布置表现出甚至更大降低的气体穿透。
在一种形式的制造中,在形成为例如图1A和1B分别所示的CCDM或者CCM配置结构之前,将该电极制成电极墨水(electrode ink)。电极墨水典型地包含离聚物、有机溶剂例如异丙醇、乙醇等、和电催化剂。另外的材料可以混入到该电极墨水中来提高坚固性和电极性能的其他指标。例如,如果需要,则可以将离子传导性组分混入到电极墨水中。同样,如果需要,可以将疏水性粒子例如PTFE混入到电极墨水中来调制电极的水管理能力。如果需要,也可以将石墨化的或者无定形的碳粉或者纤维、其他的耐久性粒子、或者其他的电催化剂如碳载Pt混入到电极墨水中来提高电极的水储存容量。
参见图1A和1B,PEM燃料电池10的放大形式的局部截面图分别表示了CCDM-基构造和CCM-基构造。在每种情况中,燃料电池10包括基本上平面的PEM 15和扩散层(GDM) 20 (对于阳极)和30 (对于阴极),其包括面涂层(各自标记为面涂层24和面涂层34)和一对相应的设置为与各自的面涂层24、34面接触的催化剂层22 (对于阳极)和32 (对于阴极)。双极板40设有众多通道来允许反应物气体到达面涂层24、34的适当侧,以及穿过扩散层20、30到达PEM 15。
扩散层20、30在各自的催化剂层22、32和双极板40之间提供电接触,双极板40可以另外充当集电器。每个扩散层20、30可以制造为限定出大体多孔的结构,以便于气态反应物通向催化剂层22、32。用于扩散层20、30的合适的材料可以包括但不限于碳纸、多孔石墨、毡、布、网或者其他包括一定程度的孔隙率的机织或者无纺材料。相对于阳极扩散层20更厚的阴极扩散层30形成了更长的、因而困难的水蒸汽通道,由此帮助将PEM 15保持在充分水化(hydrated)的状态。然而,本领域技术人员可以理解这样的厚度差异不是运行燃料电池10所必需的,并且可以代替为基本上相当的厚度。
在图1A的CCDM-基构造中,每个扩散层20、30充当了前述的GDM或者气态扩散层(GDL),其能够用作催化剂层22、32的基底,该催化剂层可以例如以墨水形式与布置为与催化剂层22、32面接触的面涂层24、34一起沉积。在图1B的CCM-基构造中,PEM 15、面涂层24、34和催化剂层22、32共同限定了CCM 50。在CCDM-基构造或者CCM-基构造任一中,与催化剂层22、32面接触布置的面涂层24、34可以附着、沉积、嵌入或者以其它方式连接到它们各自的扩散层20、30上。如本领域技术人员可以理解的,不管所述构造是否包括与附着到各自的扩散层20、30上的阳极和阴极催化剂层22、32面接触布置的CCDM-基面涂层24、34,或者所述构造是否包括与附着到作为CCM 50一部分的PEM 15上的阳极和阴极催化剂层22、32面接触布置的CCM-基面涂层24、34,下面的PEM 15的自立式保持不变。
在CCDM-基构造中,催化剂层22、32直接偶合到扩散层20、30上。面涂层24、34布置在催化剂层22、32上,而自立式PEM 15位于面涂层24、34之间。扩散层20、30和含有面涂层24、34的催化剂层22、32可以热压到PEM 15上,具有环绕周缘的子垫圈(subgasket)。如上所述,面涂层24、34的组成可以是但不限于位于催化剂层22、32和PEM 15之间的PFCB、PFCB与PVDF的共混物、SPEEK或者SParmax。可选择地,电极层,分别地,位于面涂层24、34和扩散层20、30之间的催化剂层22、32的组成可以是但不限于PFCB、PFCB与PVDF的共混物、SPEEK或者SParmax。
参见图1B,在CCM-基构造中,面涂层布置在催化剂层22、32上。将PEM 15热压到面涂层24、34上产生了自立式CCM 50。将扩散层20、30置于自立式CCM 50之上和之下。催化剂层22、32可以涂覆到贴花(decal)基底上,其随后转移到PEM 15上。该贴花基底可以在面涂层24、34布置到催化剂层22、32上之后除去。该贴花基底应当是化学稳定的、平的和光滑的。该贴花基底可以是多孔材料或者非多孔材料。合适的贴花基底包括但不限于乙烯四氟乙烯(ETFE)、膨体聚四氟乙烯(ePTFE)、或者聚酰亚胺膜。当具有上述的CCDM-基构造时,面涂层24、34的组成可以是但不限于PFCB、PFCB与PVDF的共混物、SPEEK或者SParmax。可选择地,电极层,分别地,催化剂层22、32的组成可以是但不限于PFCB、PFCB与PVDF的共混物、SPEEK或者SParmax。含有面涂层24、34的催化剂层22、32然后转移到PEM 15上。面涂层24、34位于催化剂层22、32和作为CCM 50一部分的PEM 15之间。
图2是显示气体(例如H2、O2和N2)对于不同的面涂层材料的渗透性的图。气体渗透性是材料的基本性质,其独立于厚度。例如,PFCB+40%PVDF表现出低于单独的PFCB的气体渗透性,PFCB本身表现出低于PFSA的气体渗透性。气体渗透性是使用气相色谱法(GC)系统来测量的。同样,与使用PFCB、PFCB+PVDF共混物、SPEEK和SParmax中的一种或多种相关联的较低的气体渗透性有助于降低燃料电池运行中的气体穿透,如所示的那样。本领域技术人员将理解为了帮助降低燃料电池运行中的气体穿透,上述材料的其他共混物也是可能的。
下面的是例子,其中电极使用上述的CCDM-基构造来制造。将含有电催化剂、PFSA离聚物、水-醇混合物的电极墨水涂覆到扩散层20、30上,来产生催化剂层22、32。该催化剂层22、32然后面涂上PFCB-基离聚物的溶液,该溶液包含位于水-醇溶剂混合物或者有机溶剂如DMAC中的PFCB-基离聚物。面涂层24、34是厚度为2μm或者4μm的PFCB层。为了比较,还用包含PFSA作为离聚物的参照溶液制备了2μm厚的面涂层。
图3显示了对于分别具有2μm厚的PFCB层(1μm在阳极上,1μm在阴极上)、2μm厚的PFSA层(1μm在阳极上,1μm在阴极上)和4μm厚的PFCB层(2μm在阳极上,2μm在阴极上)的燃料电池MEA,所测量的H2穿透(mA.cm-2/atm)。H2穿透是使用极限电流方法测量的。将加湿的H2供给到阴极,而将加湿的N2供给到电池的阳极侧。跨电池的电压是通过Gamry板来施加的。在各种温度和相对湿度条件下测量H2穿透率。在全部的测试中,通过根据在给定温度和RH的H2O分压来调整总压力来将H2分压保持在200kPa(pH2=常数=P电池–pH2O)。通过Gamry板跨电池施加的电压设定为以0.05V间隔从0.4V到0.7V且在每个电压值保持5分钟。在这样的电压值范围,所测量的电流受到每一给定条件下的H2穿透率的限制。下面显示了这个测试的基本原理:
阳极: H2 → 2H+ + 2e- (1)
阴极: 2H+ + 2e- → H2 (2)
与2μm厚的PFSA层相比,2μm厚的PFCB层在降低H2穿透方面表现出5%的改进,而与2μm厚的PFSA层相比,4μm厚的PFCB层表现出19%的改进。
图4A显示了用于构造具有用于降低气体穿透的面涂层的CCDM燃料电池电极的工序。在该工序的第一部分中,将电极墨水涂覆到扩散层20、30上,来产生催化剂层22、32。将面涂层24、34布置到催化剂层22、32上。自立式PEM 15位于面涂层24、34之间。双极板40提供在扩散层20、30之间,具有众多通道来允许反应物气体穿过到达扩散层20、30,催化剂层22、32和面涂层24、34,以及PEM 15。
图4B显示了用于构造具有用于降低气体穿透的面涂层的CCM燃料电池电极的工序。在该工序的第一部分中,将电极墨水偶合到扩散层20、30上。将膜/贴花基底偶合到催化剂层22、32上。将面涂层24、34布置到催化剂层22、32上。将PEM 15热压到面涂层24、34和催化剂层22、32上,产生自立式CCM 50。将扩散层20、30置于自立式CCM 50之上和之下。双极板40提供在扩散层20、30之间,具有众多通道来允许反应物气体穿过到达扩散层20、30和CCM 50。
应当注意的是术语如“优选”、“通常”和“典型地”在此不用于限制所要求保护的本发明的范围或者用于暗示某些特征是对于要求保护的本发明的结构或者功能来说是关键的、必不可少的乃至重要的。相反,这些术语仅仅用于强调可选择的或者另外的特征,其可以用或者可以不用在本发明特定的实施方案中。
为了描述和定义本发明,应当注意的是术语“装置”在本文中用于表示部件的组合和单个的部件,而不管所述部件是否与其他部件相组合。例如本发明的“装置”可以包括电化学转化组件或者燃料电池、含有本发明的电化学转化组件的车辆等。
为了描述和定义本发明,应当注意的是术语“基本上”在本文中用于表示固有的不确定性程度,其可以适用于任何定量的比较、数值、测量或者其他表述。术语“基本上”还在本文中用于表示定量表述可以相对于所述的参考值的变化程度,该程度不导致所关注的主题的基本功能的变化。
已经详细地和参考其具体的实施方案来描述了本发明,但是很显然在不脱离附加的权利要求所定义的本发明范围的情况下可以作出改变和变化。更明确地,虽然本发明的一些方面在此确定为是优选的或者特别有利的,但是可以预期本发明不必局限于本发明的这些优选的方面。

Claims (10)

1.燃料电池电极,其包含:
质子传导性基底;
偶合到所述基底上的电极层,所述电极层包含催化剂和电化学活性的第一离聚物;和
布置在所述电极层上的面涂层,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
2.权利要求1的燃料电池电极,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
3.权利要求1的燃料电池电极,其中所述第二离聚物包含全氟环丁烷。
4.权利要求3的燃料电池电极,其中所述第二离聚物进一步包含聚偏二氟乙烯。
5.膜电极组件,其包含:
质子传导性膜;和
偶合到所述膜上的多个电极,所述多个电极中的每个包含:
包含催化剂和电化学活性的第一离聚物的电极层;和
布置在所述电极层上的面涂层,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
6.权利要求5的膜电极组件,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
7.权利要求5的膜电极组件,其中所述第二离聚物包含全氟环丁烷。
8.制作燃料电池电极的方法,其包括:
将包含催化剂和电化学活性的第一离聚物的电极层偶合到基底上;和
将面涂层布置到所述电极层上,所述面涂层包含第二离聚物,该第二离聚物相对于所述第一离聚物具有至少一种降低的气体穿透的特性。
9.权利要求8的方法,其中所述第一离聚物包含全氟磺酸,和所述第二离聚物包含全氟环丁烷。
10.权利要求8的方法,其中所述第二离聚物包含全氟环丁烷。
CN201210557552.3A 2011-12-20 2012-12-20 用于电极面涂层的替代材料 Expired - Fee Related CN103178271B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/331,074 2011-12-20
US13/331,074 US20130157167A1 (en) 2011-12-20 2011-12-20 Alternate material for electrode topcoat
US13/331074 2011-12-20

Publications (2)

Publication Number Publication Date
CN103178271A true CN103178271A (zh) 2013-06-26
CN103178271B CN103178271B (zh) 2016-03-30

Family

ID=48522349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210557552.3A Expired - Fee Related CN103178271B (zh) 2011-12-20 2012-12-20 用于电极面涂层的替代材料

Country Status (3)

Country Link
US (1) US20130157167A1 (zh)
CN (1) CN103178271B (zh)
DE (1) DE102012223397A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043679B2 (en) * 2014-12-30 2021-06-22 Ess Tech, Inc. Alternative low cost electrodes for hybrid flow batteries
US11374236B2 (en) 2014-12-30 2022-06-28 Ess Tech, Inc. Alternative low cost electrodes for hybrid flow batteries
ES2968670T3 (es) 2016-08-25 2024-05-13 Proton Energy Sys Inc Conjunto de electrodos de membrana y método de fabricación del mismo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799160A (zh) * 2003-04-09 2006-07-05 日本电气株式会社 燃料电池及制备该燃料电池的方法
CN101582512A (zh) * 2008-05-09 2009-11-18 通用汽车环球科技运作公司 复合膜
US20100107404A1 (en) * 2007-06-12 2010-05-06 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700211B2 (en) * 2002-04-17 2010-04-20 Nec Corporation Fuel cell, fuel cell electrode and method for fabricating the same
JP4327732B2 (ja) * 2002-12-02 2009-09-09 三洋電機株式会社 固体高分子型燃料電池、およびその製造方法
EP1858096B1 (en) * 2004-12-07 2011-11-09 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
US8003732B2 (en) * 2008-08-25 2011-08-23 GM Global Technology Operations LLC Gradient reinforced proton exchange membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799160A (zh) * 2003-04-09 2006-07-05 日本电气株式会社 燃料电池及制备该燃料电池的方法
US20100107404A1 (en) * 2007-06-12 2010-05-06 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer
CN101582512A (zh) * 2008-05-09 2009-11-18 通用汽车环球科技运作公司 复合膜

Also Published As

Publication number Publication date
US20130157167A1 (en) 2013-06-20
DE102012223397A1 (de) 2013-06-20
CN103178271B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
Kim et al. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method
Klingele et al. A completely spray-coated membrane electrode assembly
Kim et al. The effects of relative humidity on the performances of PEMFC MEAs with various Nafion® ionomer contents
CN101027807B (zh) 膜电极组件
CN101794895A (zh) 用于电极保护的具有氧析出反应催化剂的离子层
JP2006054165A (ja) 固体高分子型燃料電池及び固体高分子型燃料電池の製造方法
JP5214602B2 (ja) 燃料電池、膜−電極接合体、及び膜−触媒層接合体
JP5532630B2 (ja) 膜電極接合体及びその製造方法並びに固体高分子形燃料電池
US9780399B2 (en) Electrode assembly with integrated reinforcement layer
CN103563142B (zh) 制备膜电极组件(mea)的改良方法
US20090039540A1 (en) Reinforced electrolyte membrane comprising catalyst for preventing reactant crossover and method for manufacturing the same
KR20090063213A (ko) 연료 전지 어셈블리
CN103178271B (zh) 用于电极面涂层的替代材料
JP7204815B2 (ja) 高分子電解質膜型燃料電池の過充電保護用可逆シャント
CN104051747A (zh) 增强的电极组件
US11005107B2 (en) Multi-layer catalyst design
JP2017098231A (ja) 耐食触媒を形成するための方法、及びインク組成物
Nishikawa et al. Preparation of the electrode for high temperature PEFCs using novel polymer electrolytes based on organic/inorganic nanohybrids
KR101312971B1 (ko) 불소계 이오노모를 이용하여 표면 개질한 탄화수소계 고분자 전해질 분리막, 막 전극 접합체 및 연료전지
US8430985B2 (en) Microporous layer assembly and method of making the same
US10396383B2 (en) Membrane electrode assembly and fuel cell comprising the same
CN115441023A (zh) 一种燃料电池用膜电极及制备方法
EP1622218A1 (en) Method for supporting catalyst for polymer electrolyte fuel cell and membrane electrode assembly
EP2157643B1 (en) Polymer electrolyte fuel cell
JP6606869B2 (ja) 燃料電池用膜電極接合体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20161220

CF01 Termination of patent right due to non-payment of annual fee