CN103178154A - 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法 - Google Patents

一种高致密、单一四方结构铜锌锡硫材料的高压制备方法 Download PDF

Info

Publication number
CN103178154A
CN103178154A CN2012103667713A CN201210366771A CN103178154A CN 103178154 A CN103178154 A CN 103178154A CN 2012103667713 A CN2012103667713 A CN 2012103667713A CN 201210366771 A CN201210366771 A CN 201210366771A CN 103178154 A CN103178154 A CN 103178154A
Authority
CN
China
Prior art keywords
czts
zinc
photovoltaic cell
tin
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103667713A
Other languages
English (en)
Other versions
CN103178154B (zh
Inventor
姚斌
丁战辉
李永峰
李永升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201210366771.3A priority Critical patent/CN103178154B/zh
Publication of CN103178154A publication Critical patent/CN103178154A/zh
Application granted granted Critical
Publication of CN103178154B publication Critical patent/CN103178154B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种具有高致密、单一四方相结构铜锌锡硫光伏电池吸收材料的高压制备方法,属于半导体光电材料和新能源材料领域。其特征是以硫化亚铜(Cu2S),硫化锌(ZnS)和二硫化锡(SnS2)三种化合物粉末为原料,通过在高压条件下高温烧结制备铜锌锡硫材料。将硫化亚铜,硫化锌和二硫化锡三种化合物粉末按等摩尔数配比混合,在合成压力为3~10GPa,合成温度为500~1500℃条件下,高温烧结制备出结构为单一四方相,Cu,Zn,Sn和S的原子比为2∶1∶1∶4,具有高致密度,晶粒尺寸大于1微米的铜锌锡硫光伏电池吸收材料。本方法具有制备工艺简单,反应时间短,成分和结构可控,成本低廉,生产过程绿色无污染等优点,可用于大批量铜锌锡硫光伏电池吸收材料的生产。

Description

一种高致密、单一四方结构铜锌锡硫材料的高压制备方法
技术领域
本发明属于光电材料技术领域,特别涉及一种单一四方结构的铜锌锡硫光伏电池吸收层材料的高压制备方法。 
背景技术
光伏太阳电池是以半导体P-N结接受太阳光照射时产生光生伏特效应为基础,直接将太阳能转换成电能的器件。其光电转换效率决定于太阳电池的结构、半导体材料的结构和性能及制备工艺。开展高效、环保、低成本和可持续生产的太阳电池的设计、制备和性能的研究,对广泛利用太阳能为国民经济的可持续发展服务有重要的意义。 
目前光伏太阳电池主要包括两大类。一类是单晶和多晶硅太阳电池,最高转换效率可达到20.7%,已经生产和使用,但由于生产成本高,冶炼过程环境不友善,限制了其广泛的应用;另一类是非晶硅、CdTe、GaAs和Cu(In,Ga)Se2(CIGS)等化合物薄膜太阳电池,由于半导体薄膜太阳电池具有制造成本低、便于大面积连续生产等突出优势,近年来已成为国际光伏太阳电池市场发展的新趋势。目前,CdTe、GaAs和CIGS薄膜太阳电池的实验室最高转换效率分别达到18%,26.1%和19.6%。但是Cd、Te、Ga和In等元素均为稀有金属,生产成本高,且Cd和As是有毒元素,对环境和健康有害,造成这些材料难以批量可持续生产。因此,设计和制备具有高吸收系数、高转换效率、低成本和环境友好的半导体材料成为光电领域重要研究课题。 
四方相结构的Cu2ZnSnS4(CZTS)是直接带隙p型半导体,禁带宽度为1.5eV左右,吸收系数高达104cm-1。与CdTe,GaAs和CIGS相比,CZTS薄膜制备方法简单,组成元素在地球的储量丰富,价格低,无毒,因此被认为是制备太阳电池的理想半导体材料。近年来人们利用电子束沉积,热蒸镀,磁控溅射,脉冲激光沉积和其它化学方法等技术,开展了CZTS薄膜太阳电池的制备和性能研究工作[1-8],取得了一定的进展,目前,CZTS薄膜太阳电池的最高转换效率为10%左右,但距离商业生产和应用还相距甚远。 
目前,国内外广泛采用电子溅射、等离子体溅射以及激光脉冲沉积技术制备CZTS薄膜。制备过程中大多采用单一元素或化合物为原材料,并结合硫化过程。但由于形成单一相CZTS成分范围很小,而硫和锡在高温下易挥发,从而造成所制备样品的成分偏离CZTS的化学计量比,产生杂相。由于高温下制备单一相CZTS面临很大困难,人们往往选择在较低温度下制备CZTS材料,但较低温度下所制备的材料本征缺陷多,致密度低,晶粒尺寸较小,不利于载流子的运动,同时增大了光生电子或空穴的复合几率,最终导致太阳电池的光电转化效 率降低。因此抑制硫和锡的高温挥发,实现在较高温度下生长CZTS材料,是制备高致密、大晶粒、单一相CZTS材料的关键科学问题。 
发明内容
本发明的目的是提供一种利用高压技术在较高温度下合成出具有高致密度、晶粒尺寸较大、电阻率较小的单一四方相结构CZTS光伏电池吸收层材料的方法。 
本发明的技术方案如下: 
一种四方相结构的铜锌锡硫光伏电池材料,其特征在于:该材料由铜(Cu),锌(Zn),锡(Sn)和硫(S)等四种元素组成,是以硫化亚铜(Cu2S),硫化锌(ZnS)和二硫化锡(SnS2)等三种化合物粉为原始材料,在高压条件下高温烧结而成,其中Cu,Zn,Sn和S的原子比为2∶1∶1∶4。 
本发明所提出的单一四方相结构的铜锌锡硫光伏电池吸收材料制备方法,其特征在于:该方法包括如下步骤: 
(1)将硫化亚铜,硫化锌和二硫化锡三种化合物粉末按等摩尔数配比,混合均匀后,用冷压方法压制成型。 
(2)将成型的块体在高压条件下烧结,压力为3~10GPa,烧结温度为500~1500℃。 
本发明与现有的制备技术相比,具有以下显著特点: 
①本技术可实现在高温下进行铜锌锡硫材料的生长,并可避免生长过程中硫和锡的挥发以及对环境造成的污染。 
②所提供的铜锌锡硫材料中Cu,Zn,Sn和S的原子比为2∶1∶1∶4,结构为单一四方相,晶粒尺寸大于1微米。 
③本发明所提供的铜锌锡硫光伏材料的高压制造工艺简单,成本低廉,可重复性好。 
④使用该材料制备太阳电池吸收层,与窗口材料的匹配性良好,使用寿命长。 
⑤与其它制备方法相比,高压烧结制备的铜锌锡硫吸收层具有更宽的可见光吸收范围和更加稳定的光电转换性能,可以有效地提高太阳电池器件的转换效率。 
⑥以本发明所制备的高致密、单一相结构的CZTS块体为靶材,通过磁控溅射或脉冲激光沉积技术可以获得性能优异的CZTS薄膜。 
附图说明
图1是本发明高压烧结工艺流程图 
图2是本发明实施例二中高压烧结合成样品的X光衍射图 
图3是本发明实施例二中高压烧结合成样品的Raman光谱图 
图4是本发明实施例二中高压烧结合成样品的扫描电镜图 
具体实施方式:
实施例一: 
用纯度为99.99%的硫化锌粉末,99.99%的硫化亚铜粉末和99.99%的二硫化锡粉末(摩尔比为1∶1∶1)相互混合均匀,在压力3MPa条件下冷压成型。随后在压力为5GPa,温度为600℃条件下,保温保压30分钟后淬火,制备出密度为理论密度91%的圆柱型块体,外观尺寸为Φ10mm×6mm。XRD测试结果显示,样品为单一四方相结构的Cu2ZnSnS4,晶粒尺寸约为1微米。 
实施例二: 
用纯度为99.99%的硫化锌粉末,99.99%的硫化亚铜粉末和99.99%的二硫化锡粉末(摩尔比为1∶1∶1)相互混合均匀,采用冷压方法成型,成型压力3MPa。在压力为5GPa,温度为800℃条件下,保温保压30分钟后淬火,制备出密度为理论密度95%的圆柱型块体,外观尺寸为Φ8mm×5mm。图2为所制备样品的X光衍射图,表明样品为单一四方相结构的Cu2ZnSnS4;图3为所制备样品的Raman光谱图,在328cm-1出现的Raman振动峰为Cu2ZnSnS4的特征峰,进一步表明所制备的样品的单一相结构特点。图4为高压制备样品的扫描电镜图,可以看出所合成Cu2ZnSnS4高度致密,其晶粒尺寸约为2微米。 
参考文献: 
1.H.Katagiri,K.Jimbo,W.S.Maw,K.Oishi,M.Yamazaki,H.Araki,and A.Takeuchi,Thin Solid Films,517,2455(2009). 
2.K.Wang,O.Gunawan,T.Todorov,B.Shin,S.J.Chey,N.A.Bojarczuk,D.Mitzi,and S.Guha,Appl.Phys.Lett,97,143508(2010). 
3.Chet Steinhagen,Matthew G.Panthani,Vahid Akhavan,Brian Goodfellow,Bonil Koo,and Brian A.Korgel,J.Am.Chem.Soc.,131,12554(2009). 
4.Qijie Guo,Grayson M.Ford,Wei-Chang Yang,Bryce C.Walker,Eric A.Stach,Hugh W.Hillhouse,and Rakesh Agrawal,J.Am.Chem.Soc.,132,17384(2010). 
5.T.K.Todorov,K.B.Reuter,and D.B.Mitzi,Adv.Mater.,22,1(2010). 
6.储君浩,江锦春,石富文,中华人民共和国国家知识产权局;申请号:200810208231.6;公开号:CN 101452969A 
7.邵乐喜,张军,李达,李栋宇,中华人民共和国国家知识产权局;申请号:200910214064.0;公开号:CN 101800263A 
8.占金华,蒋贺纯,代鹏程,中华人民共和国国家知识产权局;申请号:201110094006.6;公开号:CN102254985A 

Claims (4)

1.一种单一四方结构的铜锌锡硫光伏电池吸收层材料的制备方法,其特征在于以硫化亚铜(Cu2S),硫化锌(ZnS)和二硫化锡(SnS2)三种化合物粉为原始材料,通过在高压条件下烧结而成。
2.一种单一四方结构的铜锌锡硫光伏电池吸收层材料的制备方法,其特征在于将硫化亚铜,硫化锌和二硫化锡粉末按等摩尔数配比混合后,在高压条件下烧结而成,压力为3~10GPa,烧结温度为500~1500℃。
3.一种单一四方结构的铜锌锡硫光伏电池吸收层材料的高压制备方法,其特征在于所提供的样品为具有单一四方结构,化学成分为Cu∶Zn∶Sn∶S=2∶1∶1∶4的铜锌锡硫材料。
4.按照权利要求1所述的铜锌锡硫光伏电池吸收层材料的制备方法,其特征在于制备的铜锌锡硫缺陷少,致密度高,晶粒尺寸为1~10微米。
CN201210366771.3A 2012-09-28 2012-09-28 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法 Expired - Fee Related CN103178154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210366771.3A CN103178154B (zh) 2012-09-28 2012-09-28 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210366771.3A CN103178154B (zh) 2012-09-28 2012-09-28 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法

Publications (2)

Publication Number Publication Date
CN103178154A true CN103178154A (zh) 2013-06-26
CN103178154B CN103178154B (zh) 2015-11-25

Family

ID=48637890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210366771.3A Expired - Fee Related CN103178154B (zh) 2012-09-28 2012-09-28 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法

Country Status (1)

Country Link
CN (1) CN103178154B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608197A (zh) * 2018-12-27 2019-04-12 深圳大学 一种SnS2单相块体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320579A (zh) * 2001-04-02 2001-11-07 中国科学院长春应用化学研究所 氮化镓陶瓷体的制备方法
CN101565313A (zh) * 2009-05-21 2009-10-28 上海交通大学 铜锌锡硫光电材料的制备方法
CN102372302A (zh) * 2010-08-20 2012-03-14 华东师范大学 铜锌锡硫或铜锌锡硒薄膜太阳能电池吸收层靶材及其制备方法和应用
US20120067408A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered CZTS Nanoparticle Solar Cells
CN102639442A (zh) * 2009-11-25 2012-08-15 E.I.内穆尔杜邦公司 铜锌锡硫化物的制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320579A (zh) * 2001-04-02 2001-11-07 中国科学院长春应用化学研究所 氮化镓陶瓷体的制备方法
CN101565313A (zh) * 2009-05-21 2009-10-28 上海交通大学 铜锌锡硫光电材料的制备方法
CN102639442A (zh) * 2009-11-25 2012-08-15 E.I.内穆尔杜邦公司 铜锌锡硫化物的制备
CN102372302A (zh) * 2010-08-20 2012-03-14 华东师范大学 铜锌锡硫或铜锌锡硒薄膜太阳能电池吸收层靶材及其制备方法和应用
US20120067408A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered CZTS Nanoparticle Solar Cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
沈中毅等: "《氮化硅(Si3N4)微粉的超高压烧结研究》", 《高压物理学报》, vol. 5, no. 4, 31 December 1991 (1991-12-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608197A (zh) * 2018-12-27 2019-04-12 深圳大学 一种SnS2单相块体及其制备方法

Also Published As

Publication number Publication date
CN103178154B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Vanalakar et al. Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review
Kheraj et al. Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells
Lokhande et al. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review
Yang et al. Novel solution processing of high‐efficiency earth‐abundant Cu2ZnSn (S, Se) 4 solar cells
EP2708505B1 (en) Novel compound semiconductor and usage for same
US20160027937A1 (en) Semiconductor materials and method for making and using such materials
Deshmukh et al. A comprehensive review on synthesis and characterizations of Cu 3 BiS 3 thin films for solar photovoltaics
US8815123B2 (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
US10134970B2 (en) Compound semiconductor and application thereof
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
Barthwal et al. Present status and future perspective of antimony chalcogenide (Sb2X3) photovoltaics
TW201342638A (zh) 太陽能電池
EP3058038B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
Nicolás-Marín et al. The state of the art of Sb2 (S, Se) 3 thin film solar cells: current progress and future prospect
Zhang et al. Effect of sulfurization temperature of solution-processed Cu2SnS3 absorber for low cost photovoltaic cells
Wei et al. An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization
Dong et al. Influence of different S/Se ratio on the properties of Cu 2 Sn (S x Se 1-x) 3 thin films fabricated by annealing stacked metal precursors
US9502600B2 (en) Inorganic solution and solution process for electronic and electro-optic devices
Jin et al. Pulsed laser deposition of Cu2ZnSn (SxSe1− x) 4 thin film solar cells using quaternary oxide target prepared by combustion method
CN103178154A (zh) 一种高致密、单一四方结构铜锌锡硫材料的高压制备方法
CN101383384A (zh) 光电半导体银铜复合氧化物薄膜材料
Lu et al. Microstructures and photovoltaic performances of bismuth‐ion doped Cu (In, Ga) Se2 films prepared via sputtering process
Londhe et al. A Novel combined thermal evaporation and solvothermal approach to produce highly crystalline and compact CIG (S1-xSex) 2 thin films
Wang et al. Effects of K ions doping on the structure, morphology and optical properties of Cu2FeSnS4 thin films prepared by blade-coating process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20160928

CF01 Termination of patent right due to non-payment of annual fee