CN103173041A - 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法 - Google Patents

一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法 Download PDF

Info

Publication number
CN103173041A
CN103173041A CN2013100753232A CN201310075323A CN103173041A CN 103173041 A CN103173041 A CN 103173041A CN 2013100753232 A CN2013100753232 A CN 2013100753232A CN 201310075323 A CN201310075323 A CN 201310075323A CN 103173041 A CN103173041 A CN 103173041A
Authority
CN
China
Prior art keywords
poss
carbon nanotube
initiator
mwnt
suction filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100753232A
Other languages
English (en)
Other versions
CN103173041B (zh
Inventor
陈广新
孙达
李齐方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201310075323.2A priority Critical patent/CN103173041B/zh
Publication of CN103173041A publication Critical patent/CN103173041A/zh
Application granted granted Critical
Publication of CN103173041B publication Critical patent/CN103173041B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法属于复合材料制备的技术领域。本发明利用八甲基丙烯酸酯基POSS单体在自由基引发剂(过氧化苯甲酰、硫酸亚铁/过硫酸钾等)的引发下,通过溶液法制备不同POSS包覆厚度的MWNT,包覆厚度分别为5-10nm,15-25nm,30-50nm。本方法不需要对碳纳米管进行酸化、氧化等任何预处理过程,对碳纳米管本身结构无破坏,对其性能影响很小,同时选用工业上常用的自由基引发剂及其引发体系,是制备核壳型多壁碳纳米管的有效途径,该方法具有工艺简单、生产成本低、工业化前景广泛等优点。

Description

一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法
技术领域
本发明是关于一种多官能团的笼型倍半硅氧烷包覆碳纳米管核壳型复合粉体的制备方法,属于复合材料制备的技术领域。 
背景技术
碳纳米管由于具有优异的力学、电学、热学、光学、介电和电磁等性能而备受广大科研工作者的关注。但是,由于碳纳米管相互间存在着比较强的相互作用力,极易团聚,所以为了充分的利用碳纳米管的性能,通常选择对碳纳米管进行表面的改性处理,改善碳纳米管在聚合物基体中的分散性、稳定性以及和基体之间的相容性。近些年来,利用包覆技术对碳纳米管行进表面修饰制备核壳型复合填料的方法受到了人们的广泛关注,特别是在聚合物基电介质复合材料的性能调控方面具有独特的应用。 
POSS是继无机填料和有机粘土之后的第三代纳米改性粒子。与前两者相比,POSS具有熔点高、挥发性小、300℃以下稳定性好、结构可设计等特点。同时,POSS的低密度、高孔隙性质及其小尺寸和纳米尺寸效应,使得经POSS改性的聚合物体系具有优越的介电性、耐热性、耐压性、阻燃性、高硬度和抗辐射性能,大大拓宽了高分子材料的应用范围。随着POSS及其衍生物合成技术的日趋成熟,POSS基高分子材料在工程塑料、液晶、低介电材料等领域的应用越来越广泛。 
由于POSS具有优异的性能,在2006年,陈广新等首次利用酸化处理的碳纳米管,将单氨基的POSS接到了碳纳米管上,并且制备了PLLA/CNT复合材料得到了较好的效果。也有许多研究尝试了类似的方法,但是酸化处理对碳纳米管的结构破换严重,致使其性能受损,为此近年来有许多工作者尝试了利用碳纳米管表面的共轭双键进行改性碳纳米管,但是得到结果不是包覆不够均匀,就是工艺繁琐,实施困难难以大规模生产,或者是只能单纯的将单体包覆到碳纳米管上,不能够很好地控制包覆的厚度,而且所用的单体仅仅局限于单一的可反应的官能团如(氨基,羟基等),很少涉及含有C=C双键的单体。因此,在不影响碳纳米管本身性能的基础上,用一种简便易行的方法,使带有多个C=C双键的 POSS均匀地包覆碳纳米管,制备核壳型碳纳米管复合填料的研究与应用具有十分重要的意义。 
发明内容
本发明的目的在于提供一种制备POSS包覆碳纳米管制备核壳型碳纳米管复合填料的简便方法。制备过程中,首先将MWNT与单体在少量溶剂中充分相互作用,接着加入剩余的溶剂超声分散。然后在氮气保护及一定转速下室温搅拌,加入引发剂,引发体系反应,得到最终的核壳型复合粉体。 
本发明提供的.一种制备核壳型笼型背板硅氧烷包覆多壁碳纳米管的方法,其特征在于,步骤如下: 
a)将碳纳米管,八甲基丙烯酸酯基POSS单体按质量比1:2~1:20称取,加入溶剂N,N-二甲基甲酰胺或二甲基亚砜配成碳纳米管浓度为2-10mg/ml的溶液,混合均匀后超声分散; 
b)将a)中得到的溶液稀释至0.1-1mg/ml,超声分散; 
c)将上述的混合液移至油浴中,室温搅拌,通氮气,按单体质量的4%-10%加入引发剂。当过引发剂为过氧化苯甲酰时,升温至60-100℃,反应6-12小时;当引发剂为硫酸亚铁/过硫酸钾时,升温至50-80℃,反应6-12小时,其中过硫酸亚铁:过硫酸钾的质量比为:1:1.1~1:2; 
d)反应停止后,抽滤获得产物,依次用N,N-二甲基甲酰胺、二甲基亚砜、去离子水、乙醇和氯仿,超声洗涤,抽滤得到最终产物。 
本发明提供的POSS包覆碳纳米管制备核壳型碳纳米管填料的特点是: 
(1)利用带有8个C=C双键的POSS,在均相体系中,自由基引发剂的作用下直接对碳纳米管进行包覆。不需要对碳纳米管进行酸化与氧化等处理,对碳纳米管的结构不造成破坏,因而在最大程度上保留碳纳米管原有的性能。 
(2)实现了对碳纳米管的全包覆,通过调节不同的单体用量可以得到包覆厚度不同的碳纳米管,包覆厚度分布为:5-10nm;15-25;35-50nm。 
(3)操作极其简便,成本低。 
附图说明
图1:八甲基丙烯酸酯基笼型倍半硅氧烷包覆多壁碳纳米管制备核壳型复合填料的工艺流程图。 
图2:八甲基丙烯酸酯基笼型倍半硅氧烷包覆多壁碳纳米管核壳型复合填料的透射电镜照片。图2a:BPO作为引发剂,MWNT和MMA-POSS质量比为1:5;图2b:BPO作为引发剂,MWNT和MMA-POSS质量比为1:10;图2c:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:2;图2d:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:5.图2e:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:10;图2f:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:20。 
图3:八甲基丙烯酸酯基笼型倍半硅氧烷包覆多壁碳纳米管核壳型复合填料的热失重曲线。图3a:BPO作为引发剂,MWNT和MMA-POSS质量比为1:5;图3b:BPO作为引发剂,MWNT和MMA-POSS质量比为1:10;图3c:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:2;图3d:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:5.图3e:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:10;图3f:FeSO4/K2S2O8为引发剂,MWNT和MMA-POSS质量比为1:20。 
具体实施方式
实施例1 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMF当做溶剂,超声分散15min。称取250mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80ml DMF溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂12.5mg的引发剂过氧化苯甲酰,室温搅拌15min。升温80℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(a)是本实施例制备的mma-POSS包覆碳纳米管的核壳型复合粉体(具体流程图如图(1)所示)。从图中可以看出在多壁碳纳米管外壁一层薄薄的均匀的包覆物,厚度大约在5-10nm之间。透过热失重曲线可以看出,由于在碳纳米管外侧包覆上了POSS,所以对 比纯碳管出现了一个大约10%的质量损失,如图3(a)所示。 
实施例2 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMF当做溶剂,超声分散10min。称取500mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80ml DMF溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂12.5mg的引发剂过氧化苯甲酰,室温搅拌15min。升温80℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(b)是本实施例制备的mma-POSS包覆碳纳米管的核壳型复合粉体。从中可以非常明显的看见在多壁碳纳米管外壁有一层厚厚的包覆物质,平均厚度大约在15-25nm之间。由于在碳纳米管表面包覆了一层厚厚的POSS,对比纯碳纳管出现了25%左右的质量损失台阶,如图3(b)所示。 
实施例3 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMSO做溶剂,超声分散10min。称取100mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80mlDMSO溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂硫酸亚铁/过硫酸钾复配的引发剂,其中硫酸亚铁13mg,过硫酸钾19.5mg,室温搅拌15min。升温60℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(c)是本实施例制备的mma-POSS包覆碳纳米管的核壳型复合粉体。从图中可以明显的看到在碳纳米管外壁有锯齿状的包覆物,均匀的沿着碳纳米管管径分布,平均厚度大于在15-25nm之间。由于在此溶剂体系中,包覆效果相对较好,从热失重曲线可以看出,在此比例下,在碳纳米管表面的包覆量相对较多,热失重达到了35%左右,如图3(c)所示。 
实施例4 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMSO做溶剂,超声分散10min。 称取250mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80mlDMSO溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂硫酸亚铁/过硫酸钾复配的引发剂,其中硫酸亚铁25mg,过硫酸钾37.5mg,室温搅拌15min。升温60℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(d)是本实施例制备的mma-POSS包覆碳纳米管的核壳型复合粉体。从图中可以看出在碳纳米管外侧均匀的包裹着厚厚的物质,厚度在35-50nm之间。由于包覆的八丙烯酸酯基笼型倍半硅氧烷的厚度特别厚,所以从热失重曲线来看,质量损失的比率较大,达到了45%之多,如图3(d)所示。 
实施例5 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMSO做溶剂,超声分散10min。称取500mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80mlDMSO溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂硫酸亚铁/过硫酸钾复配的引发剂,其中硫酸亚铁50mg,过硫酸钾75mg,室温搅拌15min。升温60℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(e)是本实施例制备的mma-POSS包覆碳纳米管的核壳型复合粉体。从图中可以看出在碳纳米管外侧均匀的包裹着厚厚的物质,厚度在35-50nm之间。由于包覆的八丙烯酸酯基笼型倍半硅氧烷的厚度特别厚,所以从热失重曲线来看,质量损失的比率较大,达到了50%之多,如图3(e)所示。 
实施例6 
称量碳纳米管50mg,置于三口烧瓶中,加入20ml的DMSO做溶剂,超声分散10min。称取1000mg的mma-POSS,加入上述三口烧瓶中,超声15min。加入80mlDMSO溶剂超声15min。将三口烧瓶移入油浴中,在通氮气保护,加入引发剂硫酸亚铁/过硫酸钾复配的引发剂,其中硫酸亚铁100mg,过硫酸钾150mg,室温搅拌15min。升温60℃,反应8小时,停止反应。抽滤得到产物,依次用N,N-二甲基甲酰胺,二甲基亚砜,去离子水,乙醇,氯仿超声洗涤15min,最后抽滤得到目标产物。图2(f)是本实施例制备的mma-POSS包覆碳 纳米管的核壳型复合粉体。从图中可以看出在碳纳米管外侧均匀的包裹着厚厚的物质,厚度在35-50nm之间。由于包覆的八丙烯酸酯基笼型倍半硅氧烷的厚度特别厚,所以从热失重曲线来看,质量损失的比率较大,达到了54%之多,如图3(f)所示。 

Claims (1)

1.一种制备核壳型笼型背板硅氧烷包覆多壁碳纳米管的方法,其特征在于,步骤如下:
a)将碳纳米管,八甲基丙烯酸酯基POSS单体按质量比1:2~1:20称取,加入溶剂N,N-二甲基甲酰胺或二甲基亚砜配成碳纳米管浓度为2-10mg/ml的溶液,混合均匀后超声分散;
b)将a)中得到的溶液稀释至0.1-1mg/ml,超声分散;
c)将上述的混合液移至油浴中,室温搅拌,通氮气,按单体质量的4%-10%加入引发剂。当过引发剂为过氧化苯甲酰时,升温至60-100℃,反应6-12小时;当引发剂为硫酸亚铁/过硫酸钾时,升温至50-80℃,反应6-12小时,其中过硫酸亚铁:过硫酸钾的质量比为:1:1.1~1:2;
d)反应停止后,抽滤获得产物,依次用N,N-二甲基甲酰胺、二甲基亚砜、去离子水、乙醇和氯仿,超声洗涤,抽滤得到最终产物。
CN201310075323.2A 2013-03-08 2013-03-08 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法 Expired - Fee Related CN103173041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310075323.2A CN103173041B (zh) 2013-03-08 2013-03-08 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310075323.2A CN103173041B (zh) 2013-03-08 2013-03-08 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法

Publications (2)

Publication Number Publication Date
CN103173041A true CN103173041A (zh) 2013-06-26
CN103173041B CN103173041B (zh) 2014-06-04

Family

ID=48633259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310075323.2A Expired - Fee Related CN103173041B (zh) 2013-03-08 2013-03-08 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法

Country Status (1)

Country Link
CN (1) CN103173041B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927404A (zh) * 2015-06-15 2015-09-23 北京化工大学 一种原位共聚技术制备核壳型碳纳米管介电填料的方法
CN105062300A (zh) * 2015-07-17 2015-11-18 金湖县杰达机械制造有限公司 一种气动式投饲机抛料盘用防腐耐磨涂料及其制备方法
CN105713235A (zh) * 2016-01-22 2016-06-29 西南大学 一种提高多壁碳纳米管在水溶液中分散性的方法
CN105885354A (zh) * 2016-06-06 2016-08-24 北京化工大学 一种笼型倍半硅氧烷改性碳纳米管的制备方法及应用
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
CN110835105A (zh) * 2018-08-17 2020-02-25 汉达精密电子(昆山)有限公司 一种碳纳米管的表面处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890503B (zh) * 2018-09-07 2021-06-22 中南大学 一种poss接枝碳纳米管的复合锂硫电池隔膜的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546545A (zh) * 2003-12-04 2004-11-17 上海交通大学 多羧基聚合物接枝的水溶性碳纳米管及其制备方法
CN1546578A (zh) * 2003-12-04 2004-11-17 上海交通大学 一种核-壳型亲油-亲水碳纳米管及其制备方法
CN1556124A (zh) * 2003-12-30 2004-12-22 上海交通大学 聚磺化苯乙烯接枝的水溶性碳纳米管及其制备方法
CN101070387A (zh) * 2007-06-06 2007-11-14 北京化工大学 含低聚倍半硅氧烷的低介电树脂及其制备方法
CN101215431A (zh) * 2008-01-18 2008-07-09 天津大学 氧化硅包覆纳米碳复合材料和制备方法
US20080296539A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Method of modifying carbon nanotube using radical initiator, and dispersion liquid and electrode comprising the carbon nanotube modified by using the method
CN102002161A (zh) * 2010-09-21 2011-04-06 中国科学院长春应用化学研究所 一种氨基硅烷功能化的石墨烯材料增强硅胶的制法
JP2012041665A (ja) * 2010-08-23 2012-03-01 Shinshu Univ 複合ナノ繊維
CN102443247A (zh) * 2011-09-16 2012-05-09 桂林理工大学 一种氧化石墨烯接枝poss改性环氧树脂的制备方法
JP5152716B2 (ja) * 2007-10-19 2013-02-27 独立行政法人産業技術総合研究所 化学的に修飾されたカーボンナノチューブ及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546545A (zh) * 2003-12-04 2004-11-17 上海交通大学 多羧基聚合物接枝的水溶性碳纳米管及其制备方法
CN1546578A (zh) * 2003-12-04 2004-11-17 上海交通大学 一种核-壳型亲油-亲水碳纳米管及其制备方法
CN1556124A (zh) * 2003-12-30 2004-12-22 上海交通大学 聚磺化苯乙烯接枝的水溶性碳纳米管及其制备方法
US20080296539A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Method of modifying carbon nanotube using radical initiator, and dispersion liquid and electrode comprising the carbon nanotube modified by using the method
CN101070387A (zh) * 2007-06-06 2007-11-14 北京化工大学 含低聚倍半硅氧烷的低介电树脂及其制备方法
JP5152716B2 (ja) * 2007-10-19 2013-02-27 独立行政法人産業技術総合研究所 化学的に修飾されたカーボンナノチューブ及びその製造方法
CN101215431A (zh) * 2008-01-18 2008-07-09 天津大学 氧化硅包覆纳米碳复合材料和制备方法
JP2012041665A (ja) * 2010-08-23 2012-03-01 Shinshu Univ 複合ナノ繊維
CN102002161A (zh) * 2010-09-21 2011-04-06 中国科学院长春应用化学研究所 一种氨基硅烷功能化的石墨烯材料增强硅胶的制法
CN102443247A (zh) * 2011-09-16 2012-05-09 桂林理工大学 一种氧化石墨烯接枝poss改性环氧树脂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANG-XIN CHEN等: "Multiwalled carbon nanotubes grafted with polyhedral oligomericsilsesquioxane and its dispersion in poly(L-lactide) matrix", 《POLYMER》, no. 49, 12 January 2008 (2008-01-12) *
QI-FANG LI等: "Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electricaland EMI shielding properties", 《J MATER SCI》, no. 46, 30 November 2010 (2010-11-30) *
王文平等: "ATRP 法制备POSS/ PMMA 复合材料及表征", 《高分子材料科学与工程》, vol. 23, no. 4, 30 July 2007 (2007-07-30) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
CN104927404B (zh) * 2015-06-15 2017-08-11 北京化工大学 一种原位共聚技术制备核壳型碳纳米管介电填料的方法
CN104927404A (zh) * 2015-06-15 2015-09-23 北京化工大学 一种原位共聚技术制备核壳型碳纳米管介电填料的方法
CN105062300A (zh) * 2015-07-17 2015-11-18 金湖县杰达机械制造有限公司 一种气动式投饲机抛料盘用防腐耐磨涂料及其制备方法
CN105713235B (zh) * 2016-01-22 2017-10-31 西南大学 一种提高多壁碳纳米管在水溶液中分散性的方法
CN105713235A (zh) * 2016-01-22 2016-06-29 西南大学 一种提高多壁碳纳米管在水溶液中分散性的方法
CN105885354B (zh) * 2016-06-06 2018-01-05 北京化工大学 一种笼型倍半硅氧烷改性碳纳米管的制备方法及应用
CN105885354A (zh) * 2016-06-06 2016-08-24 北京化工大学 一种笼型倍半硅氧烷改性碳纳米管的制备方法及应用
CN110835105A (zh) * 2018-08-17 2020-02-25 汉达精密电子(昆山)有限公司 一种碳纳米管的表面处理方法

Also Published As

Publication number Publication date
CN103173041B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103173041B (zh) 一种制备核壳型笼型倍半硅氧烷包覆多壁碳纳米管的方法
Cui et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds
Tang et al. Grafting of polyester onto graphene for electrically and thermally conductive composites
Cruz-Silva et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling
Koga et al. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube
Morimune et al. Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites
Wu et al. High-performance carbon nanotube/polymer composite fiber from layer-by-layer deposition
Liu et al. Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites
Xu et al. Functionalization of carbon nanotubes by corona‐discharge induced graft polymerization for the reinforcement of epoxy nanocomposites
CN103146231B (zh) 一种聚离子液体包覆碳纳米管制备核壳型碳纳米管填料的方法
CN104927404B (zh) 一种原位共聚技术制备核壳型碳纳米管介电填料的方法
CN105968777B (zh) 一种抗静电复合纳米材料薄膜及其制备方法
Niu et al. Rod-like attapulgite modified by bifunctional acrylic resin as reinforcement for epoxy composites
Xu et al. Facile synthesis of casein-based silica hybrid nano-composite for coatings: Effects of silane coupling agent
Alam et al. Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites
Tsou et al. High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol
Steinhaus et al. Controlling Janus nanodisc topology through ABC triblock terpolymer/homopolymer blending in 3D confinement
Zhang et al. Controllable synthesis of anisotropic silica/polymer composite particles via seeded dispersion polymerization
Liu et al. High-yield, high-conductive graphene/nanocellulose hybrids prepared by Co-exfoliation of low-oxidized expanded graphite and microfibrillated cellulose
Bai et al. Electromagnetic shielding performance of acrylonitrile-butadiene-styrene/CNTs composite foams with different cell structures
Zhao et al. Fabrication of superhydrophobic and conductive surface based on carbon nanotubes
Xian et al. Hydrogen bonds leading nanodiamonds performing different thermal conductance enhancement in different MWCNTs epoxy-based nanocomposites
Abutalip et al. Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites
Qin et al. Photo-polymerized trifunctional acrylate resin/magnesium hydroxide fluids/cotton fabric composites with enhancing mechanical and moisture barrier properties
Morimune-Moriya et al. Strong, tough, transparent and highly heat-resistant acrylic glass based on nanodiamond

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140604