CN103157802A - 快速—原位包装稀土纳米粉电弧法制备设备及方法 - Google Patents

快速—原位包装稀土纳米粉电弧法制备设备及方法 Download PDF

Info

Publication number
CN103157802A
CN103157802A CN2011104071290A CN201110407129A CN103157802A CN 103157802 A CN103157802 A CN 103157802A CN 2011104071290 A CN2011104071290 A CN 2011104071290A CN 201110407129 A CN201110407129 A CN 201110407129A CN 103157802 A CN103157802 A CN 103157802A
Authority
CN
China
Prior art keywords
chamber
rare earth
water
cooled
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104071290A
Other languages
English (en)
Other versions
CN103157802B (zh
Inventor
李志杰
孙维民
史桂梅
冯昊阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201110407129.0A priority Critical patent/CN103157802B/zh
Publication of CN103157802A publication Critical patent/CN103157802A/zh
Application granted granted Critical
Publication of CN103157802B publication Critical patent/CN103157802B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

快速—原位包装稀土纳米粉电弧法制备设备,包括电源和控制柜,其特征在于:所述设备还包括圆筒状的生成室侧壁中部安装有辅助室,生成室侧壁上部安装有水冷阴极,水冷阴极下面安装水冷阳极,水冷阴极与水冷阳极相互对应;生成室底部连接捕集罐,捕集罐安装在处理室中,生成室和处理室通过管道与抽气系统连接;生成室通过管道与分之泵相连,处理室通过另一根管道与分之泵相连。本发明可连续大量制备活性极高的多种稀土金属纳米粉、弧形可控、粉体粒径分布窄、生成速度及种类可控、结构新颖、操作简捷而有效、启弧的剩余稀土料可达豪克级。

Description

快速—原位包装稀土纳米粉电弧法制备设备及方法
技术领域
 本发明属于纳米材料制备技术领域,具体指一种快速—原位包装稀土纳米粉电弧法制备设备及方法。
背景技术
现有的等离子体电弧法制备金属纳米粉的设备和所制备的金属纳米粉,纯度高、易于制备单一金属的纳米粉。其缺点是收粉率低、一次制备量少、生成室粉体不能原位包装,特别是制备稀土金属纳米粉时浪费较大,稀土没蒸发的剩料较多、不易钝化,开启生成室时危险大。
发明内容
本发明的目的是针对上述技术中存在的不足,提供一种快速—原位包装稀土纳米粉电弧法制备设备及方法,该设备结构新颖,操作简捷而有效,原位包装,冷却水温可控,纳米粉体的性价比高,并且可以长时间连续制备稀土纳米粉,一次可制备多种稀土纳米粉和稀土合金纳米粉,启弧的剩余稀土料可达豪克级,减少开启生成室危险性。
为实现上述目的,本发明采用以下技术方案:
快速—原位包装稀土纳米粉电弧法制备设备,包括电源和控制柜,其特征在于:所述设备还包括圆筒状的生成室侧壁中部安装有辅助室,生成室侧壁上部安装有水冷阴极,水冷阴极下面安装水冷阳极,水冷阴极与水冷阳极相互对应;生成室底部连接捕集罐,捕集罐安装在处理室中,生成室和处理室通过管道与抽气系统连接;生成室通过管道与分之泵相连,处理室通过另一根管道与分之泵相连。
所述水冷阴极可自由精确三维移动。
所述水冷阳极底部安装有阳极座,阳极座可连接不同形状的坩埚型的阳极盖。
所述捕集罐可以随时从生成室上更换,且可原位密封罐装纳米粉。
所述生成室与捕集罐通过法兰相连,且可用捕集罐密封分割。
所述水冷阳极的位置可以调节。
所述辅助室可以对生成室中原料和粉体进行处理。
一种制取稀土纳米粉的方法,其特征在于:该方法的具体步骤如下:
(1)在纯稀土块的中央钻孔放置直径为2-10mm的钨球,然后将稀土备料于辅助室等待蒸发,关闭好各法兰与管道阀;
(2)把待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为1×103Pa ~0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1~1:5;
(4)打开循环水和电源,电弧电流为200~250A,电压为30~45V,调节水冷阴极使弧形成扫把型,点弧时间1~4h;
(5)停弧后,关闭联通阀,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1~1×104Pa空气和9~8×104Pa氩气的混合气体在生成室中循环钝化1~4h,停1h后充入0.9~1×104空气,再循环钝化1h,即可制成稀土纳米粉。
本发明的优点是:
(1)可连续大量制备活性极高的多种稀土金属纳米粉;
(2)弧形可控、粉体粒径分布窄、生成速度及种类可控;
(3)结构新颖、操作简捷而有效;
(4)启弧的剩余稀土料可达豪克级。
附图说明:
图1是本发明的设备结构示意图;
图2是本发明的阴极结构示意图;
图3是本发明的坩埚型、组合式的阳极的侧视图;
图4是本发明的连接生成室和处理室的捕集罐结构示意图;
附图标记说明:
1.电源、2.控制柜、3.水冷阴极、4.水冷阳极、5.辅助室、6.生成室、7.捕集罐、8.处理室、9.管道、10.另一根管道、11.分之泵、12.阳极座、13.阳极盖、14.法兰。
具体实施方式:
本发明的工作原理是,在氩和氦混合气体中,通过高频式引弧,阴极与阳极起弧后产生高温,使金属蒸发,原子态的金属无规则热运动,相互碰撞而凝结成纳米颗粒,这些纳米颗粒受工作电弧参数、工作气体、冷却温度影响。自然沉积四壁进入捕集罐中,将要停弧时,改变弧形和电弧参数使剩余料减小规定大小,停弧。停弧后,原位捕集罐四壁上稀土金属纳米粉进入捕集罐中,最后在处理室里进行原位处理。
下面结合附图对本发明进行详细说明。
图1是本发明的设备结构示意图,如图所示,快速—原位包装稀土纳米粉电弧法制备设备包括用于启弧的电源1和控制柜2,还包括圆筒状的生成室6侧壁中部安装有辅助室5,辅助室5可连续供料、提供钨极和原位清洗生成室6,对生成室6中原料和粉体进行处理。生成室6侧壁上部安装有可自由精确三维移动的水冷阴极3,水冷阴极3结构如图2所示。水冷阴极3下面安装坩埚型、组合式水冷阳极4,水冷阳极4底部安装有阳极座12,阳极座12可连接不同形状的坩埚型的阳极盖13,如图3所示,水冷阳极4的位置可以调节。水冷阴极3与水冷阳极4相互对应。生成室6底部通过法兰14连接捕集罐7,且可用捕集罐(7)密封分割。捕集罐7安装在处理室8中,捕集罐7可以随时从生成室6上更换,且可原位密封罐装纳米粉。捕完粉后在处理室8中进行原位包装。一次可制备多种稀土纳米粉和稀土合金纳米粉,启弧的剩余稀土料可达豪克级,减少开启生成室6的危险性。生成室6和处理室8通过管道与抽气系统连接;生成室6通过管道9与分之泵11相连,处理室8通过另一根管道10与分之泵11相连。
利用该设备制取稀土纳米粉的方法,具体步骤如下:
(1)在纯稀土块的中央钻孔放置直径为2-10mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为1×103Pa ~0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1~1:5;
(4)打开循环水和电源,电弧电流为200~250A,电压为30~45V,调节水冷阴极使弧形成扫把型,点弧时间1~4h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1~1×104Pa空气和9~8×104Pa氩气的混合气体在生成室中循环钝化1~4h,停1h后充入0.9~1×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
下面为本发明方法的具体实施例:
实施例1:
(1)在纯稀土块的中央钻孔放置直径为2mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1;
(4)打开循环水和电源,用高频启弧,电弧参数设定电弧电流为200A,电压为30V,调节水冷阴极使弧形成扫把型,点弧时间1h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1×104Pa空气和9×104Pa氩气的混合气体在生成室中循环钝化1h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
实施例2:
(1)在纯稀土块的中央钻孔放置直径为10mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为1×103Pa,其中氩气与氦气的压强比为P Ar : P H2=1:5;
(4)打开循环水和电源,用高频启弧,电弧参数设定电弧电流为250A,电压为45V,调节水冷阴极使弧形成扫把型,点弧时间4h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用1×104Pa空气和8×104Pa氩气的混合气体在生成室中循环钝化4h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
实施例3:
(1)在纯稀土块的中央钻孔放置直径为5mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:3;
(4)打开循环水和电源,用高频启弧,电弧参数设定电弧电流为220A,电压为35V,调节水冷阴极使弧形成扫把型,点弧时间2.5h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用1×104Pa空气和9×104Pa氩气的混合气体在生成室中循环钝化3h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
实施例4:
(1)在纯稀土块的中央钻孔放置直径为8mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:4;
(4)打开循环水和电源,电弧电流为230A,电压为40V,调节水冷阴极使弧形成扫把型,点弧时间3.5h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.5×104Pa空气和8×104Pa氩气的混合气体在生成室中循环钝化2h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
实施例5:
(1)在纯稀土块的中央钻孔放置直径为5mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为5×104Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1;
(4)打开循环水和电源,电弧电流为200A,电压为30V,调节水冷阴极使弧形成扫把型,点弧时间2h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1×104Pa空气和9×104Pa氩气的混合气体在生成室中循环钝化2h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
实施例6:
(1)在纯稀土块的中央钻孔放置直径为5mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为1×104Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1;
(4)打开循环水和电源,电弧电流为200A,电压为30V,调节阴极使弧形成扫把型,点弧时间2h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1×104Pa空气和9×104Pa氩气的混合气体在生成室中循环钝化2h,停1h后充入0.9×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。

Claims (8)

1.快速—原位包装稀土纳米粉电弧法制备设备,包括电源(1)和控制柜(2),其特征在于:所述设备还包括圆筒状的生成室(6)侧壁中部安装有辅助室(5),生成室(6)侧壁上部安装有水冷阴极(3),水冷阴极(3)下面安装水冷阳极(4),水冷阴极(3)与水冷阳极(4)相互对应;生成室(6)底部连接捕集罐(7),捕集罐(7)安装在处理室(8)中,生成室(6)和处理室(8)通过管道与抽气系统连接;生成室(6)通过管道(9)与分之泵(11)相连,处理室(8)通过另一根管道(10)与分之泵(11)相连。
2.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述水冷阴极(3)可自由精确三维移动。
3.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述水冷阳极(4)底部安装有阳极座(12),阳极座(12)可连接不同形状的坩埚型的阳极盖(13)。
4.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述捕集罐(7)可以随时从生成室(6)上更换,且可原位密封罐装纳米粉。
5.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述生成室(6)与捕集罐(7)通过法兰(14)相连,且可用捕集罐(7)密封分割。
6.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述水冷阳极(4)的位置可以调节。
7.根据权利要求1所述快速—原位包装稀土纳米粉电弧法制备设备,其特征在于:所述辅助室(5)可以对生成室(6)中原料和粉体进行处理。
8.一种利用权利要求1-7中任一项所述设备制取稀土纳米粉的方法,其特征在于:该方法的具体步骤如下:
(1)在纯稀土块的中央钻孔放置直径为2-10mm的钨球,然后将纯稀土块置于辅助室中备料待蒸发,关闭好各法兰与管道阀;
(2)把步骤(1)中待蒸发的纯稀土块置于水冷阳极上,以钨棒作为水冷阴极;将生成室利用抽真空的方法抽成气压为2×10-3Pa的环境;
(3)用氩气将生成室内冲洗两次,然后再充入氦氩混合气体,氦氩混合气体的总压强为1×103Pa ~0.95×105Pa,其中氩气与氦气的压强比为P Ar : P H2=1:1~1:5;
(4)打开循环水和电源,用高频启弧,电弧参数设定电流为200~250A,电压为30~45V,调节水冷阴极使弧形成扫把型,点弧时间1~4h;
(5)停弧后,打开辅助室,清理生成室;然后关闭辅助室,打开处理室,取下捕集罐,再封住生成室,同时密封捕集罐,制得的纳米粉储存于捕集罐中;
(6)用0.1~1×104Pa空气和9~8×104Pa氩气的混合气体在生成室中循环钝化1~4h,停1h后充入0.9~1×104Pa空气,再循环钝化1h,开生成室取剩料和清洗。
CN201110407129.0A 2011-12-09 2011-12-09 快速—原位包装稀土纳米粉电弧法制备设备及方法 Expired - Fee Related CN103157802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110407129.0A CN103157802B (zh) 2011-12-09 2011-12-09 快速—原位包装稀土纳米粉电弧法制备设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110407129.0A CN103157802B (zh) 2011-12-09 2011-12-09 快速—原位包装稀土纳米粉电弧法制备设备及方法

Publications (2)

Publication Number Publication Date
CN103157802A true CN103157802A (zh) 2013-06-19
CN103157802B CN103157802B (zh) 2015-04-15

Family

ID=48581624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110407129.0A Expired - Fee Related CN103157802B (zh) 2011-12-09 2011-12-09 快速—原位包装稀土纳米粉电弧法制备设备及方法

Country Status (1)

Country Link
CN (1) CN103157802B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962566A (zh) * 2014-05-05 2014-08-06 大连理工大学 一种多源直流电弧自动化纳米粉体生产系统及方法
CN114160801A (zh) * 2021-11-01 2022-03-11 沈阳工业大学 一种电弧法制备合金纳米颗粒的设备与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559729A (zh) * 2004-02-23 2005-01-05 大连理工大学 一种自动控制直流电弧金属纳米粉生产设备及方法
CN1743103A (zh) * 2005-08-05 2006-03-08 北京工业大学 稀土纳米颗粒及纳米晶材料制备方法及其设备
CN200960551Y (zh) * 2006-09-28 2007-10-17 沈阳工业大学 新型等离子体多极电弧法制备合金纳米粉设备
JP2008013810A (ja) * 2006-07-05 2008-01-24 Univ Of Tokyo 金属ナノ粒子生成方法および金属ナノ粒子生成装置
CN101318219A (zh) * 2007-06-08 2008-12-10 边浩光 纳米粉体机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559729A (zh) * 2004-02-23 2005-01-05 大连理工大学 一种自动控制直流电弧金属纳米粉生产设备及方法
CN1743103A (zh) * 2005-08-05 2006-03-08 北京工业大学 稀土纳米颗粒及纳米晶材料制备方法及其设备
JP2008013810A (ja) * 2006-07-05 2008-01-24 Univ Of Tokyo 金属ナノ粒子生成方法および金属ナノ粒子生成装置
CN200960551Y (zh) * 2006-09-28 2007-10-17 沈阳工业大学 新型等离子体多极电弧法制备合金纳米粉设备
CN101318219A (zh) * 2007-06-08 2008-12-10 边浩光 纳米粉体机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962566A (zh) * 2014-05-05 2014-08-06 大连理工大学 一种多源直流电弧自动化纳米粉体生产系统及方法
CN103962566B (zh) * 2014-05-05 2016-03-02 大连理工大学 一种多源直流电弧自动化纳米粉体生产系统及方法
CN114160801A (zh) * 2021-11-01 2022-03-11 沈阳工业大学 一种电弧法制备合金纳米颗粒的设备与方法
CN114160801B (zh) * 2021-11-01 2024-03-19 沈阳工业大学 一种电弧法制备合金纳米颗粒的设备与方法

Also Published As

Publication number Publication date
CN103157802B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
JP7041860B2 (ja) 熱光起電力発電装置
JP5061140B2 (ja) 水電解システムの運転停止方法
CN101792895B (zh) 阴极真空电弧源薄膜沉积装置及沉积薄膜的方法
US20150125348A1 (en) Hydrogen Generation Apparatus
CN103962566B (zh) 一种多源直流电弧自动化纳米粉体生产系统及方法
CN104339044B (zh) 电解加工装置及其加工方法
CN201660693U (zh) 阴极真空电弧源薄膜沉积装置
CN107387348A (zh) 一种采用固体工质的大范围可调等离子体微推力器
AU2015247080A1 (en) Hydrogen gas generating system
CN103157802B (zh) 快速—原位包装稀土纳米粉电弧法制备设备及方法
CN102392757A (zh) 一种固体锂推进剂恒温液态输送装置及其输送方法
CN105890152A (zh) 一种用于高压大功率电锅炉加热电极的液位功率调节装置
JP2017179557A (ja) 水素製造システム
CN106742073A (zh) 一种微弧阴极放电微型电推进模块
CN101109071A (zh) 制备非晶及纳米微晶薄膜的基片低温冷却装置
WO2016182600A1 (en) Ultraviolet electrical power generation systems and methods regarding same
CN206276917U (zh) 一种制备钨粉尘的空心阴极等离子体装置
CN101767773A (zh) 基于金属气相的多元纳米氢化物颗粒制备方法及其反应装置
JP2014518333A (ja) 電解
CN106623981B (zh) 一种利用等离子分解制备一氧化铌与铌粉混合物的方法
CN210463691U (zh) 一种具有杀菌消毒功能的制冰机
CN202398398U (zh) 辅助球磨介质阻挡放电电极
JP2022516561A (ja) 発電装置
CN203582958U (zh) 一种应用在镀膜设备中的离子源清洗装置
CN203295616U (zh) 水裂解箱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415

Termination date: 20171209