CN103154301B - 用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法 - Google Patents

用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法 Download PDF

Info

Publication number
CN103154301B
CN103154301B CN201280003230.2A CN201280003230A CN103154301B CN 103154301 B CN103154301 B CN 103154301B CN 201280003230 A CN201280003230 A CN 201280003230A CN 103154301 B CN103154301 B CN 103154301B
Authority
CN
China
Prior art keywords
film
flexible
transparency electrode
transparent electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280003230.2A
Other languages
English (en)
Other versions
CN103154301A (zh
Inventor
许起锡
金太源
朴在喆
金光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Industrial Technology KITECH
Original Assignee
Korea Institute of Industrial Technology KITECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Industrial Technology KITECH filed Critical Korea Institute of Industrial Technology KITECH
Publication of CN103154301A publication Critical patent/CN103154301A/zh
Application granted granted Critical
Publication of CN103154301B publication Critical patent/CN103154301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及用于染料敏化太阳能电池的柔性透明电极及其制造方法,更具体地,涉及用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极及其制造方法,并且涉及利用了柔性透明电极的具有高电导率的插入有金属的三层透明电极及其制造方法,其中,与具有高沉积温度的常规的掺氟氧化锡(FTO)和氧化铟锡(ITO)透明电极相比,尽管在室温下或低温下被沉积,但是柔性透明电极仍具有低表面电阻、高电导率和透射率、对外部弯曲的优异抵抗度、提高的表面特性以及更好的表面粗糙度性能。

Description

用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法
技术领域
本发明涉及用于染料敏化太阳能电池的柔性透明电极及其制造方法,更具体地,涉及一种用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极及其制造方法,并且涉及一种利用柔性透明电极的具有高电导率的插入有金属的三层透明电极及其制造方法,其中,与具有高沉积温度的常规的掺氟的氧化锡和氧化铟锡透明电极相比,尽管在室温下或低温下被沉积,柔性透明电极仍具有低的片电阻、高的电导率和透射率、对外部弯曲的优异抵抗度、提高的表面特性以及更好的表面粗糙度性能。
背景技术
一般地,染料敏化太阳能电池是一种利用染料吸收太阳光的能力来引起化学发电的太阳能电池,它通过吸收波长为300nm至2,500nm的太阳光之中的约400nm至800nm的波长来发电。
图1是示意性地例示了常规的染料敏化太阳能电池的截面图,其中,典型的染料敏化太阳能电池包括透明玻璃基板、包括金属氧化物和染料的光电极(阳极)、电解质以及对电极(阴极)。
设置为多孔薄膜形式的光电极是由例如TiO2、ZnO或SnO2这样的宽带隙n型过渡金属氧化物半导体所制成的,并且单层的染料吸附在光电极的表面上。当太阳光入射在太阳能电池上时,染料中处于费米能级的电子吸收太阳能,因而被激发至电子不被占据的更高能级。结果,通过从电解质中的离子提供电子而再次占据在电子逃逸的较低能级处的空位。向染料供应了电子的离子移动至对电极,从而接收电子。
作为阴极的对电极充当在电解质中的离子的氧化还原反应的催化剂,使得通过在对电极的表面上的氧化还原反应将电子提供给电解质的离子。
为了提高染料敏化太阳能电池的能量转换效率,主要使用具有优越的催化活性的Pt薄膜,并且可以在电极中使用具有与Pt类似特性的例如Pd、Ag、Au等贵金属以 及例如炭黑或石墨这样的碳质材料。
透明玻璃基板在能够吸收太阳能的同时向外部电路输送电子,并且通常由透明导电氧化物(TCO)形成。因为其上入射太阳光以发射电子和空穴的吸收层必须被电极覆盖,所以当光被电极挡住时,吸收层的功能无法展现出现或者其效率会降低。为此,使用了TCO。
具体地,TCO主要包括FTO(掺氟的氧化锡、Sn(F)O2)。
然而,这种FTO薄膜的沉积利用了例如大型的化学气相沉积装置这样的昂贵的设备,不必要地导致了复杂的工艺并增加了制造成本。此外,源材料因此被日本领先的公司和大学获得了专利,目前它们全部是进口的。
由于纳米微粒的特性,利用TiO2纳米微粒通过丝网印刷形成在FTO薄膜上的多孔薄膜在内部和微粒的表面处存在许多缺陷,因而,电子的散射和电子空穴的复合会降低电子的迁移率和电子的寿命,不必要地降低了电子电导率并导致效率低。
在FTO的情况下,因为FTO和形成在其上的Ti:染料层之间的表面特征变差,所以太阳能电池的效率会降低,并且在将柔性的染料敏化太阳能电池弯曲时,TCO和吸收层会容易脱落。
因此,需要用于染料敏化太阳能电池的新颖的柔性透明电极,其可以展现出高的透射率和低的片电阻,以使其可以替代FTO,可以通过在室温下或低温下在塑料基板上进行沉积而形成,并且可以利用Ti:染料层来提高表面特性。
发明内容
技术问题
因此,考虑到在现有技术中出现的上述问题来做出了本发明,并且本发明的一个目的是提供一种用于染料敏化太阳能电池的透明电极及其制造方法,该透明电极可以应用于柔性基板以提高对外部弯曲的抵抗性。
本发明的另一目的是提供一种用于染料敏化太阳能电池的透明电极及其制造方法,尽管在室温或低温下进行沉积,其仍然可以具有低的片电阻和高的电导率和透射率。
本发明的另一目的是提供一种用于染料敏化太阳能电池的透明电极及其制造方法,该透明电极在具有Ti:染料层和电解质的表面特征、装置稳定性和表面粗糙度方 面得到了改善。
本发明的另一目的是提供一种插入了金属的三层TCO/金属/TCO透明电极及其制造方法,与FTO和ITO相比,该透明电极会具有低的片电阻,即,显著更高的电导率。
本发明的目的不限于以上各项,本领域技术人员根据以下描述将明显地理解本文未提及的其它目的。
技术方案
为了实现以上目的,本发明提供了一种用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极的制造方法,该方法包括:制备柔性透明基板;同时将Ti和IZO沉积在所述基板上或者应用单个Ti-In-Zn-O靶,从而形成Ti-In-Zn-O薄膜。
在优选的实施方式中,所述透明基板是从由以下各项组成的组中选出的任何一种:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
在优选的实施方式中,对所述透明基板进行至少一种处理:在预定温度下的热处理以降低水分含量;以及UV臭氧或O2等离子预处理,以提高对基板或Ti:染料层的附着力。
在优选的实施方式中,在温度、气流和气体比、工艺功率、工艺压力和Dts的可控工艺条件下执行薄膜的形成,工艺条件包括:
温度:室温; 
气流(sccm):Ar-24.8,O2-0.2;
工艺功率(W):Ti-100,IZO-200;
工艺压力(Pa):0.17;以及
Dts(mm):150。
如此,用于沉积Ti-In-Zn-O透明电极的溅射工艺条件可以包括:从室温至250℃的温度范围、多种Ar/O2气体比率、RF和DC溅射功率、施加至腔体内部的气体的工艺压力、溅射靶与基板之间的距离等。
此外,本发明提供了一种利用上述方法制造的用于染料敏化太阳能电池的柔性 Ti-In-Zn-O透明电极。
在优选的实施方式中,当除随工艺条件变化的O以外包括在所述柔性Ti-In-Zn-O透明电极中的Ti-In-Zn-O薄膜包含4at%~34at%的Ti、9at%~17at%的Zn以及56at%~79at%的In时,所述柔性Ti-In-Zn-O透明电极具有优越的电特性,并且,具体地,当Ti-In-Zn-O薄膜包含8at%的Ti、76at%的In和16at%的Zn时,所述柔性Ti-In-Zn-O透明电极具有最小的表面电阻。
此外,本发明提供了一种制造用于染料敏化太阳能电池的具有高电导率的插入了金属的三层柔性透明电极的方法,所述方法包括:制备透明基板;将Ti和IZO同时沉积在所述透明基板上或者应用单个Ti-In-Zn-O靶,从而形成第一Ti-In-Zn-O薄膜;在所述第一Ti-In-Zn-O薄膜上形成金属薄膜;以及将Ti和IZO同时沉积在所述金属薄膜上或者应用单个Ti-In-Zn-O靶,从而形成第二Ti-In-Zn-O薄膜。
在优选的实施方式中,所述透明基板是从由以下各项组成的组中选出的任何一种:玻璃基板、聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
在优选的实施方式中,所述金属薄膜包括从由具有高电导率的包括Ag、Cu、Al和Au的金属组成的组中选出的金属,并且所述第一Ti-In-Zn-O薄膜的形成、所述第二Ti-In-Zn-O薄膜的形成以及所述金属薄膜的形成是利用RF/DC磁控管型溅射来执行的。
在优选的实施方式中,所述第一Ti-In-Zn-O薄膜的形成、所述第二Ti-In-Zn-O薄膜的形成以及所述金属薄膜的形成是在温度、气流和气体比的可控工艺条件、工艺功率、工艺压力和Dts下执行的,包括:
<所述第一Ti-In-Zn-O薄膜和所述第二Ti-In-Zn-O薄膜>
温度:室温;气流(sccm):Ar-24.8,O2-0.2;工艺功率(W):Ti-100,IZO-200;工艺压力(Pa):0.17;以及Dts(mm):150;以及
<金属薄膜>
温度:室温;气流(sccm):Ar-20;工艺功率(W):高电导率金属-100;工艺压力(Pa):0.14;以及Dts(mm):150。
在优选的实施方式中,以10nm~100nm的厚度形成所述第一Ti-In-Zn-O薄膜, 以30nm~80nm的厚度形成所述第二Ti-In-Zn-O薄膜,并且以5nm~25nm的厚度形成所述金属薄膜。
此外,本发明提供了一种利用上述方法制造的用于染料敏化太阳能电池的具有高电导率的插入有金属的三层柔性透明电极。
在优选的实施方式中,所述透明电极的厚度为150nm~300nm。
有利效果
本发明具有以下优越的效果。
具体地,本发明可以提供可以应用于柔性基板的透明电极,因而提高了对外部弯曲的抵抗性。
而且,本发明可以提供一种用于染料敏化太阳能电池的透明电极,尽管在室温或低温下进行沉积,其仍然可以具有低的片电阻和高的电导率和透射率,此外,其利用溅射工艺实现了大规模生产。
而且,本发明可以提供一种用于染料敏化太阳能电池的透明电极及其制造方法,其中,该透明电极在具有Ti:染料层和电解质的表面特征、装置稳定性和表面粗糙度方面得到了改善。
而且,本发明可以提供一种插入有金属的三层Ti-In-Zn-O/金属/Ti-In-Zn-O透明电极,与常规的FTO和ITO相比,该透明电极会具有更低的片电阻,即,显著更高的电导率。
附图说明
图1是示意性地例示了常规的染料敏化太阳能电池的截面图;
图2是例示了根据本发明的实施方式的用于制造用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极以及插入金属的三层透明电极的处理的流程图;
图3a是例示了根据本发明的实施方式的用于形成Ti-In-Zn-O薄膜的沉积处理的示意图;
图3b是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜的图;
图4是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜的Ti、In和Zn元素的成分范围的图;
图5是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜的片电阻随Ti的量变化的图;
图6a是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜在可见光范围内的光学特性的图;
图6b是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜在UV-可见光-IR范围内的光学特性的图;
图7是例示了利用AFM所分析的根据本发明的实施方式的Ti-In-Zn-O薄膜取决于Ti的量的表面粗糙度RRMS的图;
图8是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜取决于Ti的量的XRD的图
图9a是例示了针对在根据本发明的实施方式的Ti-In-Zn-O薄膜和柔性PES基板之间的附着力(adhesion)的胶带测试结果的图;
图9b是例示了针对在根据本发明的实施方式的Ti-In-Zn-O薄膜和Ti:染料层之间的附着力的胶带测试结果的图;
图10a是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极的示意图;
图10b是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极的实际电子显微镜图像;
图11是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极取决于各层厚度的片电阻、透射率和优选的示例的图;
图12是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极对外部弯曲的初始电阻的改变的图。
具体实施方式
本发明所使用的术语尽可能地是当前广泛使用的通用术语,但是在特定的情况下,可以包括由发明人选择的可选的术语,其含义的解读应当考虑到在本说明书中所描述或使用的含义,而不是仅仅利用这些术语的名称来解读。
下面,将参照附图和优选的实施方式来描述本发明的技术架构。
图2例示了根据本发明的实施方式的用于制造用于染料敏化太阳能电池的柔性 Ti-In-Zn-O透明电极以及插入金属的三层透明电极的方法。
参照图2,根据本发明的实施方式的用于制造用于染料敏化太阳能电池的柔性透明电极的方法包括制备柔性透明基板(S100),同时在基板上沉积Ti和IZO从而形成Ti-In-Zn-O薄膜(S200),并且制造根据本发明的另一实施方式的具有优良的电气特性的高电导率的三层Ti-In-Zn-O/Ag或Cu/Ti-In-Zn-O透明电极(S300)。
具体地,在制备柔性透明基板时(S100),可以使用具有柔性的多种透明基板,并且在本发明的实施方式中,可以使用从由以下各项组成的组中选出的任何一种:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
在本发明的大多数优选的实施方式中,将聚醚砜(PES)作为透明基板是十分有益的。
为了减少水分含量,柔性透明基板经历预定温度下的热处理。在本发明的优选实施方式中,优选地在炉中以60℃进行30分钟至60分钟的热处理以减少水分含量。
除上述热处理以外,可以执行多种处理以减少水分含量。
而且,为了增强对基板或Ti:染料层的附着力,执行UV臭氧或O2等离子预处理。在本发明的优选实施方式中,利用O2等离子在50sccm的O2、20mTorr的工艺压力、150W的等离子功率以及90秒的处理时间的条件下执行预处理,以增强附着力。
随后,将Ti和IZO同时沉积在基板上,从而形成Ti-In-Zn-O薄膜(S200)。尽管在本发明中可以利用多种沉积处理来形成Ti-In-Zn-O薄膜,但是优选地利用RF/DC磁控管型溅射来沉积Ti和IZO。
参照根据本发明的实施方式的示例性地例示了用于形成Ti-In-Zn-O薄膜的沉积处理的图3,充当第一靶的IZO与透明基板隔开预定的距离,并且充当第二靶的Ti与透明基板隔开预定的距离,从而与第一靶相对。
如此,可以以各种构成比率来形成IZO,但是优选地是包括90wt%的In2O3和10wt%的ZnO。
而且,在透明基板上以预定的间隔形成多个掩模,使得透明基板没有完全暴露。
在本发明的优选实施方式中,将掩模放置为使得总共露出了透明基板的11处位置。
随后,利用RF/DC磁控管型组合溅射来同时地沉积Ti和IZO,使得具有不同的Ti和IZO组分的Ti-In-Zn-O薄膜形成在作为透明基板的露出部分的上。
也就是说,形成了组分中Ti的量增多并且In的量减少的从①至十一个Ti-In-Zn-O薄膜。
在下面的表1中示出了根据本发明实施方式的十一个Ti-In-Zn-O薄膜的组分。
其中,根据本发明的Ti-In-Zn-O薄膜优选地包括4at%~34at%的Ti、9at%~17at%的Zn以及56at%~79at%的In。随着Ti的量增大,Zn的量没有很大的改变,但是相对昂贵的In的量显著地减小,使得可以有效益地制造用于染料敏化太阳能电池的透明电极。
表1
元素(at%) #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Ti/(In+Zn+Ti) 4 6 8 9 12 15 19 24 27 31 34
In/(In+Zn+Ti) 79 78 76 75 72 71 68 67 61 57 56
Zn/(In+Zn+Ti) 17 16 16 16 15 14 13 9 11 12 9
另一方面,可以在各种处理条件下执行根据本发明的实施方式的形成薄膜的处理(S200),但最好在高真空(低于10-6Pa)并在室温或低温下执行而不提高温度,从而得到薄膜。实际上,表现出最小片电阻的Ti-In-Zn-O组分除了随工艺条件改变的O以外,包括8at%的Ti、76at%的In以及16at%的Zn,(图5)。
而且,在下面的表2中对根据本发明的优选的实施方式的形式薄膜所需的条件进行了概括。
表2
在表2中,Dts表示透明基板与第一靶和第二靶之间的垂直距离。
Ti-In-Zn-O薄膜的厚度被设置在150nm~300nm的范围内,以展现出适合于染料敏化太阳能电池的透明电极的优越的片电阻和透射率。
如果透明电极的厚度是100nm或更少,则片电阻显著地增大至100Ω/□或更大,在将透明电极应用至染料敏化太阳能电池时,会不必要地导致对Ti:染料层进行密封的问题以及水分渗透到柔性基板的问题。因此,不能使用100nm或更薄的薄膜。具体地,如果Ti-In-Zn-O薄膜的厚度是50nm或更少,则透射率高至90%或更高的水 平,但是片电阻变得显著地增大至500Ω/□或更大,因而该薄膜可以用于有压缩力的触摸板但不能用于高效的染料敏化太阳能电池。
本发明的实施方式
下面描述根据本发明的另一实施方式的用于利用了Ti-In-Zn-O薄膜的染料敏化太阳能电池的插入了金属的三层柔性透明电极的制造方法。
具体地,根据本发明的另一实施方式的具有优越的电气特性的高电导率三层Ti-In-Zn-O/Ag或Cu/Ti-In-Zn-O透明电极的制造方法包括:制备透明基板;将Ti和IZO同时沉积在透明基板上,因而形成第一Ti-In-Zn-O薄膜;将Au或Cu的金属薄膜形成在第一Ti-In-Zn-O薄膜上;将Ti和IZO同时沉积在金属薄膜上因而形成第二Ti-In-Zn-O薄膜。
透明基板的示例可以包括多种透明基板,优选地有用的是从由以下各项组成的组中选出的任何一种:玻璃基板、聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
而且,如在本发明的实施方式中所提到的,透明基板还可以经历至少一种热处理以减少水分含量,并且可以经历UV臭氧或等离子预处理,以增强对基板或Ti:染料层的附着力。
第一Ti-In-Zn-O薄膜和第二Ti-In-Zn-O薄膜的形成与在本发明的实施方式中所提到的相同。然而,在具有高电导率的插入了金属的透明电极的情况下,将插入了金属Ag或Cu的包括第一Ti-In-Zn-O薄膜和第二Ti-In-Zn-O薄膜以及所插入的金属的三层透明电极的总厚度最佳地设置在150nm~300nm的范围内,使其适合用在太阳能电池的透明电极中。
如上所述,如果透明电极的厚度是100nm或更小,则表面电阻显著地增大至100Ω/□或更大。当将该电极应用至柔性染料敏化太阳能电池时,会发生用Ti:染料层密封以及水分渗入到柔性基板的问题。因此,不能使用100nm或更薄的薄膜。
另一方面,可以不同地执行根据本发明的另一实施方式的金属薄膜的形成,并且最好利用RF/DC磁控管型组合溅射来执行。
这样,可以利用例如Al、Au等的任何金属来形成金属薄膜,最好由Ag或Cu形成。具体地,将Ag或Cu金属薄膜插入氧化物薄膜之间,因而提高金属的固有延性,使得基板在外部应力下弯曲时能够提高透明电极对弯曲的抵抗度。
在下面的表3中概括了用于形成薄膜的工艺条件。
表3
在表3中,Dts的定义如上文中所述。
三层透明电极的薄膜的总厚度应被调整在300nm或更小的范围内,这是用于太阳能电池的一般的透明电极的容许厚度值。在本发明的优选实施方式中,第一Ti-In-Zn-O薄膜被形成为10nm~100nm的厚度,第二Ti-In-Zn-O薄膜被形成为30nm~80nm的厚度,并且金属薄膜被形成为5nm~25nm的厚度。具有高电导率的三层透明电极的总厚度最好是150nm~300nm。
根据附图,下面具体说明本发明的效果。
图4是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜的Ti、In和Zn元素的成分范围的图。如图4所示,随着Ti的量朝Ti方向增大,In的量会减少,但是与In量的改变相比,Zn的量没有很大的变化。这意味着,在Ti-In-Zn-O薄膜中,昂贵的稀土元素In的量会与Ti的量成比例地减小,使得与ITO相比可以有效益地制造用于染料敏化太阳能电池的透明电极。
图5是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜的表面电阻随Ti的量而变化的图。
如图5所示,随着Ti的量增大,昂贵的In的量会减少但是电阻会增大。在附图中,可以看到表面电阻在Ti约为8at%处是最低的(19ohm/sq),因而根据本发明的Ti-In-Zn-O薄膜最好利用8at%的Ti形成在透明基板上。作为实验性结果,除O随工艺条件变化以外,当Ti-In-Zn-O包括8at%的Ti、76at%的In以及16at%的Zn时,可以制造出具有最小的表面电阻的用于染料敏化太阳能电池的柔性透明电极。
图6a是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜在可见光范围内的光学特性,并且图6b是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜在UV-可见光-IR范围内的光学特性。
一般的太阳能电池在太阳光入射到其上时需要高的透射率。
在根据本发明的实施方式的Ti-In-Zn-O薄膜的情况下,如图6a和图5b所示,在可见光和近IR范围处示出了80%或更高的高透射率,并且在特定的波长范围内可以得到95%以上的非常高的透射率。
图7是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜取决于Ti的量的表面粗糙度RRMS的图。
如图7所示,根据本发明的Ti-In-Zn-O薄膜呈现出2nm(RMS)以下的表面粗糙度而与Ti的量无关,这意味着薄膜的表面被评价为非常平。
图8是例示了根据本发明的实施方式的Ti-In-Zn-O薄膜取决于Ti的量的XRD的图。
如图8所示,根据本发明的Ti-In-Zn-O薄膜在所有样本中都展现出具有非晶结构的薄膜特征,而与其构成比例无关。
在具有晶体结构的薄膜的情况下,对外部弯曲的抵抗度会是低的,不理想地在薄膜中导致例如破裂和位错这样的缺陷。然而,因为根据本发明的实施方式的Ti-In-Zn-O薄膜具有非晶结构,所以与易碎的晶体陶瓷薄膜相比对弯曲的抵抗度会有提高,并且可以防止在薄膜中出现诸如破裂和位错这样的缺陷。
图9a是例示了针对在根据本发明的实施方式的Ti-In-Zn-O薄膜和柔性PES基板之间的附着力的胶带测试结果的图。
图9b是例示了针对在根据本发明的实施方式的Ti-In-Zn-O薄膜和Ti:染料层之间的附着力的胶带测试结果的图。
如图9a和9b所示,沉积在PES基板上的Ti-In-Zn-O薄膜没有被透明胶带移除,并且施加在Ti-In-Zn-O薄膜上的Ti染料膏没有被透明胶带移除。这意味着与透明胶带相比,Ti-In-Zn-O薄膜对PES基板和Ti纳米晶体/染料层有更高的附着力。
图10a示例性地例示了根据本发明的另一实施方式的在玻璃基板上的三层Ti-In-Zn-O(10nm~100nm厚)/Ag(5nm~25nm厚)/Ti-In-Zn-O(30nm~80nm厚)透明电极。
图10b是例示了根据本发明的优选的实施方式的具有150nm总厚度的三层 Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极的实际电子显微镜图像。
图11是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O薄膜取决于各层厚度的表面电阻、透射率和优选的示例的图。
如图11所示,根据本发明的优选的实施方式的三层Ti-In-Zn-O(100nm)/Ag(8nm)/Ti-In-Zn-O(42nm)薄膜可以展现出6.63ohm/sq的低表面电阻以及最大约90%的高透射率。
图12是例示了根据本发明的另一实施方式的三层Ti-In-Zn-O/金属(Ag)/Ti-In-Zn-O透明电极针对外部弯曲的初始电阻改变的图。
如图12所示,作为利用电阻测试仪针对外部弯曲进行评价的结果,沉积在柔性PES基板上的ITO薄膜的表面电阻在150个弯曲循环后相比初始电阻增大了约六倍,使得难以应用至柔性染料敏化太阳能电池。然而,在根据本发明的Ti-In-Zn-O薄膜的情况下,在相同的外部弯曲测试条件(样本大小:30×10mm;样本两端之间的直线距离:25mm;弯曲速度:20mm/sec;弯曲距离:5mm)下电阻变得不均匀,由此与常规的ITO薄膜相比,该薄膜会展现出对外部弯曲十分优越的机械抵抗度,并因而被视为非常适用于染料敏化太阳能电池的柔性透明电极中。
因此,根据本发明的实施方式的用于染料敏化太阳能电池的柔性透明电极被配置为使得基本地提供非晶的Ti-In-Zn-O薄膜,并且例如Ag这样的金属薄膜被插入其中,因而提高了基板的柔韧性。因此,当将该透明电极应用于柔性基板时,对外部弯曲的抵抗度会极大地提高,此外,尽管在室温或低温下进行沉积,但是该透明电极仍然可以具有高的电导率和透射率,并且可以以相对较低的成本来生产。
此外,因为根据本发明的用于染料敏化太阳能电池的透明电极(其上附着有Ti:染料层和电解质)包含Ti,所以与常规的FTO透明电极相比具有优越的表面特性和表面粗糙度,并且可以有效地制造该透明电极。
而且,因为表面电阻率是8Ω/sq或更低,所以透明电极与常规的ITO和FTO的表面电阻(15~25Ω/sq)相比是优越的,因而适用于制造高效的染料敏化太阳能电池。
尽管已经针对例示性目的公开了本发明的优选的实施方式,但是本领域技术人员将理解的是,在不脱离本发明在所附权利要求中公开的范围和精神的情况下,可以进行各种修改、添加和替换。

Claims (17)

1.一种制造用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极的方法,所述方法包括以下步骤:
制备柔性透明基板;以及
将Ti和IZO同时沉积在所述基板上或者应用单个Ti-In-Zn-O靶,由此形成Ti-In-Zn-O薄膜,
其中,除了随工艺条件变化的O以外,包括在所述柔性Ti-In-Zn-O透明电极中的所述Ti-In-Zn-O薄膜包含4at%~34at%的Ti、9at%~17at%的Zn以及56at%~79at%的In。
2.根据权利要求1所述的方法,其中,所述透明基板是从由以下各项组成的组中选出的任意一种:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
3.根据权利要求2所述的方法,其中,对所述透明基板进行以下处理中的至少一种:预定温度下的热处理,以降低水分含量;以及UV臭氧或O2等离子体预处理,以提高对基板或Ti:染料层的附着力。
4.根据权利要求1所述的方法,其中,形成薄膜的步骤是利用RF/DC磁控管型溅射来执行的。
5.根据权利要求4所述的方法,其中,通过将Ti和IZO同时沉积在所述基板上来形成薄膜的步骤是在温度、气流和气体比、工艺功率、工艺压力和Dts的可控工艺条件下执行的,所述可控工艺条件包括:
温度:室温,
气流(sccm):Ar-24.8,O2-0.2,
工艺功率(W):Ti-100,IZO-200,
工艺压力(Pa):0.17,以及
Dts(mm):150。
6.根据权利要求1至5中任意一项所述的方法,其中,除了随工艺条件变化的O以外,包括在所述柔性Ti-In-Zn-O透明电极中的所述Ti-In-Zn-O薄膜包含8at%的Ti、76at%的In和16at%的Zn。
7.一种柔性Ti-In-Zn-O透明电极,所述柔性Ti-In-Zn-O透明电极包括:
透明基板;以及
Ti-In-Zn-O薄膜,所述Ti-In-Zn-O薄膜沉积在所述基板上;
其中,除了随工艺条件变化的O以外,包括在所述柔性Ti-In-Zn-O透明电极中的所述Ti-In-Zn-O薄膜包含4at%~34at%的Ti、9at%~17at%的Zn以及56at%~79at%的In。
8.根据权利要求7所述的柔性Ti-In-Zn-O透明电极,其中,当除了随工艺条件变化的O以外包括在所述柔性Ti-In-Zn-O透明电极中的Ti-In-Zn-O薄膜包含8at%的Ti、76at%的In和16at%的Zn时,所述柔性Ti-In-Zn-O透明电极具有最小的表面电阻。
9.一种制造用于染料敏化太阳能电池的具有高电导率的插入有金属的三层柔性透明电极的方法,所述方法包括以下步骤:
制备透明基板;
将Ti和IZO同时沉积在所述透明基板上或者应用单个Ti-In-Zn-O靶,由此形成第一Ti-In-Zn-O薄膜;
在所述第一Ti-In-Zn-O薄膜上形成金属薄膜;以及
将Ti和IZO同时沉积在所述金属薄膜上或者应用单个Ti-In-Zn-O靶,由此形成第二Ti-In-Zn-O薄膜,
其中,除了随工艺条件变化的O以外,包括在所述插入有金属的三层柔性透明电极中的所述第一Ti-In-Zn-O薄膜或者所述第二Ti-In-Zn-O薄膜包含4at%~34at%的Ti、9at%~17at%的Zn以及56at%~79at%的In。
10.根据权利要求9所述的方法,其中,所述透明基板是从由以下各项组成的组中选出的任意一种:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰胺(PI)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)以及醋酸丙酸纤维素(CAP)。
11.根据权利要求9所述的方法,其中,所述金属薄膜包括从由包括Ag、Cu、Al和Au的高电导率金属组成的组中选出的金属。
12.根据权利要求9所述的方法,其中,形成所述第一Ti-In-Zn-O薄膜的步骤、形成所述第二Ti-In-Zn-O薄膜的步骤以及形成所述金属薄膜的步骤是利用RF/DC磁控管型溅射来执行的。
13.根据权利要求12所述的方法,其中,形成所述第一Ti-In-Zn-O薄膜的步骤、形成所述第二Ti-In-Zn-O薄膜的步骤以及形成所述金属薄膜的步骤是在温度、气流和气体比、工艺功率、工艺压力和Dts的可控工艺条件下执行的,所述可控工艺条件包括:
<通过将Ti和IZO同时沉积在所述基板上而形成的所述第一Ti-In-Zn-O薄膜和所述第二Ti-In-Zn-O薄膜>
温度:室温,
气流(sccm):Ar-24.8,O2-0.2,
工艺功率(W):Ti-100,IZO-200,
工艺压力(Pa):0.17,
Dts(mm):150;以及
<金属薄膜>
温度:室温,
气流(sccm):Ar-20,
工艺功率(W):高电导率金属-100;
工艺压力(Pa):0.14;
Dts(mm):150。
14.根据权利要求9至13中任意一项所述的方法,其中,以10nm~100nm的厚度形成所述第一Ti-In-Zn-O薄膜,以30nm~80nm的厚度形成所述第二Ti-In-Zn-O薄膜,并且以5nm~25nm的厚度形成所述金属薄膜。
15.根据权利要求9至13中任意一项所述的方法,其中,除了随工艺条件变化的O以外,包括在所述插入有金属的三层柔性透明电极中的所述第一Ti-In-Zn-O薄膜或者所述第二Ti-In-Zn-O薄膜包含8at%的Ti、76at%的In和16at%的Zn。
16.一种利用根据权利要求9至13中任意一项所述的方法制造出的用于染料敏化太阳能电池的具有高电导率的插入有金属的三层柔性透明电极。
17.根据权利要求16所述的插入有金属的三层柔性透明电极,其中,所述透明电极的厚度为150nm~300nm。
CN201280003230.2A 2011-05-02 2012-05-02 用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法 Active CN103154301B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0041687 2011-05-02
KR1020110041687A KR101232717B1 (ko) 2011-05-02 2011-05-02 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
PCT/KR2012/003425 WO2012150805A2 (ko) 2011-05-02 2012-05-02 플렉시블 염료감응형 태양전지용 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법

Publications (2)

Publication Number Publication Date
CN103154301A CN103154301A (zh) 2013-06-12
CN103154301B true CN103154301B (zh) 2015-06-10

Family

ID=47108129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280003230.2A Active CN103154301B (zh) 2011-05-02 2012-05-02 用于染料敏化太阳能电池的柔性Ti-In-Zn-O透明电极、使用它的高电导率的插入有金属的三层透明电极及其制造方法

Country Status (4)

Country Link
US (2) US9570242B2 (zh)
KR (1) KR101232717B1 (zh)
CN (1) CN103154301B (zh)
WO (1) WO2012150805A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232717B1 (ko) * 2011-05-02 2013-02-13 한국생산기술연구원 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
KR101477037B1 (ko) * 2013-07-31 2014-12-31 주식회사 상보 표면구조화 azo 글래스 투명전극과 이중 코팅 금속 기판을 구비한 금속 플렉시블 염료감응 태양전지 및 그 제조방법
CN104992840B (zh) * 2014-12-29 2018-08-07 中国科学院物理研究所 量子点敏化太阳电池及其制备方法
CN106868464A (zh) * 2017-01-04 2017-06-20 兰州空间技术物理研究所 一种导电高透光柔性薄膜窗口材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
CN1525912A (zh) * 2001-05-09 2004-09-01 Cp���ֹ�˾ 铟锡氧化物的透明导电层状镀层
WO2010036963A1 (en) * 2008-09-26 2010-04-01 The Regents Of The University Of Michigan Organic tandem solar cells
KR20100072723A (ko) * 2008-12-22 2010-07-01 한국기계연구원 에너지 전환 효율이 향상된 유기 태양전지 및 이의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067657A (ja) * 1998-08-26 2000-03-03 Internatl Business Mach Corp <Ibm> 赤外線透過に優れた透明導電膜及びその製造方法
EP1626416A4 (en) * 2003-05-20 2007-11-07 Idemitsu Kosan Co AMORPHOUS TRANSPARENT CONDUCTIVE FILM, SPRAY TARGET AS A RAW MATERIAL, AMORPHOUS TRANSPARENT ELECTRODE SUBSTRATE, PROCESS FOR PRODUCING THE SAME, AND COLOR FILTER FOR A LIQUID CRYSTAL DISPLAY
KR100621918B1 (ko) * 2004-06-10 2006-09-14 학교법인 포항공과대학교 투명 전도성 나노막대를 전극으로 포함하는 발광소자
US20060214567A1 (en) * 2005-03-25 2006-09-28 Yongchun Luo Organic electroluminescent element
DE102006046312B4 (de) * 2006-09-29 2010-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzellen mit stabilem, transparentem und leitfähigem Schichtsystem
KR20110001206A (ko) * 2009-06-29 2011-01-06 주식회사 미성포리테크 염료 감응형 태양 전지 및 그 제조 방법
KR20120062341A (ko) * 2010-12-06 2012-06-14 한국전자통신연구원 산화인듐아연 투명 도전막 및 이의 제조방법
KR101232717B1 (ko) * 2011-05-02 2013-02-13 한국생산기술연구원 Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
BE1020676A3 (fr) * 2012-05-08 2014-03-04 Agc Glass Europe Dispositif photonique organique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040056A (en) * 1996-06-07 2000-03-21 Nippon Sheet Glass Co., Ltd. Transparent electrically conductive film-attached substrate and display element using it
CN1525912A (zh) * 2001-05-09 2004-09-01 Cp���ֹ�˾ 铟锡氧化物的透明导电层状镀层
WO2010036963A1 (en) * 2008-09-26 2010-04-01 The Regents Of The University Of Michigan Organic tandem solar cells
KR20100072723A (ko) * 2008-12-22 2010-07-01 한국기계연구원 에너지 전환 효율이 향상된 유기 태양전지 및 이의 제조방법

Also Published As

Publication number Publication date
KR20120123990A (ko) 2012-11-12
US10395845B2 (en) 2019-08-27
WO2012150805A3 (ko) 2013-01-03
US20170110257A1 (en) 2017-04-20
KR101232717B1 (ko) 2013-02-13
US9570242B2 (en) 2017-02-14
US20140109957A1 (en) 2014-04-24
CN103154301A (zh) 2013-06-12
WO2012150805A2 (ko) 2012-11-08

Similar Documents

Publication Publication Date Title
Park et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells
CN104979037B (zh) 一种热稳定性增强的透明导电薄膜及其制备方法和应用
CN102779944B (zh) 一种透明导电薄膜
JP2005108467A (ja) 透明導電性シートおよびそれを用いた光増感太陽電池。
US20150279498A1 (en) Transparent conductive thin film electrodes, electronic devices and methods of producing the same
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
KR20090070471A (ko) 염료감응태양전지용 도전성 유리 및 이의 제조방법
Yu et al. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition
CN111244229B (zh) 一种可挠曲的透明薄膜太阳能电池制作方法
CN101497992A (zh) 用等离子体轰击制备绒面氧化锌透明导电镀膜玻璃的方法
CN103171187B (zh) 一种三明治式透明导电薄膜及制备方法
CN105039911B (zh) 一种透明导电薄膜及其制备方法
CN106756789A (zh) 一种复合透明导电薄膜及其制备方法
JP3507623B2 (ja) 透明導電膜の製造方法及びそれを用いた薄膜太陽電池
KR101700884B1 (ko) 망간주석산화물계 투명전도성산화물 및 이를 이용한 다층투명도전막 그리고 그 제조방법
CN105185843A (zh) 一种可揭式任意图形化的透明导电薄膜及其应用
CN103203912B (zh) 一种新型azo镀膜玻璃及其制备工艺
Lee et al. Highly transparent and flexible TiN doped In2O3 (ITON)/Ag-Ti/ITON multilayer electrodes coated on polyethylene terephthalate substrate
KR101297432B1 (ko) 내굴곡성박막과 투명전도성박막이 구비된 투명유연기판 및 이의 제조방법
Schmidt et al. Highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes for large area organic solar cells
KR20080091311A (ko) 산화아연계 투명전도막을 이용한 유기 태양 전지
Ginley et al. Development of solution-processed nanowire composites for opto-electronics
CN112941479B (zh) 一种二氧化锡/银/二氧化锡透明导电膜调整银层厚度的方法及应用
CN113707813B (zh) 用于有机光电器件的透明顶电极复合薄膜材料及制备方法
KR20180004691A (ko) 표면 개질된 그래핀 투명 전극 및 이의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant