CN103146432B - Biomass pyrolysis gasification and tar catalytic cracking device and method - Google Patents

Biomass pyrolysis gasification and tar catalytic cracking device and method Download PDF

Info

Publication number
CN103146432B
CN103146432B CN201310086428.8A CN201310086428A CN103146432B CN 103146432 B CN103146432 B CN 103146432B CN 201310086428 A CN201310086428 A CN 201310086428A CN 103146432 B CN103146432 B CN 103146432B
Authority
CN
China
Prior art keywords
whirlwind
separation device
group
reaction separation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310086428.8A
Other languages
Chinese (zh)
Other versions
CN103146432A (en
Inventor
陆强
廖航涛
张俊姣
董长青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201310086428.8A priority Critical patent/CN103146432B/en
Publication of CN103146432A publication Critical patent/CN103146432A/en
Application granted granted Critical
Publication of CN103146432B publication Critical patent/CN103146432B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

The invention discloses a biomass pyrolysis gasification and tar catalytic cracking device and method and belongs to the technical field of biomass energy utilization. The device comprises a hopper, a feeding system, a biomass pyrolysis gasification system, a tar catalytic cracking system, a fluidized bed coke combustion system, a hot sand separation system, a fluidized bed catalyst regeneration system and a catalyst separation system, wherien the biomass pyrolysis gasification system comprises multiple cyclone reaction separators and is used for obtaining hydrogen-enriched synthesis gas through a high-efficiency gasification reaction of the biomass raw materials under the gasification medium and fully reacting the biomass raw materials; and in addition, the tar catalytic cracking system comprises multiple cyclone reaction separators and is used for performing high-efficiency tar catalytic cracking, so that the tar is fully reacted so as to obtain hydrogen-enriched synthesis gas with extremely low tar content, and the inactivated catalyst is timely discharged out of the catalytic reaction system. According to the device, due to the introduction of the multi-stage cyclone reaction separators, and high-efficiency biomass gasification and high-efficiency tar conversion can be realized, so that the hydrogen-enriched synthesis gas with the low tar content is obtained.

Description

The apparatus and method of a kind of biomass pyrogenation gasification and catalytic cracking of tar
Technical field
The invention belongs to the efficient technique of rainwater utilization field of biomass energy, be specifically related to the apparatus and method of a kind of biomass pyrogenation gasification and catalytic cracking of tar.
Background technology
Along with the exhaustion day by day of fossil resource, the exploitation of biomass resource have obtained global extensive concern.In numerous Wood Adhesives from Biomass, utilize in technology, gasification is a kind of very important technology; According to the difference of using gasifying medium, reaction operating mode, reaction unit etc., gasifying biomass has multiple different form, and can obtain different gasification product distributions.Present stage, the conventional gasification technologies of biomass (air gasification) have developed comparatively ripe, but in industrial applications process, are faced with large technical bottleneck---a burnt oil handling.In biomass gasification process, unavoidably can produce tar, the existence of tar has multiple disadvantageous effect: (1) tar accounts for 5%~10% of combustible gas energy, is difficult at low temperatures burned utilization together with combustible gas, and therefore the energy of most of tar is wasted; (2) tar is condensed into viscous liquid at low temperatures, and easy and water, carbon granule etc. combine, and stop up gas pipe line, block valve, vacuum fan rotor, corroding metal; (3) tar is difficult to perfect combustion, and produces the particles such as carbon black, to combustion gas, utilizes equipment as quite serious in infringements such as oil engine, internal combustion turbine; (4) smell producing after tar and burning thereof is harmful to human body.Therefore Efficient Conversion, how to realize tar is the gordian technique difficult problem that biomass gasification technology large-scale application must solve.Present stage, catalytic pyrolysis is the effective technical way of realizing tar Efficient Conversion, and the gordian technique of its industrial implementation comprises the selection of catalyzer and the exploitation of catalytic reaction device.
Except conventional air gasification technology, with water vapour, CO 2, gasification gas mixture etc. is gasifying medium biomass gasification technology has also obtained more concern; But the major issue that these gasification technologies exist in industrial application is that biomass are comparatively slow with reacting of gasifying medium, makes biomass in measured response device space and in the reaction times, be difficult to abundant reaction; Therefore how realizing the high-efficiency gasification reaction of biomass under specific gasifying medium is current another important technological problems urgently to be resolved hurrily.
Summary of the invention
The object of the invention is to overcome the deficiencies in the prior art, the apparatus and method of a kind of biomass pyrogenation gasification and catalytic cracking of tar are provided.
The technical scheme that biomass pyrogenation gasification of the present invention and tar catalytic cracker adopt is:
This device comprises hopper, feed system, biomass pyrogenation gasification system, catalytic cracking of tar system, fluidized-bed coke firing system, hot sand separation system, regenerating catalyst in fluidized bed system, catalyst separation system:
The outlet of described hopper is connected with the entrance of feed system; The bottom of fluidized-bed coke firing system is connected with gas blower, directly feeds excess air, and its side wall lower ends also has an entrance for supplementing new sand; Hot sand separation system comprises two stage cyclone separator, wherein the import of first step cyclonic separator is connected with the outlet of fluidized-bed coke firing system, venting port is connected with the import of second stage cyclonic separator, the air outlet of second stage cyclonic separator is connected with the gas inlet, bottom of regenerating catalyst in fluidized bed system, discharge gate is connected with dust collecting box, directly collects flying dust; The side wall lower ends of regenerating catalyst in fluidized bed system is provided with an entrance for supplementing raw catalyst; Catalyst separation system is single stage cyclone separator, and its import is connected with the outlet of regenerating catalyst in fluidized bed system;
Described biomass pyrogenation gasification system comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from top to bottom, defining uppermost whirlwind Reaction Separation device is first group of first module of whirlwind Reaction Separation device, be followed successively by first group of second unit of whirlwind Reaction Separation device downwards, first group of most end unit of whirlwind Reaction Separation device, wherein, N is not less than 2 integer;
Described catalytic cracking of tar system comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from bottom to top, defining nethermost whirlwind Reaction Separation device is second group of first module of whirlwind Reaction Separation device, upwards be followed successively by second group of second unit of whirlwind Reaction Separation device, second group of most end unit of whirlwind Reaction Separation device, wherein, n is not less than 2 integer;
The opening for feed of first group of second unit of the discharge gate of first group of first module of described whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, and the inlet mouth of first group of first module of the venting port of first group of second unit of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected; The opening for feed of first group of Unit the 3rd of the discharge gate of first group of second unit of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the inlet mouth of first group of second unit of the venting port of first group of Unit the 3rd of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the like to first group of most end unit of whirlwind Reaction Separation device; Wherein, the sidepiece of first group of first module of whirlwind Reaction Separation device also has two opening for feeds, one of them opening for feed is connected with the outlet of feed system, another opening for feed is connected with the discharge gate of first step cyclonic separator in hot sand separation system, and the venting port of first group of first module of whirlwind Reaction Separation device is connected with the inlet mouth of second group of first module of whirlwind Reaction Separation device in catalytic cracking of tar system; The discharge gate of first group of most end unit of whirlwind Reaction Separation device is connected with the side wall lower ends opening of fluidized-bed coke firing system, the air outlet of second group of most end unit of whirlwind Reaction Separation device respectively with inlet mouth;
The inlet mouth of second group of second unit of the venting port of second group of first module of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, and the opening for feed of second group of first module of the discharge gate of second group of second unit of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected; The inlet mouth of second group of Unit the 3rd of the venting port of second group of second unit of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the opening for feed of second group of second unit of the discharge gate of second group of Unit the 3rd of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the like to second group of most end unit of whirlwind Reaction Separation device; Wherein, the inlet mouth of second group of first module of whirlwind Reaction Separation device is connected with the venting port of first group of first module of whirlwind Reaction Separation device in biomass pyrogenation gasification system and the side wall lower ends opening of regenerating catalyst in fluidized bed system respectively with discharge gate; The opening for feed of second group of most end unit of whirlwind Reaction Separation device is connected with the discharge gate of catalyst separation system, the venting port of second group of most end unit of whirlwind Reaction Separation device is divided into two-way, one tunnel is connected with the inlet mouth of first group of most end unit of whirlwind Reaction Separation device in biomass pyrogenation gasification system, the hydrogen-rich synthetic gas of another road direct collector low tar content.
Described feed system is feeding screw.
Biomass pyrogenation gasification based on described device and a catalytic cracking of tar method, have following steps:
Biomass material is sent into first group of first module of whirlwind Reaction Separation device of biomass pyrogenation gasification system through hopper and feed system; Meanwhile, carry out the high temperature sand of first step cyclone firing separator in self-heating sand separation system, the high-temperature gas of first group of second unit of whirlwind Reaction Separation device enters in first group of first module of whirlwind Reaction Separation device together; Biomass material be heated and gasifying medium effect under gasification generate solid coke, non-condensable gases, water vapour and tar, wherein solid coke and hot sand are in the multistage cyclone Reaction Separation device of biomass pyrogenation gasification system, motion from top to bottom generating gasification reaction under gasifying medium effect, the mixture of solid coke, ash content and the sand finally obtaining enters in fluidized-bed coke firing system;
The gas mixture of not condensable gases, water vapour and tar that in biomass pyrogenation gasification system, first group of first module venting port of whirlwind Reaction Separation device discharged enters second group of first module of whirlwind Reaction Separation device in catalytic cracking of tar system, meanwhile, from the catalyzer of second group of second unit of whirlwind Reaction Separation device, also enter together second group of first module of whirlwind Reaction Separation device; Gas mixture is operation from bottom to top in the multistage cyclone Reaction Separation device of catalytic cracking of tar system, under top-down catalyst action, there is catalytic cracking reaction in tar wherein, finally obtain the not gas mixture of condensable gases and water vapour, wherein partly as gasifying medium, send into first group of most end unit of whirlwind Reaction Separation device in biomass pyrogenation gasification system and recycle, part obtains the hydrogen-rich synthetic gas of utmost point low tar content after cooling in addition;
The mixture of solid coke, sand and ash content that in biomass pyrogenation gasification system, first group of most end unit of whirlwind Reaction Separation device obtains is sent into fluidized-bed coke firing system, and feeds excess air burner coke heating sand;
The products of combustion of fluidized-bed coke firing system enters in hot sand separation system, first step cyclonic separator separates the hot sand obtaining and sends in first group of first module of whirlwind Reaction Separation device of biomass pyrogenation gasification system, as thermal barrier, provides biomass pyrolytic required heat;
The oxygen enrichment flue gas that in hot sand separation system, cyclonic separator outlet in the second stage obtains passes in regenerating catalyst in fluidized bed system, the high temperature O in the catalyzer of carbon distribution inactivation and oxygen enrichment flue gas 2reaction, realizes the regeneration of catalyzer;
The product of regenerating catalyst in fluidized bed system enters in catalyst separation system, and single stage cyclone separator separates the regenerated catalyst obtaining and sends into second group of most end unit of whirlwind Reaction Separation device in catalytic cracking of tar system, for the catalytic pyrolysis of tar.
Described catalyzer is natural crystal, charcoal or nickel-base catalyst.
Described natural crystal is rhombspar, Wingdale or peridotites.
The excess air ratio of described fluidized-bed coke firing system is 1.2-2.0.
The temperature of reaction of described fluidized-bed coke firing system is 800-1000 ℃.
Beneficial effect of the present invention is:
Biomass pyrogenation gasification technique of the present invention is that the gaseous product obtaining with gasifying biomass (comprises H 2o, CO 2, CO, H 2, CH 4deng composition) be gasifying medium, make biomass be subject to heat effect to issue solution estranged and H 2o, CO 2deng reacting, thereby obtain hydrogen-rich synthetic gas.The enforcement of this technique mainly contains two large technical barriers: (1) biomass are at H 2o, CO 2etc. the gasification reaction under atmosphere, speed is slower, is difficult to abundant reaction; (2) gasification can produce more tar.For these two problems, the present invention proposes biomass pyrogenation gasification system and catalytic cracking of tar system based on multistage cyclone reaction/separation device, respectively gasifying biomass and catalytic cracking of tar are reacted fully; And the combustion heating sand under excess air provides biomass pyrolytic required heat by coke, and obtain oxygen enrichment flue gas decaying catalyst is regenerated; In gasifying biomass medium, do not contain N 2but contain more H 2o and CO 2(can realize steam gasification and the CO of biomass 2gasification), guarantee that gasifying gas is not containing N 2and H 2content is higher, thereby obtains hydrogen-rich synthetic gas.
Accompanying drawing explanation
Fig. 1 is biomass fast pyrogenation gasification installation structural representation of the present invention;
Number in the figure:
1-hopper; 2-feed system; 3-biomass pyrogenation gasification system; 4-catalytic cracking of tar system; 5-fluidized-bed coke firing system; The hot sand separation system of 6-; 7-regenerating catalyst in fluidized bed system; 8-catalyst separation system.
Embodiment
The invention provides the apparatus and method of a kind of biomass pyrogenation gasification and catalytic cracking of tar, below in conjunction with embodiment, the present invention will be further described.
Apparatus structure in each embodiment is identical, as shown in Figure 1.
The outlet of hopper 1 is connected with the entrance of feed system 2, and feed system 2 is feeding screw; The bottom of fluidized-bed coke firing system 5 is connected with gas blower, directly feeds excess air, and its side wall lower ends also has an entrance for supplementing new sand; Hot sand separation system 6 comprises two stage cyclone separator, wherein the import of first step cyclonic separator a is connected with the outlet of fluidized-bed coke firing system 5, venting port is connected with the import of second stage cyclonic separator b, the air outlet of second stage cyclonic separator b is connected with the gas inlet, bottom of regenerating catalyst in fluidized bed system 7, discharge gate is connected with dust collecting box, directly collects flying dust; The side wall lower ends of regenerating catalyst in fluidized bed system 7 is provided with an entrance for supplementing raw catalyst; Catalyst separation system 8 is single stage cyclone separator, and its import is connected with the outlet of regenerating catalyst in fluidized bed system 7.
Biomass pyrogenation gasification system 3 comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from top to bottom, defining uppermost whirlwind Reaction Separation device is first group of first module I of whirlwind Reaction Separation device, be followed successively by first group of second unit II of whirlwind Reaction Separation device downwards, first group of most end unit N of whirlwind Reaction Separation device, wherein, N is not less than 2 integer; Catalytic cracking of tar system 4 comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from bottom to top, defining nethermost whirlwind Reaction Separation device is second group of first module i of whirlwind Reaction Separation device, upwards be followed successively by second group of second unit ii of whirlwind Reaction Separation device, second group of most end unit n of whirlwind Reaction Separation device, wherein, n is not less than 2 integer.
The opening for feed of first group of second unit II of the discharge gate of first group of first module I of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, and the inlet mouth of first group of first module I of the venting port of first group of second unit II of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected; The opening for feed of first group of the 3rd unit III of the discharge gate of first group of second unit II of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the inlet mouth of first group of second unit II of the venting port of first group of the 3rd unit III of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the like to first group of most end unit N of whirlwind Reaction Separation device; Wherein, the sidepiece of first group of first module I of whirlwind Reaction Separation device also has two opening for feeds, one of them opening for feed is connected with the outlet of feed system 2, another opening for feed is connected with the discharge gate of first step cyclonic separator a in hot sand separation system 6, and the venting port of first group of first module I of whirlwind Reaction Separation device is connected with the inlet mouth of second group of first module i of whirlwind Reaction Separation device in catalytic cracking of tar system 4; The discharge gate of first group of most end unit N of whirlwind Reaction Separation device is connected with the side wall lower ends opening of fluidized-bed coke firing system 5, the air outlet of second group of n of most end unit of whirlwind Reaction Separation device respectively with inlet mouth.
The inlet mouth of second group of second unit ii of the venting port of second group of first module i of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, and the opening for feed of second group of first module i of the discharge gate of second group of second unit ii of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected; The inlet mouth of second group of the 3rd unit iii of the venting port of second group of second unit ii of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the opening for feed of second group of second unit ii of the discharge gate of second group of the 3rd unit iii of whirlwind Reaction Separation device and whirlwind Reaction Separation device is connected, the like to second group of most end unit n of whirlwind Reaction Separation device; Wherein, the inlet mouth of second group of first module i of whirlwind Reaction Separation device is connected with the venting port of first group of first module I of whirlwind Reaction Separation device in biomass pyrogenation gasification system 3 and the side wall lower ends opening of regenerating catalyst in fluidized bed system 7 respectively with discharge gate; The opening for feed of second group of most end unit n of whirlwind Reaction Separation device is connected with the discharge gate of catalyst separation system 8, the venting port of second group of most end unit n of whirlwind Reaction Separation device is divided into two-way, one tunnel is connected with the inlet mouth of first group of most end unit N of whirlwind Reaction Separation device in biomass pyrogenation gasification system 3, the hydrogen-rich synthetic gas of another road direct collector low tar content.
Percentage composition in following embodiment, is quality percentage composition if no special instructions, and s represents second.
Embodiment 1
Adopt said apparatus take cornstalk as raw material, rhombspar carries out pyrolytic gasification and tests with catalytic cracking of tar as catalyzer, sand as thermal barrier.Cornstalk is sent into the biomass pyrogenation gasification system that contains 3 whirlwind Reaction Separation devices, inlet amount is 100kg/h, and cornstalk obtains the solid product (mixture of sand, coke and ash content) of 760 ℃ after gasification reaction; The gas mixture (tar, water vapour and the not gas mixture of condensible gas) that biomass pyrogenation gasification system generates enters the catalytic cracking of tar system that contains 3 whirlwind Reaction Separation devices, it is the water vapour of 840 ℃ and the gas mixture of condensible gas not that gas mixture obtains temperature after catalytic cracking reaction, after condensation, obtain hydrogen-rich synthetic gas, while outflow temperature is that the decaying catalyst of 720 ℃ is sent in regenerating catalyst in fluidized bed system.
The solid product of 760 ℃ (mixture of sand, coke and ash content) obtaining from biomass pyrogenation gasification system, send into an internal diameter and be 700mm, highly in the fluidized-bed coke firing system for 3m, burn, excess air ratio is 1.3, temperature of reaction is 920 ℃, the hot sand that reaction obtains is sent into the heat supply for gasification in biomass pyrogenation gasification system, and the oxygen enrichment flue gas that simultaneously obtains 920 ℃ is sent in regenerating catalyst in fluidized bed system; The decaying catalyst of 720 ℃ of discharging from catalytic cracking of tar system, after regenerating catalyst in fluidized bed system and catalyst separation system, the active catalyst that obtains 880 ℃ is sent into the catalytic pyrolysis for tar in catalytic cracking of tar system.
Embodiment 2
Adopt the device identical with embodiment 1 structure, take cornstalk as raw material, NiO/Al 2o 3for catalyzer, sand are that thermal barrier raw material carries out pyrolytic gasification and catalytic cracking of tar experiment.Cornstalk inlet amount is 100kg/h, after pyrolysis gasification system reaction, obtain the solid product (mixture of sand, coke and ash content) of 750 ℃, it is the water vapour of 800 ℃ and the gas mixture of condensible gas not that the gas mixture (tar, water vapour and the not gas mixture of condensible gas) that gasification obtains obtains temperature after catalytic cracking reaction, after condensation, obtain hydrogen-rich synthetic gas, while outflow temperature is that the decaying catalyst of 700 ℃ is sent in regenerating catalyst in fluidized bed system.
Solid product (mixture of sand, coke and ash content) burns in fluidized-bed coke firing system, excess air ratio is 1.4, temperature of reaction is 900 ℃, the hot sand that reaction obtains is sent into the heat supply for gasification in biomass pyrogenation gasification system, and the oxygen enrichment flue gas that simultaneously obtains 900 ℃ is sent in regenerating catalyst in fluidized bed system; The decaying catalyst of 700 ℃ is after regenerating catalyst in fluidized bed system and catalyst separation system, and the active catalyst that obtains 850 ℃ is sent into the catalytic pyrolysis for tar in catalytic cracking of tar system.
Embodiment 3
Compared with the device adopting with embodiment 1, the number of the whirlwind Reaction Separation device of biomass pyrogenation gasification system changes 4 into, and all the other structures are identical; Take rice husk as raw material, NiO/SiO 2for catalyzer, sand are that thermal barrier carries out pyrolytic gasification and catalytic cracking of tar experiment.Rice husk inlet amount is 100kg/h, after pyrolysis gasification system reaction, obtain the solid product (mixture of sand, coke and ash content) of 700 ℃, it is the water vapour of 770 ℃ and the gas mixture of condensible gas not that the gas mixture (tar, water vapour and the not gas mixture of condensible gas) that gasification obtains obtains temperature after catalytic cracking reaction, after condensation, obtain hydrogen-rich synthetic gas, while outflow temperature is that the decaying catalyst of 680 ℃ is sent in regenerating catalyst in fluidized bed system.
Solid product (mixture of sand, coke and ash content) burns in fluidized-bed coke firing system, excess air ratio is 1.5, temperature of reaction is 880 ℃, the hot sand that reaction obtains is sent into the heat supply for gasification in biomass pyrogenation gasification system, and the oxygen enrichment flue gas that simultaneously obtains 880 ℃ is sent in regenerating catalyst in fluidized bed system; The decaying catalyst of 680 ℃ is after regenerating catalyst in fluidized bed system and catalyst separation system, and the active catalyst that obtains 810 ℃ is sent into the catalytic pyrolysis for tar in catalytic cracking of tar system.
Embodiment 4
Compared with the device adopting with embodiment 1, the number of the whirlwind Reaction Separation device of catalytic cracking of tar system changes 4 into, and all the other structures are identical; Take sawdust as raw material, peridotites carries out pyrolytic gasification and catalytic cracking of tar experiment as catalyzer, sand as thermal barrier.Sawdust inlet amount is 100kg/h, after pyrolysis gasification system reaction, obtain the solid product (mixture of sand, coke and ash content) of 730 ℃, it is the water vapour of 760 ℃ and the gas mixture of condensible gas not that the gas mixture (tar, water vapour and the not gas mixture of condensible gas) that gasification obtains obtains temperature after catalytic cracking reaction, after condensation, obtain hydrogen-rich synthetic gas, while outflow temperature is that the decaying catalyst of 660 ℃ is sent in regenerating catalyst in fluidized bed system.
Solid product (mixture of sand, coke and ash content) burns in fluidized-bed coke firing system, excess air ratio is 1.4, temperature of reaction is 910 ℃, the hot sand that reaction obtains is sent into the heat supply for gasification in biomass pyrogenation gasification system, and the oxygen enrichment flue gas that simultaneously obtains 910 ℃ is sent in regenerating catalyst in fluidized bed system; The decaying catalyst of 660 ℃ is after regenerating catalyst in fluidized bed system and catalyst separation system, and the active catalyst that obtains 820 ℃ is sent into the catalytic pyrolysis for tar in catalytic cracking of tar system.

Claims (7)

1. the device of a biomass pyrogenation gasification and catalytic cracking of tar, comprise hopper (1), feed system (2), biomass pyrogenation gasification system (3), catalytic cracking of tar system (4), fluidized-bed coke firing system (5), hot sand separation system (6), regenerating catalyst in fluidized bed system (7), catalyst separation system (8), it is characterized in that:
The outlet of described hopper (1) is connected with the entrance of feed system (2); The bottom of fluidized-bed coke firing system (5) is connected with gas blower, directly feeds excess air, and its side wall lower ends also has an entrance for supplementing new sand; Hot sand separation system (6) comprises two stage cyclone separator, wherein the import of first step cyclonic separator (a) is connected with the outlet of fluidized-bed coke firing system (5), the venting port of first step cyclonic separator (a) is connected with the import of second stage cyclonic separator (b), the air outlet of second stage cyclonic separator (b) is connected with the gas inlet, bottom of regenerating catalyst in fluidized bed system (7), the discharge gate of second stage cyclonic separator (b) is connected with dust collecting box, directly collects flying dust; The side wall lower ends of regenerating catalyst in fluidized bed system (7) is provided with an entrance for supplementing raw catalyst; Catalyst separation system (8) is single stage cyclone separator, and its import is connected with the outlet of regenerating catalyst in fluidized bed system (7);
Described biomass pyrogenation gasification system (3) comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from top to bottom, defining uppermost whirlwind Reaction Separation device is first group of first module of whirlwind Reaction Separation device (I), be followed successively by first group of second unit of whirlwind Reaction Separation device (II) downwards, until first group of most end unit of whirlwind Reaction Separation device (N), wherein, N is not less than 2 integer;
Described catalytic cracking of tar system (4) comprises multiple whirlwind Reaction Separation devices; Described multiple whirlwind Reaction Separation devices are connected from bottom to top, define nethermost whirlwind Reaction Separation device and be second group of first module of whirlwind Reaction Separation device (i), upwards be followed successively by second group of second unit of whirlwind Reaction Separation device (ii), until second group of most end unit of whirlwind Reaction Separation device (n), wherein, n is not less than 2 integer;
The discharge gate of described first group of first module of whirlwind Reaction Separation device (I) is connected with the opening for feed of first group of second unit of whirlwind Reaction Separation device (II), and the venting port of first group of second unit of whirlwind Reaction Separation device (II) is connected with the inlet mouth of first group of first module of whirlwind Reaction Separation device (I); The discharge gate of first group of second unit of whirlwind Reaction Separation device (II) is connected with the opening for feed of first group of the 3rd unit of whirlwind Reaction Separation device (III), the venting port of first group of the 3rd unit of whirlwind Reaction Separation device (III) is connected with the inlet mouth of first group of second unit of whirlwind Reaction Separation device (II), the like to first group of most end unit of whirlwind Reaction Separation device (N); Wherein, the sidepiece of first group of first module of whirlwind Reaction Separation device (I) also has two opening for feeds, one of them opening for feed is connected with the outlet of feed system (2), another opening for feed is connected with the discharge gate of first step cyclonic separator (a) in hot sand separation system (6), and the venting port of first group of first module of whirlwind Reaction Separation device (I) is connected with the inlet mouth (i) of second group of first module of whirlwind Reaction Separation device in catalytic cracking of tar system (4); The discharge gate of first group of most end unit of whirlwind Reaction Separation device (N) is connected with the side wall lower ends opening of fluidized-bed coke firing system (5), the air outlet of second group of most end unit of whirlwind Reaction Separation device (n) respectively with inlet mouth;
Second group of first module of whirlwind Reaction Separation device venting port is (i) connected with second group of second unit of whirlwind Reaction Separation device inlet mouth (ii), and second group of second unit of whirlwind Reaction Separation device discharge gate is (ii) connected with second group of first module of whirlwind Reaction Separation device opening for feed (i); Second group of the 3rd unit inlet mouth (iii) of second group of second unit of whirlwind Reaction Separation device venting port (ii) and whirlwind Reaction Separation device is connected, second group of the 3rd unit discharge gate (iii) of whirlwind Reaction Separation device is connected with second group of second unit of whirlwind Reaction Separation device opening for feed (ii), the like to second group of most end unit of whirlwind Reaction Separation device (n); Wherein, second group of first module of whirlwind Reaction Separation device inlet mouth is (i) connected with the side wall lower ends opening of regenerating catalyst in fluidized bed system (7) with the venting port of first group of first module of whirlwind Reaction Separation device (I) in biomass pyrogenation gasification system (3) respectively with discharge gate; The opening for feed of second group of most end unit of whirlwind Reaction Separation device (n) is connected with the discharge gate of catalyst separation system (8), the venting port of second group of most end unit of whirlwind Reaction Separation device (n) is divided into two-way, one tunnel is connected with the inlet mouth of first group of most end unit of whirlwind Reaction Separation device (N) in biomass pyrogenation gasification system (3), the hydrogen-rich synthetic gas of another road direct collector low tar content.
2. the device of biomass pyrogenation gasification according to claim 1 and catalytic cracking of tar, is characterized in that: described feed system (2) is feeding screw.
3. biomass pyrogenation gasification and the catalytic cracking of tar method based on claim 1-2 any one device, is characterized in that having following steps:
Biomass material is sent into first group of first module of whirlwind Reaction Separation device (I) of biomass pyrogenation gasification system (3) through hopper (1) and feed system (2); Meanwhile, carry out the high temperature sand of first step cyclone firing separator (a) in self-heating sand separation system (6), the high-temperature gas of first group of second unit of whirlwind Reaction Separation device (II) enters in first group of first module of whirlwind Reaction Separation device (I) together; Biomass material be heated and gasifying medium effect under gasification generate solid coke, non-condensable gases, water vapour and tar, wherein solid coke and hot sand are in the multistage cyclone Reaction Separation device of biomass pyrogenation gasification system (3), motion from top to bottom generating gasification reaction under gasifying medium effect, the mixture of solid coke, ash content and the sand finally obtaining enters in fluidized-bed coke firing system (5);
The gas mixture of not condensable gases, water vapour and tar that in biomass pyrogenation gasification system (3), first group of first module of whirlwind Reaction Separation device (I) venting port is discharged enters the middle second group of first module of whirlwind Reaction Separation device of catalytic cracking of tar system (4) (i), meanwhile, from second group of second unit of whirlwind Reaction Separation device catalyzer (ii), also enter together second group of first module of whirlwind Reaction Separation device (i); Gas mixture is operation from bottom to top in the multistage cyclone Reaction Separation device of catalytic cracking of tar system (4), under top-down catalyst action, there is catalytic cracking reaction in tar wherein, finally obtain the not gas mixture of condensable gases and water vapour, described gas mixture part is sent into first group of most end unit of whirlwind Reaction Separation device (N) in biomass pyrogenation gasification system (3) as gasifying medium and is recycled, and part obtains the hydrogen-rich synthetic gas of utmost point low tar content after cooling in addition;
The mixture of solid coke, sand and ash content that in biomass pyrogenation gasification system (3), first group of most end unit of whirlwind Reaction Separation device (N) obtains is sent into fluidized-bed coke firing system (5), and feeds excess air burner coke heating sand;
The products of combustion of fluidized-bed coke firing system (5) enters in hot sand separation system (6), first step cyclonic separator (a) separates the hot sand obtaining and sends in first group of first module of whirlwind Reaction Separation device (I) of biomass pyrogenation gasification system (3), as thermal barrier, provides biomass pyrolytic required heat;
The oxygen enrichment flue gas that in hot sand separation system (6), second stage cyclonic separator (b) outlet obtains passes in regenerating catalyst in fluidized bed system (7), and the catalyzer of carbon distribution inactivation reacts with the high temperature O2 in oxygen enrichment flue gas, realizes the regeneration of catalyzer;
The product of regenerating catalyst in fluidized bed system (7) enters in catalyst separation system (8), single stage cyclone separator separates the regenerated catalyst obtaining and sends into second group of most end unit of whirlwind Reaction Separation device (n) in catalytic cracking of tar system (4), for the catalytic pyrolysis of tar.
4. biomass pyrogenation gasification according to claim 3 and catalytic cracking of tar method, is characterized in that: described catalyzer is natural crystal, charcoal or nickel-base catalyst.
5. biomass pyrogenation gasification according to claim 4 and catalytic cracking of tar method, is characterized in that: described natural crystal is rhombspar, Wingdale or peridotites.
6. biomass pyrogenation gasification according to claim 3 and catalytic cracking of tar method, is characterized in that: the excess air ratio of described fluidized-bed coke firing system (5) is 1.2-2.0.
7. biomass pyrogenation gasification according to claim 3 and catalytic cracking of tar method, is characterized in that: the temperature of reaction of described fluidized-bed coke firing system (5) is 800-1000 ℃.
CN201310086428.8A 2013-03-18 2013-03-18 Biomass pyrolysis gasification and tar catalytic cracking device and method Active CN103146432B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310086428.8A CN103146432B (en) 2013-03-18 2013-03-18 Biomass pyrolysis gasification and tar catalytic cracking device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310086428.8A CN103146432B (en) 2013-03-18 2013-03-18 Biomass pyrolysis gasification and tar catalytic cracking device and method

Publications (2)

Publication Number Publication Date
CN103146432A CN103146432A (en) 2013-06-12
CN103146432B true CN103146432B (en) 2014-05-07

Family

ID=48544758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310086428.8A Active CN103146432B (en) 2013-03-18 2013-03-18 Biomass pyrolysis gasification and tar catalytic cracking device and method

Country Status (1)

Country Link
CN (1) CN103146432B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725328B (en) * 2014-01-03 2015-02-11 东南大学 Double-rapid fluidized bed gasification method and device for biomasses
CN104031693B (en) * 2014-05-21 2015-11-18 梁鹏 Pyrolysis of coal gas sweetening, dedusting, upgrading integrated apparatus and technique
CN104017609B (en) * 2014-05-21 2015-11-25 山东科技大学 A kind of coal pyrolysis gas body dry cleaning, cracking and cut retrieving arrangement and technique
CN105885948B (en) * 2014-11-03 2020-01-31 胥利先 Cyclone separation type biomass gasification device
CN105885944A (en) * 2014-11-03 2016-08-24 胥利先 Biomass online catalytic gasification method and system
CN106422557A (en) * 2016-11-01 2017-02-22 大唐环境产业集团股份有限公司 Filter element for removing biomass gasification tar, filter system and method
CN109320401B (en) * 2018-10-31 2021-08-10 南京师范大学 Coupling CO by straw gasification2System and method for synthesizing ethanol by catalytic hydrogenation
CN109456037B (en) * 2018-11-07 2021-07-23 广东石油化工学院 Microwave absorbent for hydrogen production by microwave catalytic reforming tar, and preparation method and application thereof
CN111635785A (en) * 2020-05-30 2020-09-08 肖孟辉 Medium temperature pyrolysis device structure of living beings pyrolysis gas tar
CN114479950B (en) * 2020-10-27 2023-07-28 中国石油化工股份有限公司 Biomass pyrolysis gasification hydrogen production method and system
CN113293035A (en) * 2021-06-30 2021-08-24 河北科技大学 Device and method for direct catalytic cracking or reforming of high-temperature pyrolysis gas of carbon-containing substance
CN116022797A (en) * 2022-12-05 2023-04-28 嘉禾聚能(北京)科技有限公司 Method and system for preparing white carbon black by using rice hulls

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435369A (en) * 2002-09-06 2003-08-13 中国科学院广州能源研究所 Method and apparatus for producing hydrogen by catalytic cracking of biologic matter
US20100224835A1 (en) * 2008-12-19 2010-09-09 Esteban Chornet Production of synthesis gas through controlled oxidation of biomass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403366A (en) * 1993-06-17 1995-04-04 Texaco Inc. Partial oxidation process for producing a stream of hot purified gas
CN101880552B (en) * 2010-06-29 2013-03-27 中国科学院广州能源研究所 Gasification device and method for preparing hydrogen-rich synthetic gas from biomass
WO2012059019A1 (en) * 2010-11-01 2012-05-10 广州迪森热能技术股份有限公司 Biomass gasification complete apparatus and system thereof
CN102154031A (en) * 2011-03-08 2011-08-17 华北电力大学 Biomass gasification system
CN202543155U (en) * 2012-03-08 2012-11-21 华北电力大学 Combined circulation system for gasified combustion and catalyst regeneration by adopting heat carrier as basis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435369A (en) * 2002-09-06 2003-08-13 中国科学院广州能源研究所 Method and apparatus for producing hydrogen by catalytic cracking of biologic matter
US20100224835A1 (en) * 2008-12-19 2010-09-09 Esteban Chornet Production of synthesis gas through controlled oxidation of biomass
CN102356143A (en) * 2008-12-19 2012-02-15 埃讷肯公司 Production of synthesis gas through controlled oxidation of biomass

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
安璐等.生物质快速裂解油蒸汽催化重整制氢研究进展.《太阳能学报》.2008,第29卷(第6期),第745-750页.
生物质快速热解制备液体燃料;陆强等;《化学进展》;20070831;第19卷(第Z2期);第1064-1071页 *
生物质快速裂解油蒸汽催化重整制氢研究进展;安璐等;《太阳能学报》;20080630;第29卷(第6期);第745-750页 *
陆强等.生物质快速热解制备液体燃料.《化学进展》.2007,第19卷(第Z2期),第1064-1071页.

Also Published As

Publication number Publication date
CN103146432A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN103146432B (en) Biomass pyrolysis gasification and tar catalytic cracking device and method
CN103740389B (en) The multi-production process of low-rank coal cascade utilization
CN102424359B (en) Method for preparing synthetic gas by three-phase type biomass pyrolysis-gasification-catalytic reforming
CN103011157B (en) System and method for producing activated carbon and hydrogen through low-temperature pyrolysis of biomass steam
CN102010728B (en) Method for preparing semicoke, empyreumatic oil and coal gas by pyrolyzing coal
CN101024782B (en) Dense-phase conveying-bed coal pressurizing gasifying apparatus and method
CN102965131B (en) Efficient and clean utilization technology for highly volatile young coal
CN102977927A (en) Apparatus for preparing synthesis gas based on dual fluidized bed biomass gasification and preparation method thereof
CN203128183U (en) System for producing active carbon and hydrogen by biomass steam low-temperature pyrolysis
CN103013576A (en) IGCC (Integrated Gasification Combined Cycle) poly-generation device and method based on pyrolysis and gasification of low metamorphic powdered coal
CN102942943B (en) Oil shale gas-solid heat carrier dry distillation and semicoke combustion electricity generation integral process
CN102010730A (en) Biomass spiral pyrolytic process and antipyretic device
CN103031139B (en) Device and method for preparing bio-oil through rapid biomass pyrolysis
CN101280201A (en) Full cycle dry distillation process and system for producing shale oil from oil shale (coal)
CN102517065A (en) Self-heating type biomass fast pyrolysis liquefying device
CN201241071Y (en) Single-bed self-heating type thermal decomposition gasification combusting reactor
CN106367119A (en) Pyrolysis and biomass gas catalytic reforming reactor and application thereof
CN104232127A (en) Internal and external heating combination type compound destructive distillation method for granular coals
CN102964884B (en) Hot cracking method process for preparing carbon black by using co-production of tail gas
CN202246560U (en) Fluidized bed pulverized coal pyrolyzation device taking cycling coal gas heat as carrier
CN204529748U (en) A kind of fine particle four sections of moving-bed retorting furnaces
CN104479742B (en) Biomass gas preparation system
CN202440467U (en) Self-heating biomass flash pyrolysis liquefying device
CN102260538B (en) Method and device for air-floatation flow-state high-temperature heat-transfer gasification of biomass
CN206278922U (en) The system that a kind of sludge prepares activated carbon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant