CN103130496B - Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method - Google Patents

Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method Download PDF

Info

Publication number
CN103130496B
CN103130496B CN201310096891.0A CN201310096891A CN103130496B CN 103130496 B CN103130496 B CN 103130496B CN 201310096891 A CN201310096891 A CN 201310096891A CN 103130496 B CN103130496 B CN 103130496B
Authority
CN
China
Prior art keywords
hours
lialsi
dielectric
dielectric constant
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310096891.0A
Other languages
Chinese (zh)
Other versions
CN103130496A (en
Inventor
方亮
邓婧
唐莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGXI NEW FUTURE INFORMATION INDUSTRY Co Ltd
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201310096891.0A priority Critical patent/CN103130496B/en
Publication of CN103130496A publication Critical patent/CN103130496A/en
Application granted granted Critical
Publication of CN103130496B publication Critical patent/CN103130496B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低介电常数微波介电陶瓷LiAlSi2O6及其制备方法。介电陶瓷材料的组成为LiAlSi2O6。(1)将纯度为99.9%以上的Li2CO3、Al2O3和SiO2的原始粉末按LiAlSi2O6的组成配料;(2)将步骤(1)原料湿式球磨混合12小时,溶剂为蒸馏水,烘干后在1000℃大气气氛中预烧12小时;(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在1150~1180℃大气气氛中烧结8小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,剂量占粉末总量的3%。本发明制备的陶瓷在1150~1180℃烧结良好,其介电常数达到5.1~5.3,品质因数Qf值高达101000-125000 GHz,谐振频率温度系数小,在工业上有着极大的应用价值。The invention discloses a low dielectric constant microwave dielectric ceramic LiAlSi 2 O 6 and a preparation method thereof. The composition of the dielectric ceramic material is LiAlSi 2 O 6 . (1) Mix the original powder of Li 2 CO 3 , Al 2 O 3 and SiO 2 with a purity of more than 99.9% according to the composition of LiAlSi 2 O 6 ; (2) Mix the raw materials in step (1) by wet ball milling for 12 hours, solvent It is distilled water, pre-fired in the atmosphere at 1000°C for 12 hours after drying; (3) After adding a binder to the powder prepared in step (2) and granulating, it is then pressed into shape, and finally in the atmosphere at 1150~1180°C Sintering in the atmosphere for 8 hours; the binder uses a polyvinyl alcohol solution with a mass concentration of 5%, and the dosage accounts for 3% of the total powder. The ceramic prepared by the invention is well sintered at 1150-1180°C, its dielectric constant reaches 5.1-5.3, its quality factor Qf value is as high as 101000-125000 GHz, and its resonant frequency temperature coefficient is small, so it has great application value in industry.

Description

低介电常数微波介电陶瓷LiAlSi2O6及其制备方法Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method

技术领域 technical field

本发明涉及在微波频率使用的介质基板、谐振器与滤波器等微波元器件的介电陶瓷材料及其制备方法。 The invention relates to a dielectric ceramic material for microwave components such as dielectric substrates, resonators and filters used at microwave frequencies and a preparation method thereof.

背景技术 Background technique

微波介电陶瓷是指应用于微波频段(主要是UHF、SHF频段)电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通讯中被广泛用作谐振器、滤波器、介质基片和介质导波回路等元器件,是现代通信技术的关键基础材料,已在便携式移动电话、汽车电话、无绳电话、电视卫星接受器和军事雷达等方面有着十分重要的应用,在现代通讯工具的小型化和集成化过程中正发挥着越来越大的作用。 Microwave dielectric ceramics refer to ceramics that are used as dielectric materials in circuits in the microwave frequency band (mainly UHF and SHF bands) and perform one or more functions. They are widely used as resonators, filters, and dielectric substrates in modern communications. Components such as chips and dielectric waveguide circuits are the key basic materials of modern communication technology. They have been used in portable mobile phones, car phones, cordless phones, TV satellite receivers and military radars. They are used in modern communication tools. is playing an increasing role in the process of miniaturization and integration.

应用于微波频段的介电陶瓷,应满足如下介电特性的要求:(1)系列化介电常数εr以适应不同频率及不同应用场合的要求;(2)高的品质因数Q值或介质损耗tanδ以降低噪音,一般要求Qf≥3000 GHz;(3) 谐振频率的温度系数tf尽可能小以保证器件具有好的热稳定性,一般要求-10/℃≤τ?≤+10 ppm/℃。国际上从20世纪30年代末就有人尝试将电介质材料应用于微波技术。 Dielectric ceramics used in the microwave frequency band should meet the following requirements for dielectric properties: (1) Serialized dielectric constant ε r to meet the requirements of different frequencies and different applications; (2) High quality factor Q value or dielectric Loss tanδ to reduce noise, generally require Qf ≥ 3000 GHz; (3) The temperature coefficient t f of the resonant frequency should be as small as possible to ensure good thermal stability of the device, generally require -10/℃≤τ ? ≤+10 ppm/ ℃. Internationally, since the late 1930s, there have been attempts to apply dielectric materials to microwave technology.

根据相对介电常数er的大小与使用频段的不同,通常可将已被开发和正在开发的微波介质陶瓷分为4类。 According to the relative permittivity e r and the different frequency bands used, the microwave dielectric ceramics that have been developed and are being developed can usually be divided into 4 categories.

(1)超低介电常数微波介电陶瓷,主要代表是Al2O3-TiO2、Y2BaCuO5、MgAl2O4和Mg2SiO4等,其εr≤20,品质因数Q×f≥50000GHz,τ?≤5 ppm/°C。主要用于微波基板以及高端微波元器件。 (1) Ultra-low dielectric constant microwave dielectric ceramics, mainly represented by Al 2 O 3 -TiO 2 , Y 2 BaCuO 5 , MgAl 2 O 4 and Mg 2 SiO 4 , etc., whose ε r ≤ 20, quality factor Q× f≥50000GHz, τ 5 ppm/°C. Mainly used for microwave substrates and high-end microwave components.

(2)低εr和高Q值的微波介电陶瓷,主要是BaO-MgO-Ta2O5, BaO-ZnO-Ta2O5或BaO-MgO-Nb2O5,  BaO-ZnO-Nb2O5系统或它们之间的复合系统MWDC材料。其εr=25~30, Q=(1~2)×104(在f≥10 GHz下), τ?≈0。主要应用于f≥8 GHz的卫星直播等微波通信机中作为介质谐振器件。 (2) Microwave dielectric ceramics with low ε r and high Q value, mainly BaO-MgO-Ta 2 O 5 , BaO-ZnO-Ta 2 O 5 or BaO-MgO-Nb 2 O 5 , BaO-ZnO-Nb 2 O 5 system or composite system MWDC materials between them. Its ε r =25~30, Q=(1~2)×10 4 (at f≥10 GHz), τ ? ≈0. It is mainly used as a dielectric resonator device in microwave communication devices such as satellite broadcasting with f≥8 GHz.

(3)中等εr和Q值的微波介电陶瓷,主要是以BaTi4O9、Ba2Ti9O20和(Zr、Sn)TiO4等为基的MWDC材料,其εr=35~40,Q=(6~9)×103(在f=3~-4GHz下),τ?≤5 ppm/°C。主要用于4~8 GHz 频率范围内的微波军用雷达及通信系统中作为介质谐振器件。 (3) Microwave dielectric ceramics with medium ε r and Q value, mainly MWDC materials based on BaTi 4 O 9 , Ba 2 Ti 9 O 20 and (Zr, Sn) TiO 4 , whose ε r = 35~ 40, Q=(6~9)×10 3 (at f=3~-4GHz), τ 5 ppm/°C. It is mainly used as a dielectric resonant device in microwave military radar and communication systems in the frequency range of 4-8 GHz.

(4)高εr而Q值较低的微波介电陶瓷,主要用于0.8~4GHz 频率范围内民用移动通讯系统,这也是微波介电陶瓷研究的重点。80年代以来,Kolar、Kato等人相继发现并研究了类钙钛矿钨青铜型BaO—Ln2O3—TiO2系列(Ln=La, Sm, Nd, Pr等,简称BLT系)、复合钙钛矿结构CaO—Li2O—Ln2O3—TiO2系列、铅基系列材料、Ca1-xLn2x/3TiO3系等高εr微波介电陶瓷,其中BLT体系的BaO—Nd2O3—TiO2材料介电常数达到90,铅基系列 (Pb,Ca)ZrO3介电常数达到105。 (4) Microwave dielectric ceramics with high ε r and low Q value are mainly used in civil mobile communication systems in the frequency range of 0.8-4GHz, which is also the focus of research on microwave dielectric ceramics. Since the 1980s, Kolar, Kato and others have successively discovered and studied perovskite-like tungsten bronze BaO—Ln 2 O 3 —TiO 2 series (Ln=La, Sm, Nd, Pr, etc., referred to as BLT series), composite calcium Titanite structure CaO—Li 2 O—Ln 2 O 3 —TiO 2 series, lead-based series materials, Ca 1-x Ln 2x/3 TiO 3 series and other high ε r microwave dielectric ceramics, among which BaO—Nd of BLT system The dielectric constant of 2 O 3 —TiO 2 materials reaches 90, and the dielectric constant of lead-based series (Pb,Ca)ZrO 3 reaches 105.

以上这些材料体系的烧结温度一般高于1300°C,不能直接与Ag和Cu 等低熔点金属共烧形成多层陶瓷电容器。近年来,随着低温共烧陶瓷技术(Low Temperature Co-fired Ceramics, LTCC)的发展和微波多层器件发展的要求,国内外的研究人员对一些低烧体系材料进行了广泛的探索和研究,主要是采用微晶玻璃或玻璃-陶瓷复合材料体系,因低熔点玻璃相具有相对较高的介质损耗,玻璃相的存在大大提高了材料的介质损耗。因此研制无玻璃相的可低烧微波介质陶瓷材料是当前研究的重点。 The sintering temperature of the above material systems is generally higher than 1300°C, and they cannot be directly co-fired with low melting point metals such as Ag and Cu to form multilayer ceramic capacitors. In recent years, with the development of low temperature co-fired ceramics technology (Low Temperature Co-fired Ceramics, LTCC) and the requirements of the development of microwave multilayer devices, researchers at home and abroad have carried out extensive exploration and research on some low-fired system materials, mainly It adopts glass-ceramic or glass-ceramic composite material system, because the low melting point glass phase has a relatively high dielectric loss, the existence of the glass phase greatly improves the dielectric loss of the material. Therefore, the development of low-fire microwave dielectric ceramic materials without glass phase is the focus of current research.

在探索与开发新型可低烧微波介电陶瓷材料的过程中,固有烧结温度低的Li基化合物、Bi基化合物、钨酸盐体系化合物和碲酸盐体系化合物等材料体系得到了广泛关注与研究,其中大量的探索研究集中在Li基二元或三元化合物上,并且开发出了如Li2TiO3、Li3NbO4、Li2MoO4、Li2MTi3O(M=Mg、Zn)和Li2MgSiO4等系列性能良好的微波介质陶瓷,但是烧结温度低的低介电常数微波介质陶瓷的体系仍然比较有限,这在很大程度上限制了低温共烧技术及微波多层器件的发展。文献[Günther J. Redhammer, Georg Roth, Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Zeitschrift für Kristallographie - Crystalline Materials: 2004,219(5):278-294]报道了锂辉石LiAlSi2O6的晶体结构,考虑到目前还未见关于锂辉石LiAlSi2O6的陶瓷制备与微波介电性能的研究报道,我们对LiAlSi2O6陶瓷进行了烧结特性与微波介电性能研究,结果发现该陶瓷具有优异的综合微波介电性能同时烧结温度低于1200°C,可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造。 In the process of exploring and developing new low-firing microwave dielectric ceramic materials, material systems such as Li-based compounds, Bi-based compounds, tungstate compounds and tellurate-based compounds with inherently low sintering temperatures have received extensive attention and research. A large number of exploratory studies have focused on Li-based binary or ternary compounds, and developed such as Li 2 TiO 3 , Li 3 NbO 4 , Li 2 MoO 4 , Li 2 MTi 3 O 8 (M=Mg, Zn) and Li 2 MgSiO 4 series of microwave dielectric ceramics with good performance, but the system of low dielectric constant microwave dielectric ceramics with low sintering temperature is still relatively limited, which largely limits the development of low-temperature co-firing technology and microwave multilayer devices. develop. Literature[Günther J. Redhammer, Georg Roth, Structural variation and crystal chemistry of LiMe 3+ Si 2 O 6 clinopyroxenes Me 3+ = Al, Ga, Cr, V, Fe, Sc and In. Zeitschrift für Kristallographie - Crystalline Materials: 2004 ,219(5):278-294] reported the crystal structure of spodumene LiAlSi 2 O 6 , considering that there is no research report on the ceramic preparation and microwave dielectric properties of spodumene LiAlSi 2 O 6 , we The sintering characteristics and microwave dielectric properties of LiAlSi 2 O 6 ceramics were studied. It was found that the ceramics have excellent comprehensive microwave dielectric properties and the sintering temperature is lower than 1200 ° C. It can be widely used in various dielectric substrates, resonators and Manufacture of microwave devices such as filters.

发明内容 Contents of the invention

本发明的目的是提供一种具有低介电常数、低损耗与良好的热稳定性的微波介电陶瓷材料及其制备方法。 The object of the present invention is to provide a microwave dielectric ceramic material with low dielectric constant, low loss and good thermal stability and its preparation method.

本发明的介电陶瓷材料的组成为LiAlSi2O6The composition of the dielectric ceramic material of the present invention is LiAlSi 2 O 6 .

本介电陶瓷材料的制备方法步骤为: The preparation method steps of this dielectric ceramic material are:

(1)将纯度为99.9%以上的Li2CO3、Al2O3和SiO2的原始粉末按LiAlSi2O6的组成配料。 (1) The raw powders of Li 2 CO 3 , Al 2 O 3 and SiO 2 with a purity of more than 99.9% are mixed according to the composition of LiAlSi 2 O 6 .

(2)将步骤(1)原料湿式球磨混合12小时,溶剂为蒸馏水,烘干后在1000℃大气气氛中预烧12小时。 (2) Mix the raw materials in step (1) by wet ball milling for 12 hours. The solvent is distilled water. After drying, pre-calcine in the atmosphere at 1000°C for 12 hours.

(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在1150~1180℃大气气氛中烧结8小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,剂量占粉末总量的3%。 (3) Add a binder to the powder prepared in step (2) and granulate it, then press it into shape, and finally sinter it in the air atmosphere at 1150-1180°C for 8 hours; the binder is used at a mass concentration of 5 % polyvinyl alcohol solution, the dosage accounts for 3% of the total powder.

本发明制备的陶瓷在1150~1180℃烧结良好,其介电常数达到5.1~5.3,品质因数Qf值高达101000-125000 GHz,谐振频率温度系数小,在工业上有着极大的应用价值。 The ceramic prepared by the invention is well sintered at 1150-1180°C, its dielectric constant reaches 5.1-5.3, the quality factor Qf value is as high as 101000-125000 GHz, and the temperature coefficient of resonance frequency is small, so it has great application value in industry.

具体实施方式 Detailed ways

实施例: Example:

表1示出了构成本发明的不同烧结温度的3个具体实施例及其微波介电性能。其制备方法如上所述,用圆柱介质谐振器法进行微波介电性能的评价。 Table 1 shows three specific examples of different sintering temperatures constituting the present invention and their microwave dielectric properties. The preparation method is as above, and the microwave dielectric performance is evaluated by the cylindrical dielectric resonator method.

本陶瓷可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造,可满足移动通信、卫星通信等系统的技术需要。 The ceramics can be widely used in the manufacture of microwave devices such as various dielectric substrates, resonators and filters, and can meet the technical needs of mobile communication, satellite communication and other systems.

本发明决不限于以上实施例,具有与Al相似结构与化学性质的元素如Fe、V、Gd、In和Cr等也可以做出与本发明类似晶体结构与性能的的介电陶瓷。 The present invention is by no means limited to the above examples, and elements having similar structures and chemical properties to Al, such as Fe, V, Gd, In, and Cr, can also be used to make dielectric ceramics with similar crystal structures and properties to those of the present invention.

Claims (1)

1. lithium base composite oxidate is as an application for dielectric constant microwave dielectric ceramic, it is characterized in that consisting of of described lithium base composite oxidate: LiAlSi 2o 6;
Preparation method's step of described lithium base composite oxidate is:
(1) be the Li of more than 99.9% by purity 2cO 3, Al 2o 3and SiO 2starting powder press LiAlSi 2o 6composition batching;
(2) step (1) raw material wet ball-milling is mixed 12 hours, solvent is distilled water, pre-burning 12 hours in 1000 DEG C of air atmosphere after oven dry;
(3) in the powder that step (2) is obtained, binding agent is added and after granulation, then compression moulding, finally in 1150 ~ 1180 DEG C of air atmosphere, sinter 8 hours; Described binding agent adopts mass concentration to be the polyvinyl alcohol solution of 5%, and dosage accounts for 3% of powder total amount.
CN201310096891.0A 2013-03-25 2013-03-25 Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method Active CN103130496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310096891.0A CN103130496B (en) 2013-03-25 2013-03-25 Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310096891.0A CN103130496B (en) 2013-03-25 2013-03-25 Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method

Publications (2)

Publication Number Publication Date
CN103130496A CN103130496A (en) 2013-06-05
CN103130496B true CN103130496B (en) 2015-05-20

Family

ID=48491008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310096891.0A Active CN103130496B (en) 2013-03-25 2013-03-25 Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method

Country Status (1)

Country Link
CN (1) CN103130496B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496959B (en) * 2013-09-23 2015-01-07 桂林理工大学 Low-temperature sinterable microwave dielectric ceramic Li2Ca2Si2O7 and its preparation method
CN103896572B (en) * 2014-04-12 2015-07-22 桂林理工大学 Temperature-stable microwave dielectric ceramic Li3PO4 capable of low-temperature sintering and its preparation method
CN103922721B (en) * 2014-04-12 2015-07-22 桂林理工大学 Low-temperature sinterable microwave dielectric ceramic Li4P2O7 and its preparation method
CN104311039B (en) * 2014-10-21 2016-04-06 桂林理工大学 Ultralow dielectric microwave dielectric ceramic Li 2siAl 3n 5and preparation method thereof
CN104311037B (en) * 2014-10-22 2016-07-06 桂林理工大学 Ultra-low dielectric constant microwave dielectric ceramic AlSi3V3N10 and its preparation method
CN104478412B (en) * 2014-11-06 2016-08-24 桂林理工大学 Ultra-low dielectric constant microwave dielectric ceramic InAlMg6O9 and its preparation method
CN104446375B (en) * 2014-11-15 2016-08-17 桂林理工大学 Temperature stable ultra-low dielectric constant microwave dielectric ceramic BaLa0.8Nd1.2B10O19
CN104478408B (en) * 2014-11-26 2016-06-29 桂林理工大学 Ultra-low dielectric constant microwave dielectric ceramic Li3Si2B3O10 and its preparation method
CN104478409B (en) * 2014-12-02 2016-06-29 桂林理工大学 Temperature stable microwave dielectric ceramic Li2AlB3O7 and its preparation method
CN104496422A (en) * 2014-12-02 2015-04-08 桂林理工大学 Temperature stable microwave dielectric ceramic Li3Mg2BO5 sintered at low temperature and its preparation method
CN104446379B (en) * 2014-12-27 2016-01-13 桂林理工大学 A temperature-stable ultra-low dielectric constant microwave dielectric ceramic and its preparation method
CN105948729A (en) * 2016-06-20 2016-09-21 桂林理工大学 Temperature stable ultra-low dielectric constant microwave dielectric ceramic LiBSiO4
CN106145900A (en) * 2016-06-26 2016-11-23 桂林理工大学 High quality factor temperature stable microwave dielectric ceramic Li5Mg8Ga5Si9O36 and its preparation method
CN106145923A (en) * 2016-06-26 2016-11-23 桂林理工大学 High quality factor temperature stable microwave dielectric ceramic Li5Cu8Al5Si9O36 and its preparation method
CN105967667A (en) * 2016-06-26 2016-09-28 桂林理工大学 Application of LiInSiO4 as Low Loss Temperature Stable Microwave Dielectric Ceramic
CN106116565A (en) * 2016-06-27 2016-11-16 桂林理工大学 Temperature stable low dielectric constant microwave dielectric ceramic LiAlSnO4
CN106187129A (en) * 2016-06-27 2016-12-07 桂林理工大学 Low Loss Temperature Stable Microwave Dielectric Ceramic LiBSi3O8
CN106116566A (en) * 2016-06-28 2016-11-16 桂林理工大学 A Low Loss Temperature Stable Microwave Dielectric Ceramic Li3FeSnO5
CN106007674A (en) * 2016-07-18 2016-10-12 桂林理工大学 High Quality Factor Temperature Stable Microwave Dielectric Ceramic LiFeGe2O6
CN106278220A (en) * 2016-07-18 2017-01-04 桂林理工大学 A Low Loss Temperature Stable Microwave Dielectric Ceramic Li3FeGeO5
CN106187160A (en) * 2016-07-19 2016-12-07 桂林理工大学 Low Loss Temperature Stable Microwave Dielectric Ceramic LiGaSn3O8
CN106278214A (en) * 2016-07-19 2017-01-04 桂林理工大学 Low Loss Temperature Stable Microwave Dielectric Ceramic LiFeSi3O8
CN106007675A (en) * 2016-07-22 2016-10-12 桂林理工大学 Temperature stable ultra-low dielectric constant microwave dielectric ceramic LiFe3Ge2O9
CN106278215A (en) * 2016-07-23 2017-01-04 桂林理工大学 Ultra-low dielectric constant microwave dielectric ceramic Li2Ga4Si3O13
CN108585835B (en) * 2018-06-26 2021-01-29 东莞市瓷谷电子科技有限公司 High-voltage ceramic capacitor medium and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249670A (en) * 2011-04-15 2011-11-23 桂林理工大学 Low-temperature sintered microwave dielectric ceramic Li2Ba1-xSrxTi4O16 and its preparation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249670A (en) * 2011-04-15 2011-11-23 桂林理工大学 Low-temperature sintered microwave dielectric ceramic Li2Ba1-xSrxTi4O16 and its preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
用于阻抗变换层的Li2O-Al2O3-SiO2玻璃陶瓷制备及其微波介电特性;罗发 等;《航空学报》;20030531;第24卷(第3期);第273-277页 *

Also Published As

Publication number Publication date
CN103130496A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN103130496B (en) Low dielectric constant microwave dielectric ceramic LiAlSi2O6 and its preparation method
CN103145420B (en) Low-temperature sinterable vanadate microwave dielectric ceramic LiMVO4 and its preparation method
CN104003720B (en) Can low-temperature sintered microwave dielectric ceramic Li 2zn 2w 2o 9and preparation method thereof
CN103204680B (en) Niobate microwave dielectric ceramic LiMNb3O9 and its preparation method
CN104211397A (en) Temperature stable ultra-low dielectric constant microwave dielectric ceramic Nb2VY3O12
CN104211391B (en) Temperature-stable medium dielectric constant microwave medium microwave dielectric ceramic Bi 3la 5ti 7o 26
CN103113104B (en) Application of composite oxide Li2W4O13 as low-temperature sinterable microwave dielectric ceramics
CN104261825B (en) Low temperature sintering ultralow dielectric microwave-medium ceramics Li 3biW 8o 27
CN103121843A (en) Low-temperature sinterable microwave dielectric ceramic Li2Mg2W3O12 and its preparation method
CN104058748A (en) Low-temperature sinterable microwave dielectric ceramic LiMg2V3O10 and its preparation method
CN104628369A (en) A temperature-stable microwave dielectric ceramic Li2Mg4Si4O13 with ultra-low dielectric constant
CN103232243A (en) Vanadate microwave dielectric ceramic Ca1.5M3V3O12 and its preparation method
CN104058745B (en) Can low-temperature sintered microwave dielectric ceramic Li 2mgNb 2o 7and preparation method thereof
CN104003723A (en) Low-temperature sinterable microwave dielectric ceramic Li3Zn4NbO8 and its preparation method
CN103159477A (en) Low-temperature sintered tungstate microwave dielectric ceramic Li2MW2O8 and preparation method thereof
CN104058746A (en) Low-temperature sinterable microwave dielectric ceramic LiNd2V3O11 and its preparation method
CN104261826B (en) Ultra-low dielectric constant microwave dielectric ceramic ZnY3VO8
CN104058747B (en) Can low-temperature sintered microwave dielectric ceramic LiMgV 3o 9and preparation method thereof
CN104045344B (en) Low-temperature sinterable microwave dielectric ceramic Li2Zn3WO7 and its preparation method
CN103159476A (en) Low-temperature sinterable microwave dielectric ceramic LiWVO6 and its preparation method
CN103193483B (en) Low-temperature sinterable tungstate microwave dielectric ceramic Li3R3W2O12 and its preparation method
CN103922719B (en) Low-temperature sinterable ultra-low dielectric constant microwave dielectric ceramic TiP2O7 and its preparation method
CN104311020B (en) A kind of temperature-stable ultralow dielectric microwave dielectric ceramic and preparation method thereof
CN103130505B (en) Low-temperature sinterable lithium-based microwave dielectric ceramic Li2W2O7 and its preparation method
CN105198403A (en) Ultra-low dielectric constant microwave dielectric ceramic Li3Zn2Bi5O11 and its preparation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 541006 the Guangxi Zhuang Autonomous Region Yanshan Yanshan District, Guilin City Street No. 319, Guilin University of Technology (Yanshan campus)

Patentee after: Guilin University of Technology

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin Construction Road No. 12

Patentee before: Guilin University of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180827

Address after: 536000 the Guangxi Zhuang Autonomous Region Beihai Haicheng District Guangxi Beihai Industrial Park New Future Science Park

Patentee after: Guangxi New Future Information Industry Co., Ltd.

Address before: 541006 Yanshan Street 319, Yanshan District, Guilin, the Guangxi Zhuang Autonomous Region, Guilin University of Technology (Yanshan campus)

Patentee before: Guilin University of Technology