CN103123147A - 一种多联机空调系统及其控制方法 - Google Patents

一种多联机空调系统及其控制方法 Download PDF

Info

Publication number
CN103123147A
CN103123147A CN2013101013803A CN201310101380A CN103123147A CN 103123147 A CN103123147 A CN 103123147A CN 2013101013803 A CN2013101013803 A CN 2013101013803A CN 201310101380 A CN201310101380 A CN 201310101380A CN 103123147 A CN103123147 A CN 103123147A
Authority
CN
China
Prior art keywords
compressor
premises station
valve
electric expansion
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101013803A
Other languages
English (en)
Inventor
张金鹏
郑坚江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Aux Group Co Ltd
Original Assignee
Ningbo Aux Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Aux Group Co Ltd filed Critical Ningbo Aux Group Co Ltd
Priority to CN2013101013803A priority Critical patent/CN103123147A/zh
Publication of CN103123147A publication Critical patent/CN103123147A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

一种多联机空调系统,主要由室外机、室内机、控制器组成,其中室外机由室外机一、室外机二并联共同组成。在其中一台室外机需要进行除霜运行时,通过对电磁阀及电子膨胀阀的开闭,将制热运行回路及除霜运行回路的制冷剂分隔开来,制热与除霜互不影响。同时,通过电磁阀及电子膨胀阀的控制来调整制热、除霜回路中的制冷剂循环量,并通过提高制热运行系统所对应的压缩机的频率保证室内机的制热量,保证室内机的热舒适性。本发明能够保证在除霜运行过程中室内机正常制热,并且在进入除霜及退出除霜过程中压缩机不需停机、四通阀不需换向,除霜运行的时间大大减少,有效的提升了室内环境的舒适性。

Description

一种多联机空调系统及其控制方法
技术领域
本发明涉及一种多联机空调系统及其控制方法,属于室内空气调节领域。
背景技术
空调在制热模式运行时,室外换热器会出现结霜现象。若室外换热器上结霜不能及时清除,室外换热器的换热能力会下降甚至丧失,从而导致空调制热能力降低或不制热,用户的热舒适性无法得到保证。
为此,目前的空调已设置有自动除霜功能。在自动除霜时,空调进行制冷模式运行,室外换热器对外散热、融化其上的霜层;而室内换热器吸收热量,导致环境温度下降。因此,目前的空调在自动除霜时,用户的热舒适性受到严重影响。
另外,空调每次由制热模式到制冷模式的转换,都需要压缩机启停、四通阀换向。
因此,目前的空调在制热模式运行时,能效比下降、制热效果并不理想,这也是我们常说的空调制热没有制冷效果好的原因之一。另外,目前空调制热时,由于需要自动除霜而引起四通阀的频繁转换、系统的压力不平衡、压缩机运转状况恶劣而烧坏等,空调的使用寿命和稳定性也受到严重影响。
发明内容
本发明在于解决上述空调制热模式运行时,因自动除霜而导致压缩机启停、四通阀换向、室内热舒适性无法得到保证的问题。
为此,本发明提供了一种多联机空调系统,主要由室外机、室内机、控制器组成,其特征在于:
上述室外机由室外机一和室外机二共同组成;上述室外机一包括压缩机一、排气压力传感器一、单向阀一、四通阀一、室外换热器一、气液分离器一、电磁阀一、电子膨胀阀一、进口温度传感器一、出口温度传感器一、室外温度传感器一;其中四通阀一、气液分离器一、压缩机一、单向阀一、四通阀一依次连接、形成闭合回路;其中四通阀一、室外换热器一、电子膨胀阀一、室内机、四通阀一依次连接、形成闭合回路;其中电磁阀一的一端位于压缩机一、单向阀一之间,另一端位于室外换热器一、电子膨胀阀一之间;
上述室外机二包括压缩机二、排气压力传感器二、单向阀二、四通阀二、室外换热器二、气液分离器二、电磁阀二、电子膨胀阀二、进口温度传感器二、出口温度传感器二、室外温度传感器二;其中四通阀二、气液分离器二、压缩机二、单向阀二、四通阀二依次连接、形成闭合回路;其中四通阀二、室外换热器二、电子膨胀阀二、室内机、四通阀二依次连接、形成闭合回路;其中电磁阀二的一端位于压缩机二、单向阀二之间,另一端位于室外换热器二、电子膨胀阀二之间; 
上述四通阀一、四通阀二共同连接到室内机的一端,上述电子膨胀阀一、电子膨胀阀二共同连接到室内机的另一端。
作为进一步改进,该多联机空调系统, 其特征还在于:上述室内机由室内机一、室内机二并联而成;其中室内机一包括室内换热器一、进口温度传感器三、出口温度传感器三、电子膨胀阀三、室内温度传感器一;其中室内机二包括室内换热器二、进口温度传感器四、出口温度传感器四、电子膨胀阀四、室内温度传感器二。
本发明的多联机空调系统中,控制器收集上述各温度传感器、各压缩机、各电子膨胀阀、各电磁阀的运转参数,统计各室外机的累计运行时间,根据室内机设定温度及室内机所处环境的环境温度大致计算出室内机的热负荷,通过各电子膨胀阀、各电磁阀控制各室外机的开启与关闭,调节各压缩机运行频率等。其中,排气压力传感器一、排气压力传感器二分别位于压缩机一、压缩机二的排气口位置,其作用为分别检测压缩机一、压缩机二的排气压力;进口温度传感器一、出口温度传感器一分别位于室外换热器一的进口处及出口处,其作用为分别检测室外换热器一的进口处、出口处的制冷剂温度;进口温度传感器二、出口温度传感器二分别位于室外换热器二的进口处及出口处,其作用为分别检测室外换热器二的进口处、出口处的制冷剂温度;进口温度传感器三、出口温度传感器三分别位于室内换热器一的进口处及出口处,其作用为分别检测室内换热器一的进口处、出口处的制冷剂温度;进口温度传感器四、出口温度传感器四分别位于室内换热器二的进口处及出口处,其作用为分别检测室内换热器二的进口处、出口处的制冷剂温度;室外环境温度传感器一可收集室外机一所处环境的环境温度,室外环境温度传感器二可收集室外机二所处环境的环境温度,室内环境温度传感器一可收集室内机一所处环境的环境温度,室内环境温度传感器二可收集室内机二所处环境的环境温度。
另外,单向阀一位于压缩机一、四通阀一之间,其作用为在室外机一除霜运行时将制热循环用制冷剂与除霜循环用制冷剂隔开;单向阀二位于压缩机二、四通阀二之间,其作用为在室外机二除霜运行时将制热循环用制冷剂与除霜循环用制冷剂隔开;电磁阀一仅在室外机一除霜运行期间开启;电磁阀二仅在室外机二除霜运行期间开启;电子膨胀阀三、电子膨胀阀四的作用为调节通过室内机一、室内机二的制冷剂流量;电子膨胀阀一在制热运行时的开度由室外换热器一中制冷剂过热度值来进行控制,此时室外换热器一中制冷剂过热度值的计算方法为进口温度传感器一采集的温度减去出口温度传感器一采集的温度;此过热度的最佳值需根据不同制冷剂的制冷剂特性及室外换热器一的沿程压力损失来进行计算、设定(一般其最佳过热度为3℃左右);同理,电子膨胀阀二在制热运行时的开度由室外换热器二中制冷剂过热度值来进行控制,此时室外换热器二中制冷剂过热度值的计算方法为进口温度传感器二采集的温度减去出口温度传感器二采集的温度。
另外,本发明还提供了上述多联机空调系统的控制方法,其特征在于当用户所设定温度与室内环境温度差值小于10℃时,包括如下操作步骤:
步骤一:控制器确认室外机一、室外机二中哪一个应该开启运行;在室外机一、室外机二中选择累积运行时间较短的室外机一开启,室外机二关闭;
步骤二:控制器控制室外机一开启并累计运行时间、控制室外机二关闭;将压缩机一开启、压缩机二关闭、电磁阀一关闭、电磁阀二关闭、电子膨胀阀一根据室外换热器一的实际过热度进行自由调节、电子膨胀阀二关闭;
步骤三:根据室内机的实际热负荷对压缩机一的运行频率进行控制; 
步骤四:控制器判断该多联机空调系统的运行是否稳定;若稳定,进入下一步骤;否则,则返回上述步骤三:
步骤五:控制器判断室外机一是否满足除霜条件;若时,进入下一步骤;否则,返回上述步骤三;
步骤六:控制器发出开启室外机二的信号,压缩机二启动; 
步骤七:根据室内机的实际热负荷对压缩机二的运行频率进行控制; 
步骤八:控制器判断该多联机空调系统的运行是否稳定;若是,进入下一步骤;否则,则返回上述步骤七;
步骤九:室内机一开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤十:打开电磁阀一、关闭电子膨胀阀一;
步骤十一:控制压缩机一、压缩机二运行频率,使压缩机一的排气压力Fa<压缩机二的排气压力Fb;
步骤十二:控制器判断室外机一是否除霜结束;若是,进入下一步骤;否则,返回上述步骤十一;
步骤十三:除霜运行停止,关闭室外机二和电磁阀一,返回上述步骤三。
同时,本发明还提供了上述多联机空调系统的另一控制方法,其特征在于当用户所设定温度与室内环境温度差值不小于10℃时,包括如下操作步骤:
步骤一:开启室外机一、室外机二;电磁阀一关闭、电磁阀二关闭、电子膨胀阀一根据室外换热器一的实际过热度进行自由调节、电子膨胀阀二根据室外换热器二的实际过热度进行自由调节;
步骤二:控制压缩机一、压缩机二运行频率,并累计运行时间;
步骤三:控制器判断该多联机空调系统的运行是否稳定;若稳定,则进入下一步骤;否则,则返回上述步骤二;
步骤四:控制器判断室外机一、室外机二是否满足除霜条件;室外机一先达到除霜条件,控制器即可发出满足除霜信号,进入下一步骤;否则,返回上述步骤三;
步骤五:室内机一开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤六:打开电磁阀一、关闭电子膨胀阀一;
步骤七:控制压缩机一、压缩机二运行频率,使压缩机一的排气压力Fa<压缩机二的排气压力Fb;
步骤八:控制器判断室外机一是否除霜结束;若是,则进入下一步骤;否则,返回上述步骤七;
步骤九:除霜运行停止,关闭电磁阀一打开电子膨胀阀一,返回上述步骤二。
作为一种优化,上述的多联机空调系统的控制方法,其特征在于上述根据室内机的实际热负荷对压缩机的运行频率进行控制的方法为:当用户设定温度与室内环境温度的差值在3℃以上时,压缩机以最大运行频率运行;当用户设定温度与室内环境温度的差值在3℃或3℃以内时,压缩机运行频率根据温度的差值在其最高运行频率与最低运行频率间成线性控制;当室内环境温度越接近用户设定温度时,压缩机运行频率越低。
作为一种优化,上述的多联机空调系统的控制方法,其特征在于上述控制器判断该多联机空调系统的运行是否稳定的方法为:当压缩机的排气压力达到最大值且室内换热器的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动时,认为系统达到稳定运行状态。
作为一种优化,上述的多联机空调系统的控制方法,其特征在于上述控制器判断室外机是否满足除霜条件的方法为:在系统达到稳定状态时,控制器记录室内换热器的进口处、出口处的制冷剂温度;当进口处、出口处的制冷剂温度较稳定状态时下降5℃后,且一分钟内均比稳定状态下低5℃时,可认为已经满足除霜条件。
作为一种优化,上述的多联机空调系统的控制方法,其特征在于上述控制器判断室外机是否除霜结束的方法为:当室外换热器在除霜后,其进口处、出口处的温度大于10℃且维持1分钟,认为已经除霜结束。
本发明中,两台室外机匹配两台或两台以上的室内机,在其中一台室外机需要进行除霜运行时,通过对电磁阀及电子膨胀阀的开闭,将制热运行回路及除霜运行回路的制冷剂分隔开来,制热与除霜互不影响。同时,通过电磁阀及电子膨胀阀的控制来调整制热、除霜回路中的制冷剂循环量,并通过提高制热运行系统所对应的压缩机的频率保证室内机的制热量,保证室内机的热舒适性。通过上述的一系列控制,能够保证在除霜运行过程中室内机能够正常制热,并且在进入除霜及退出除霜过程中压缩机不需停机、四通阀不需换向,除霜运行的时间大大减少,有效的提升了室内环境的舒适性。
附图说明
以下结合附图和具体实施方式来进一步说明本发明。
图1为本发明多联机空调系统的一实施例的系统图;
图2为图1所示多联机空调系统处于室外机一1制热运行、室外机二2停止运行时的系统图,图中箭头指向制冷剂的流向;
图3为图1所示多联机空调系统处于室外机一1停止运行、室外机二2制热运行时的系统图,图中箭头指向制冷剂的流向;
图4为图1所示多联机空调系统处于室外机一1、室外机二2均制热运行时的系统图,图中箭头指向制冷剂的流向;
图5为图1所示多联机空调系统处于室外机一1除霜运行、室外机二2制热运行时的系统图,图中箭头指向制冷剂的流向;
图6为图1所示多联机空调系统处于室外机一1制热运行、室外机二2除霜运行时的系统图,图中箭头指向制冷剂的流向;
图7为图1所示多联机空调系统的控制方法的流程图,此时假设该多联机空调系统仅需室外机一1制热运行;
图8为图1所示多联机空调系统的控制方法的流程图,此时假设该多联机空调系统需室外机一1、室外机二2同时制热运行。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
如图1所示,该实施例的多联机空调系统,主要由室外机一1、室外机二2、室内机一3、室内机二4、控制器(未示出)组成。
其中,室外机一1包括压缩机一11、排气压力传感器一21、单向阀一31、四通阀一41、室外换热器一51、气液分离器一61、电磁阀一71、电子膨胀阀一81、进口温度传感器一91a、出口温度传感器一91b、室外温度传感器一131;其中四通阀一41、气液分离器一61、压缩机一11、单向阀一31、四通阀一41依次连接、形成闭合回路;其中四通阀一41、室外换热器一51、电子膨胀阀一81、室内机、四通阀一41依次连接、形成闭合回路;其中电磁阀一71的一端位于压缩机一11、单向阀一31之间,另一端位于室外换热器一51、电子膨胀阀一81之间。
其中,室外机二2包括压缩机二12、排气压力传感器二22、单向阀二32、四通阀二42、室外换热器二52、气液分离器二62、电磁阀二72、电子膨胀阀二82、进口温度传感器二92a、出口温度传感器二92b、室外温度传感器二132;其中四通阀二42、气液分离器二62、压缩机二12、单向阀二32、四通阀二42依次连接、形成闭合回路;其中四通阀二42、室外换热器二52、电子膨胀阀二82、室内机、四通阀二42依次连接、形成闭合回路;其中电磁阀二72的一端位于压缩机二12、单向阀二32之间,另一端位于室外换热器二52、电子膨胀阀二82之间。 
其中,室内机一3包括室内换热器一111a、进口温度传感器三101a、出口温度传感器三101b、电子膨胀阀三121a、室内温度传感器一133;室内机二4包括室内换热器二111b、进口温度传感器四102a、出口温度传感器四102b、电子膨胀阀四121b、室内温度传感器二134。室内机一3和室内机二4并联。
其中,四通阀一41、四通阀二42共同连接到并联的室内机一3和室内机二4的一端,上述电子膨胀阀一81、电子膨胀阀二82共同连接到并联的室内机一3和室内机二4的另一端。即室外机一1、室外机二2形成并联。
该实施例的多联机空调系统中,控制器收集上述各温度传感器、各压缩机、各电子膨胀阀、各电磁阀的运转参数,统计各室外机的累计运行时间,根据室内机设定温度及室内机所处环境的环境温度大致计算出室内机的热负荷,通过各电子膨胀阀、各电磁阀控制各室外机的开启与关闭,调节各压缩机运行频率等。其中,排气压力传感器一21、排气压力传感器二22分别位于压缩机一11、压缩机二12的排气口位置,其作用为分别检测压缩机一11、压缩机二12的排气压力;进口温度传感器一91a、出口温度传感器一91b分别位于室外换热器一51的进口处及出口处,其作用为分别检测室外换热器一51的进口处、出口处的制冷剂温度;进口温度传感器二92a、出口温度传感器二92b分别位于室外换热器二52的进口处及出口处,其作用为分别检测室外换热器二52的进口处、出口处的制冷剂温度;进口温度传感器三101a、出口温度传感器三101b分别位于室内换热器一111a的进口处及出口处,其作用为分别检测室内换热器一111a的进口处、出口处的制冷剂温度;进口温度传感器四102a、出口温度传感器四102b分别位于室内换热器二111b的进口处及出口处,其作用为分别检测室内换热器二111b的进口处、出口处的制冷剂温度;室外环境温度传感器一131可收集室外机一1所处环境的环境温度,室外环境温度传感器二132可收集室外机二2所处环境的环境温度,室内环境温度传感器一133可收集室内机一3所处环境的环境温度,室内环境温度传感器二134可收集室内机二4所处环境的环境温度。
另外,单向阀一31位于压缩机一11、四通阀一41之间,其作用为在室外机一1除霜运行时将制热循环用制冷剂与除霜循环用制冷剂隔开;单向阀二32位于压缩机二12、四通阀二42之间,其作用为在室外机二2除霜运行时将制热循环用制冷剂与除霜循环用制冷剂隔开;电磁阀一71仅在室外机一1除霜运行期间开启;电磁阀二72仅在室外机二2除霜运行期间开启;电子膨胀阀三121a、电子膨胀阀四121b的作用为调节通过室内机一3、室内机二4的制冷剂流量;电子膨胀阀一81在制热运行时的开度由室外换热器一51中制冷剂过热度值来进行控制,此时室外换热器一51中制冷剂过热度值的计算方法为进口温度传感器一91a采集的温度减去出口温度传感器一91b采集的温度;此过热度的最佳值需根据不同制冷剂的制冷剂特性及室外换热器一51的沿程压力损失来进行计算、设定(一般其最佳过热度为3℃左右);同理,电子膨胀阀二82在制热运行时的开度由室外换热器二52中制冷剂过热度值来进行控制,此时室外换热器二52中制冷剂过热度值的计算方法为进口温度传感器二92a采集的温度减去出口温度传感器二92b采集的温度。
当室外机一1制热运行、室外机二2停止运行时,电磁阀一71、电磁阀二72均处于关闭状态,电子膨胀阀一81处于工作状态、电子膨胀阀二82处于完全关闭状态。压缩机一11的排气压力为Fa,压缩机二12的排气压力为Fb,由于压缩机一11运行、压缩机二12停止,因此压力关系为Fa>Fb。由于此压力关系的存在,单向阀二32处不能通过制冷剂,室外机二2的制冷系统完全与制热运行系统隔绝开。此时的制冷剂流向如图2中箭头所示:压缩机一11→单向阀一31→四通阀一41→室内机一3和/或室内机二4→电子膨胀阀一81→室外换热器一51→四通阀一41→气液分离器一61→压缩机一11。
当室外机二2制热运行、室外机一1停止运行时,电磁阀一71、电磁阀二72均处于关闭状态,电子膨胀阀一81处于完全关闭状态、电子膨胀阀二82处于工作状态。压缩机一11的排气压力为Fa,压缩机二12的排气压力为Fb,由于压缩机一11关闭、压缩机二12运行,因此压力关系为Fa<Fb。由于此压力关系的存在,单向阀一31处不能通过制冷剂,室外机一1的制冷系统完全与制热运行系统隔绝开。此时的制冷剂流向如图3中箭头所示:压缩机二12→单向阀二32→四通阀二42→室内机一3和/或室内机二4→电子膨胀阀二82→室外换热器二52→四通阀二42→气液分离器二62→压缩机二12。
当室外机一1、室外机二2均进行制热运行时,电磁阀一71、电磁阀二72均处于关闭状态,电子膨胀阀一81、电子膨胀阀二82均处于工作状态。此时压缩机一11的排气压力为Fa,压缩机二12的排气压力为Fb,此时由控制器通过对压缩机一11、压缩机二12的运行频率进行控制,使得压力关系为Fa=压力Fb,以确保系统的稳定高效运行。此时的制冷剂流向如图4中箭头所示:压缩机一11→单向阀一31→四通阀一41→室内机一3和/或室内机二4→电子膨胀阀一81→室外换热器一51→四通阀一41→气液分离器一61→压缩机一11;同时,压缩机二12→单向阀二32→四通阀二42→室内机一3和/或室内机二4→电子膨胀阀二82→室外换热器二52→四通阀二42→气液分离器二62→压缩机二12。
当室外机一1进行除霜运行时,电磁阀一71打开、电磁阀二72关闭,电子膨胀阀一81关闭、电子膨胀阀二82打开。控制器控制压缩机一11、压缩机二12的运行频率,使压缩机一11的排气压力Fa与压缩机二12的排气压力Fb满足压力关系:Fa<Fb。由于此压力关系的存在,单向阀一31中不能通过制冷剂,除霜运行回路、制热运行回路被单向阀一31及电子膨胀阀一81完全分隔开来,除霜与制热互不影响。此时的制冷剂流向如图5中箭头所示:压缩机一11→电磁阀一71→室外换热器一51→四通阀一41→气液分离器一61→压缩机一11,此为除霜运行回路;同时,压缩机二12→单向阀二32→四通阀二42→室内机3/4→电子膨胀阀二82→室外换热器二52→四通阀二42→气液分离器二62→压缩机二12,此为制热运行回路流程。
当室外机二2进行除霜运行时,电磁阀二72打开、电磁阀一71关闭,电子膨胀阀二82关闭、电子膨胀阀一81打开。控制器控制压缩机一11、压缩机二12的运行频率,使压缩机一11的排气压力Fa与压缩机二12的排气压力Fb满足压力关系:Fa>Fb。由于此压力关系的存在,单向阀二32中不能通过制冷剂,除霜运行回路、制热运行回路被单向阀二32及电子膨胀阀二82完全分隔开来,除霜与制热互不影响。此时的制冷剂流向如图5中箭头所示:压缩机二12→电磁阀二72→室外换热器二52→四通阀二42→气液分离器二62→压缩机二12,此为除霜运行回路;同时,压缩机一11→单向阀一31→四通阀一41→室内机3/4→电子膨胀阀一81→室外换热器一51→四通阀一41→气液分离器一61→压缩机一11,此为制热运行回路流程。
该实施例的多联机空调系统,当室内机一3和/或室内机二4开启时,若用户所设定温度与室内环境温度差值小于10℃,室外机一1、外机二2中任一台开启即可满足热负荷,此时控制器做出只需一台室外机开启的判断,按照如图7所示的流程进行操作;否则,若用户所设定温度与室内环境温度差值不小于10℃,室外机一1、外机二2需要同时开启才能满足热负荷,按照如图8所示的流程进行操作。
如图7所示,该实施例的多联机空调系统的控制方法,其具体操作步骤为:
步骤一:控制器确认室外机一1、室外机二2中哪一个应该开启运行?可调取室外机一1、室外机二2的累积运行时间,选择累积运行时间较短的室外机;假设室外机一1的累积运行时间小于室外机二2的累积运行时间,即确认室外机一1开启制热运行,而室外机二2关闭;
步骤二:控制器控制室外机一1开启并累计运行时间、控制室外机二2关闭;即将压缩机一11开启、压缩机二12关闭、电磁阀一71关闭、电磁阀二72关闭、电子膨胀阀一81根据室外换热器一51的实际过热度进行自由调节、电子膨胀阀二82关闭,此时制冷剂流向如图2所示;
步骤三:控制器控制压缩机一11的运行频率;当压缩机一11开启后,根据室内机一3和/或室内机二4的实际热负荷对压缩机的运行频率进行控制;当用户设定温度与室内环境温度的差值在3℃以上时,压缩机一11以最大运行频率运行;当用户设定温度与室内环境温度的差值在3℃或3℃以内时,压缩机一11运行频率根据温度的差值在其最高运行频率与最低运行频率间成线性控制;当室内环境温度越接近用户设定温度时,压缩机一11运行频率越低;
步骤四:控制器判断该多联机空调系统的运行是否稳定;当压缩机一11的排气压力达到最大值且室内换热器一111a的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动时,认为系统达到稳定运行状态,进入下一步骤;否则,则返回上述步骤三;
步骤五:控制器判断室外机一1是否满足除霜条件;在系统达到稳定状态时,控制器记录室内换热器一111a的进口处、出口处的制冷剂温度;由于室外换热器一51在结霜后,其相应的进口处、出口处的温度会下降;当进口处、出口处的温度较稳定状态时下降5℃后(不同制冷系统该数据会有所不同,此处使用温度下降5℃作为判断依据),且一分钟内均比稳定状态下低5℃时,可认为已经满足除霜条件,控制器即可发出满足除霜信号,进入下一步骤;否则,返回上述步骤三;
步骤六:控制器发出开启室外机二2的信号,压缩机二12启动; 
步骤七:控制器控制压缩机二12的运行频率;当压缩机二12开启后,根据室内机一3和/或室内机二4的实际热负荷对压缩机二12的运行频率进行控制;当用户设定温度与室内环境温度的差值在3℃以上时,压缩机二12以最大运行频率运行;当用户设定温度与室内环境温度的差值在3℃或3℃以内时,压缩机二12运行频率根据温度的差值在其最高运行频率与最低运行频率间成线性控制;当室内环境温度越接近用户设定温度时,压缩机二12运行频率越低;
步骤八:控制器判断该多联机空调系统的运行是否稳定;当压缩机二12的排气压力达到最大值且室内换热器二111b的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动时,认为系统达到稳定运行状态,进入下一步骤;否则,则返回上述步骤七;
步骤九:室内机一1开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤十:打开电磁阀一71、关闭电子膨胀阀一81;
步骤十一:控制压缩机一11、压缩机二12运行频率,使Fa<Fb;实施检测两压缩机的排气压力;通过调整压缩机一11、压缩机二12的运行频率,确保压缩机一11的排气压力Fa小于压缩机二12的排气压力Fb,以确保不会有制冷剂通过单向阀一31,从而使制热回路与除霜回路完全分隔开,此时制冷剂流向如图5所示;一般情况下,由于除霜运转回路中,除压缩机外无其他热源,且除霜运行回路中无节流机构,因此压缩机一11的排气压力Fa不会很大,压缩机一11可以最大运行频率运行,以保证除霜过程的快速、高效;
步骤十二:控制器判断室外机一1是否除霜结束;由于室外换热器一51在除霜后,其相应的进口处、出口处的温度会上升;当进口处、出口处的温度大于10℃且维持1分钟时后,可认为已经除霜结束,控制器即可发出除霜结束信号,进入下一步骤;否则,返回上述步骤十一;
步骤十三:除霜运行停止,关闭室外机二2和电磁阀一71,返回上述步骤三。
综上所述,该实施例的多联机空调系统在制热运行时,当室外机一1开启即可满足室内机(室内机一3和/或室内机二4)的实际热负荷且无需除霜时,室外机二2关闭,即和制热回路断开。当室外机一1需除霜时,室外机二2开启接入制热回路;而室外机一1和制热回路断开、进行除霜运行,即进入制冷模式。因此,该多联机空调系统在除霜运行过程中室内机一3和/或室内机二4能够正常制热,并且在进入除霜及退出除霜过程中压缩机一11不需停机、四通阀一41不需换向,除霜运行的时间大大减少,有效的提升了室内环境的舒适性。
如图8所示,该实施例的多联机空调系统的另一控制方法,其具体操作步骤为:
步骤一:开启室外机一1、室外机二2;此时,电磁阀一71关闭、电磁阀二72关闭、电子膨胀阀一81根据室外换热器一51的实际过热度进行自由调节、电子膨胀阀二82根据室外换热器二52的实际过热度进行自由调节,制冷剂流向如图4所示;
步骤二:控制压缩机一11、压缩机二12运行频率,并累计运行时间;根据室内机一3和/或室内机二4的实际热负荷对压缩机的运行频率进行控制;当用户设定温度与室内环境温度的差值在3℃以上时,压缩机一11、压缩机二12以最大运行频率运行;当用户设定温度与室内环境温度的差值在3℃或3℃以内时,压缩机一11、压缩机二12运行频率根据温度的差值在其最高运行频率与最低运行频率间成线性控制;当室内环境温度越接近用户设定温度时,压缩机一11、压缩机二12运行频率越低;
步骤三:控制器判断该多联机空调系统的运行是否稳定;当压缩机一11的排气压力达到最大值且室内换热器一111a的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动,且压缩机二12的排气压力达到最大值且室内换热器二111b的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动,则认为系统达到稳定运行状态,进入下一步骤;否则,则返回上述步骤二;
步骤四:控制器判断室外机一1、室外机二2是否满足除霜条件;在系统达到稳定状态时,控制器记录室内换热器一111a、室内换热器二111b的进口处、出口处的制冷剂温度;由于室外换热器一51、室内换热器二111b在结霜后,其相应的进口处、出口处的温度会下降;当进口处、出口处的温度较稳定状态时下降5℃后(不同制冷系统该数据会有所不同,此处使用温度下降5℃作为判断依据),且一分钟内均比稳定状态下低5℃时,可认为已经满足除霜条件;假设室外机一1先达到除霜条件,控制器即可发出满足除霜信号,进入下一步骤;否则,返回上述步骤三;
步骤五:室内机一1开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤六:打开电磁阀一71、关闭电子膨胀阀一81;
步骤七:控制压缩机一11、压缩机二12运行频率,使Fa<Fb;实施检测两压缩机的排气压力;通过调整压缩机一11、压缩机二12的运行频率,确保压缩机一11的排气压力Fa小于压缩机二12的排气压力Fb,以确保不会有制冷剂通过单向阀一31,从而使制热回路与除霜回路完全分隔开,此时制冷剂流向如图5所示;一般情况下,由于除霜运转回路中,除压缩机外无其他热源,且除霜运行回路中无节流机构,因此压缩机一11的排气压力Fa不会很大,压缩机一11可以最大运行频率运行,以保证除霜过程的快速、高效;压缩机二12的运行频率也可提高,以满足室内机的制热负荷;
步骤八:控制器判断室外机一1是否除霜结束;由于室外换热器一51在除霜后,其相应的进口处、出口处的温度会上升;当进口处、出口处的温度大于10℃且维持1分钟时后,可认为已经除霜结束,控制器即可发出除霜结束信号,进入下一步骤;否则,返回上述步骤七;
步骤九:除霜运行停止,关闭电磁阀一71 打开电子膨胀阀一81,返回上述步骤二。
综上所述,该实施例的多联机空调系统在室外机一1、室外机二2均开启制热,当室外机一1需除霜时,室外机一1和制热回路断开、进行除霜运行,即进入制冷模式;室外机二2频率调整、提高制热能力,以保证多联机空调系统的制热效果。因此,该多联机空调系统在除霜运行过程中室内机一3和/或室内机二4能够正常制热,并且在进入除霜及退出除霜过程中压缩机一11不需停机、四通阀一41不需换向,除霜运行的时间大大减少,有效的提升了室内环境的舒适性。
以上是本发明的实施方式之一,对于本领域内的一般技术人员,不花费创造性的劳动,在上述实施例的基础上可以做多种变化,同样能够实现本发明的目的。但是,这种变化显然应该在本发明的权利要求书的保护范围内。

Claims (1)

1.一种多联机空调系统,主要由室外机、室内机、控制器组成,其特征在于:
上述室外机由室外机一(1)和室外机二(2)共同组成;上述室外机一(1)包括压缩机一(11)、排气压力传感器一(21)、单向阀一(31)、四通阀一(41)、室外换热器一(51)、气液分离器一(61)、电磁阀一(71)、电子膨胀阀一(81)、进口温度传感器一(91a)、出口温度传感器一(91b)、室外温度传感器一(131);其中四通阀一(41)、气液分离器一(61)、压缩机一(11)、单向阀一(31)、四通阀一(41)依次连接、形成闭合回路;其中四通阀一(41)、室外换热器一(51)、电子膨胀阀一(81)、室内机、四通阀一(41)依次连接、形成闭合回路;其中电磁阀一(71)的一端位于压缩机一(11)、单向阀一(31)之间,另一端位于室外换热器一(51)、电子膨胀阀一(81)之间;
上述室外机二(2)包括压缩机二(12)、排气压力传感器二(22)、单向阀二(32)、四通阀二(42)、室外换热器二(52)、气液分离器二(62)、电磁阀二(72)、电子膨胀阀二(82)、进口温度传感器二(92a)、出口温度传感器二(92b)、室外温度传感器二(132);其中四通阀二(42)、气液分离器二(62)、压缩机二(12)、单向阀二(32)、四通阀二(42)依次连接、形成闭合回路;其中四通阀二(42)、室外换热器二(52)、电子膨胀阀二(82)、室内机、四通阀二(42)依次连接、形成闭合回路;其中电磁阀二(72)的一端位于压缩机二(12)、单向阀二(32)之间,另一端位于室外换热器二(52)、电子膨胀阀二(82)之间; 
上述四通阀一(41)、四通阀二(42)共同连接到室内机的一端,上述电子膨胀阀一(81)、电子膨胀阀二(82)共同连接到室内机的另一端。
2.根据权利要求1所述的多联机空调系统, 其特征在于:上述室内机由室内机一(3)、室内机二(4)并联而成;其中室内机一(3)包括室内换热器一(111a)、进口温度传感器三(101a)、出口温度传感器三(101b)、电子膨胀阀三(121a)、室内温度传感器一(133);其中室内机二(4)包括室内换热器二(111b)、进口温度传感器四(102a)、出口温度传感器四(102b)、电子膨胀阀四(121b)、室内温度传感器二(134)。
3.根据权利要求1所述的多联机空调系统的控制方法,其特征在于当用户所设定温度与室内环境温度差值小于10℃时,包括如下操作步骤:
步骤一:控制器确认室外机一(1)、室外机二(2)中哪一个应该开启运行;在室外机一(1)、室外机二(2)中选择累积运行时间较短的室外机一(1)开启,室外机二(2)关闭;
步骤二:控制器控制室外机一(1)开启并累计运行时间、控制室外机二(2)关闭;将压缩机一(11)开启、压缩机二(12)关闭、电磁阀一(71)关闭、电磁阀二(72)关闭、电子膨胀阀一(81)根据室外换热器一(51)的实际过热度进行自由调节、电子膨胀阀二(82)关闭;
步骤三:根据室内机的实际热负荷对压缩机一(11)的运行频率进行控制; 
步骤四:控制器判断该多联机空调系统的运行是否稳定;若稳定,进入下一步骤;否则,则返回上述步骤三;
步骤五:控制器判断室外机一(1)是否满足除霜条件;若时,进入下一步骤;否则,返回上述步骤三;
步骤六:控制器发出开启室外机二(2)的信号,压缩机二(12)启动; 
步骤七:根据室内机的实际热负荷对压缩机二(12)的运行频率进行控制; 
步骤八:控制器判断该多联机空调系统的运行是否稳定;若是,进入下一步骤;否则,则返回上述步骤七;
步骤九:室内机一(1)开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤十:打开电磁阀一(71)、关闭电子膨胀阀一(81);
步骤十一:控制压缩机一(11)、压缩机二(12)运行频率,使压缩机一(11)的排气压力Fa<压缩机二(12)的排气压力Fb;
步骤十二:控制器判断室外机一(1)是否除霜结束;若是,进入下一步骤;否则,返回上述步骤十一;
步骤十三:除霜运行停止,关闭室外机二(2)和电磁阀一(71),返回上述步骤三。
4.根据权利要求1所述的多联机空调系统的控制方法,其特征在于当用户所设定温度与室内环境温度差值不小于10℃时,包括如下操作步骤:
步骤一:开启室外机一(1)、室外机二(2);电磁阀一(71)关闭、电磁阀二(72)关闭、电子膨胀阀一(81)根据室外换热器一(51)的实际过热度进行自由调节、电子膨胀阀二(82)根据室外换热器二(52)的实际过热度进行自由调节;
步骤二:控制压缩机一(11)、压缩机二(12)运行频率,并累计运行时间;
步骤三:控制器判断该多联机空调系统的运行是否稳定;若稳定,则进入下一步骤;否则,则返回上述步骤二;
步骤四:控制器判断室外机一(1)、室外机二(2)是否满足除霜条件;室外机一(1)先达到除霜条件,控制器即可发出满足除霜信号,进入下一步骤;否则,返回上述步骤三;
步骤五:室内机一(1)开始除霜运行,即进行制冷模式运行;同时进行下一步骤;
步骤六:打开电磁阀一(71)、关闭电子膨胀阀一(81);
步骤七:控制压缩机一(11)、压缩机二(12)运行频率,使压缩机一(11)的排气压力Fa<压缩机二(12)的排气压力Fb;
步骤八:控制器判断室外机一(1)是否除霜结束;若是,则进入下一步骤;否则,返回上述步骤七;
步骤九:除霜运行停止,关闭电磁阀一(71)打开电子膨胀阀一(81),返回上述步骤二。
5. 根据权利要求3或4所述的多联机空调系统的控制方法,其特征在于上述根据室内机的实际热负荷对压缩机的运行频率进行控制的方法为:当用户设定温度与室内环境温度的差值在3℃以上时,压缩机以最大运行频率运行;当用户设定温度与室内环境温度的差值在3℃或3℃以内时,压缩机运行频率根据温度的差值在其最高运行频率与最低运行频率间成线性控制;当室内环境温度越接近用户设定温度时,压缩机运行频率越低。
6. 根据权利要求3或4所述的多联机空调系统的控制方法,其特征在于上述控制器判断该多联机空调系统的运行是否稳定的方法为:当压缩机的排气压力达到最大值且室内换热器的进口处、出口处的制冷剂温度在3分钟内无大于1℃的波动时,认为系统达到稳定运行状态。
7. 根据权利要求3或4所述的多联机空调系统的控制方法,其特征在于上述控制器判断室外机是否满足除霜条件的方法为:在系统达到稳定状态时,控制器记录室内换热器的进口处、出口处的制冷剂温度;当进口处、出口处的制冷剂温度较稳定状态时下降5℃后,且一分钟内均比稳定状态下低5℃时,可认为已经满足除霜条件。
8. 根据权利要求3或4所述的多联机空调系统的控制方法,其特征在于上述控制器判断室外机是否除霜结束的方法为:当室外换热器在除霜后,其进口处、出口处的温度大于10℃且维持1分钟,认为已经除霜结束。
CN2013101013803A 2013-03-27 2013-03-27 一种多联机空调系统及其控制方法 Pending CN103123147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101013803A CN103123147A (zh) 2013-03-27 2013-03-27 一种多联机空调系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101013803A CN103123147A (zh) 2013-03-27 2013-03-27 一种多联机空调系统及其控制方法

Publications (1)

Publication Number Publication Date
CN103123147A true CN103123147A (zh) 2013-05-29

Family

ID=48454223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101013803A Pending CN103123147A (zh) 2013-03-27 2013-03-27 一种多联机空调系统及其控制方法

Country Status (1)

Country Link
CN (1) CN103123147A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512152A (zh) * 2013-05-31 2014-01-15 广东美芝精密制造有限公司 空调系统及用于其的冷媒量的控制方法
CN104566773A (zh) * 2013-10-28 2015-04-29 珠海格力电器股份有限公司 多联空调的容量控制方法及控制系统
CN105121973A (zh) * 2013-09-30 2015-12-02 富士通将军股份有限公司 空气调节装置
CN105526680A (zh) * 2016-01-19 2016-04-27 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
CN106247533A (zh) * 2016-08-08 2016-12-21 珠海格力电器股份有限公司 一种空调系统化霜的控制装置、控制方法及空调系统
CN106369877A (zh) * 2016-11-30 2017-02-01 广东美的制冷设备有限公司 热泵系统及其除霜控制方法
CN108759150A (zh) * 2018-05-09 2018-11-06 特灵空调系统(中国)有限公司 空调系统和其控制方法
CN108917094A (zh) * 2018-07-18 2018-11-30 奥克斯空调股份有限公司 一种化霜控制方法、装置及空调器
CN109899931A (zh) * 2019-03-12 2019-06-18 广东美的暖通设备有限公司 多联机系统能效优化的控制方法和装置
CN109945330A (zh) * 2019-03-22 2019-06-28 珠海格力电器股份有限公司 能连续制热的制冷系统及化霜控制方法
CN110094831A (zh) * 2019-04-10 2019-08-06 青岛海尔空调电子有限公司 多联机空调及其除霜控制方法
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统
CN110926093A (zh) * 2019-12-06 2020-03-27 四方科技集团股份有限公司 一种用于冷风机的按需融霜方法
CN112444001A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112739965A (zh) * 2018-09-28 2021-04-30 三菱电机株式会社 空调机
CN112797570A (zh) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 除霜控制方法、除霜装置及多联空调系统
WO2021103815A1 (zh) * 2019-11-28 2021-06-03 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN113154731A (zh) * 2021-04-30 2021-07-23 广东积微科技有限公司 一种不停机化霜的三管制多联机空调系统
CN113154522A (zh) * 2021-04-25 2021-07-23 珠海格力电器股份有限公司 一种多联空调机系统及除霜控制方法
CN113513825A (zh) * 2021-07-14 2021-10-19 南京天加环境科技有限公司 一种优化除霜过程的制冷系统及其控制方法
CN113970167A (zh) * 2021-10-21 2022-01-25 珠海格力电器股份有限公司 一种空调除霜方法、装置、模组、空调和存储介质
CN114857662A (zh) * 2022-05-05 2022-08-05 青岛海信日立空调系统有限公司 一种多联机空调系统及其控制方法
CN115218352A (zh) * 2022-07-20 2022-10-21 南京天加环境科技有限公司 一种改善多联式空调制热性能的系统及其控制方法
CN115342482A (zh) * 2022-08-23 2022-11-15 宁波奥克斯电气股份有限公司 一种除霜控制方法及空调器
CN117404826A (zh) * 2023-12-13 2024-01-16 珠海格力电器股份有限公司 多联机热泵机组及其化霜过程平衡水温的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542341A (zh) * 2003-05-01 2004-11-03 Lg������ʽ���� 空调器及其室外单元
CN1590872A (zh) * 2003-08-28 2005-03-09 三星电子株式会社 空调机
JP2009257697A (ja) * 2008-04-18 2009-11-05 Daikin Ind Ltd 空調システム及び空調システムの室外ユニット
CN101749880A (zh) * 2008-12-16 2010-06-23 三星电子株式会社 系统空调及其运行方法
CN201547994U (zh) * 2009-11-12 2010-08-11 广东美的电器股份有限公司 一种空调器
CN203231415U (zh) * 2013-03-27 2013-10-09 宁波奥克斯空调有限公司 一种多联机空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542341A (zh) * 2003-05-01 2004-11-03 Lg������ʽ���� 空调器及其室外单元
CN1590872A (zh) * 2003-08-28 2005-03-09 三星电子株式会社 空调机
JP2009257697A (ja) * 2008-04-18 2009-11-05 Daikin Ind Ltd 空調システム及び空調システムの室外ユニット
CN101749880A (zh) * 2008-12-16 2010-06-23 三星电子株式会社 系统空调及其运行方法
CN201547994U (zh) * 2009-11-12 2010-08-11 广东美的电器股份有限公司 一种空调器
CN203231415U (zh) * 2013-03-27 2013-10-09 宁波奥克斯空调有限公司 一种多联机空调系统

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512152B (zh) * 2013-05-31 2016-01-06 广东美芝精密制造有限公司 空调系统及用于其的冷媒量的控制方法
CN103512152A (zh) * 2013-05-31 2014-01-15 广东美芝精密制造有限公司 空调系统及用于其的冷媒量的控制方法
US10168066B2 (en) 2013-09-30 2019-01-01 Fujitsu General Limited Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
CN105121973A (zh) * 2013-09-30 2015-12-02 富士通将军股份有限公司 空气调节装置
CN105121973B (zh) * 2013-09-30 2017-09-15 富士通将军股份有限公司 空气调节装置
CN104566773A (zh) * 2013-10-28 2015-04-29 珠海格力电器股份有限公司 多联空调的容量控制方法及控制系统
CN104566773B (zh) * 2013-10-28 2017-05-31 珠海格力电器股份有限公司 多联空调的容量控制方法及控制系统
CN105526680A (zh) * 2016-01-19 2016-04-27 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
CN105526680B (zh) * 2016-01-19 2018-09-25 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
CN106247533A (zh) * 2016-08-08 2016-12-21 珠海格力电器股份有限公司 一种空调系统化霜的控制装置、控制方法及空调系统
CN106369877A (zh) * 2016-11-30 2017-02-01 广东美的制冷设备有限公司 热泵系统及其除霜控制方法
CN108759150B (zh) * 2018-05-09 2020-12-29 特灵空调系统(中国)有限公司 空调系统和其控制方法
CN108759150A (zh) * 2018-05-09 2018-11-06 特灵空调系统(中国)有限公司 空调系统和其控制方法
CN108917094A (zh) * 2018-07-18 2018-11-30 奥克斯空调股份有限公司 一种化霜控制方法、装置及空调器
CN112739965A (zh) * 2018-09-28 2021-04-30 三菱电机株式会社 空调机
CN112739965B (zh) * 2018-09-28 2022-06-28 三菱电机株式会社 空调机
CN109899931A (zh) * 2019-03-12 2019-06-18 广东美的暖通设备有限公司 多联机系统能效优化的控制方法和装置
CN109945330A (zh) * 2019-03-22 2019-06-28 珠海格力电器股份有限公司 能连续制热的制冷系统及化霜控制方法
WO2020192202A1 (zh) * 2019-03-22 2020-10-01 珠海格力电器股份有限公司 制冷系统及化霜控制方法
CN110094831A (zh) * 2019-04-10 2019-08-06 青岛海尔空调电子有限公司 多联机空调及其除霜控制方法
CN110094831B (zh) * 2019-04-10 2021-12-28 青岛海尔空调电子有限公司 多联机空调及其除霜控制方法
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统
CN110701814B (zh) * 2019-10-12 2020-11-24 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统
WO2021103815A1 (zh) * 2019-11-28 2021-06-03 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN110926093A (zh) * 2019-12-06 2020-03-27 四方科技集团股份有限公司 一种用于冷风机的按需融霜方法
CN110926093B (zh) * 2019-12-06 2021-07-23 四方科技集团股份有限公司 一种用于冷风机的按需融霜方法
CN112444001A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112797570A (zh) * 2020-12-30 2021-05-14 宁波奥克斯电气股份有限公司 除霜控制方法、除霜装置及多联空调系统
CN113154522A (zh) * 2021-04-25 2021-07-23 珠海格力电器股份有限公司 一种多联空调机系统及除霜控制方法
CN113154522B (zh) * 2021-04-25 2022-03-29 珠海格力电器股份有限公司 一种多联空调机系统及除霜控制方法
CN113154731A (zh) * 2021-04-30 2021-07-23 广东积微科技有限公司 一种不停机化霜的三管制多联机空调系统
CN113513825A (zh) * 2021-07-14 2021-10-19 南京天加环境科技有限公司 一种优化除霜过程的制冷系统及其控制方法
CN113513825B (zh) * 2021-07-14 2023-02-28 南京天加环境科技有限公司 一种优化除霜过程的制冷系统及其控制方法
CN113970167A (zh) * 2021-10-21 2022-01-25 珠海格力电器股份有限公司 一种空调除霜方法、装置、模组、空调和存储介质
CN114857662A (zh) * 2022-05-05 2022-08-05 青岛海信日立空调系统有限公司 一种多联机空调系统及其控制方法
CN114857662B (zh) * 2022-05-05 2023-08-29 青岛海信日立空调系统有限公司 一种多联机空调系统及其控制方法
CN115218352A (zh) * 2022-07-20 2022-10-21 南京天加环境科技有限公司 一种改善多联式空调制热性能的系统及其控制方法
CN115218352B (zh) * 2022-07-20 2023-12-01 南京天加环境科技有限公司 一种改善多联式空调制热性能的系统及其控制方法
CN115342482A (zh) * 2022-08-23 2022-11-15 宁波奥克斯电气股份有限公司 一种除霜控制方法及空调器
CN115342482B (zh) * 2022-08-23 2024-06-28 宁波奥克斯电气股份有限公司 一种除霜控制方法及空调器
CN117404826A (zh) * 2023-12-13 2024-01-16 珠海格力电器股份有限公司 多联机热泵机组及其化霜过程平衡水温的控制方法

Similar Documents

Publication Publication Date Title
CN103123147A (zh) 一种多联机空调系统及其控制方法
CN203231415U (zh) 一种多联机空调系统
CN109764607B (zh) 冰箱的控制方法
CN103363600B (zh) 热泵式空气调节装置
CN103383157B (zh) 热泵空调系统及其控制方法
US9377225B2 (en) Outdoor heat exchanger and air conditioner comprising the same
CN103791569B (zh) 热泵式空调系统
CN103363708A (zh) 热泵式空气调节装置
CN204730374U (zh) 一种蓄能型空调系统
CN104913415A (zh) 一种蓄能型空调系统
CN103363601A (zh) 热泵式空气调节装置
CN109959120A (zh) 空调器的除霜方法及空调器
CN103307800B (zh) 热泵系统
CN112963978B (zh) 一种空调器化霜结构及其化霜方法、装置和空调器
CN103411340A (zh) 室外换热装置及其除霜方法
CN107388665B (zh) 热泵组件、除霜控制方法和存储介质
CN112880132B (zh) 用于空调系统除霜控制的方法及装置、空调系统
CN104764087A (zh) 一种具备除霜功能的两级制热空调系统及其控制方法
CN110425763A (zh) 一种热泵系统
CN202885329U (zh) 空调系统
CN110440478A (zh) 一种具有延缓结霜功能的空调系统及其控制方法
CN111121337B (zh) 空调双冷凝器除霜方法和空调
CN103388881A (zh) 热泵空调系统及其控制方法
CN114440401B (zh) 一种空气源热泵机组
KR101899220B1 (ko) 공기 조화기

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130529