CN103117438A - Terahertz waveguide cavity filter - Google Patents
Terahertz waveguide cavity filter Download PDFInfo
- Publication number
- CN103117438A CN103117438A CN201310066735XA CN201310066735A CN103117438A CN 103117438 A CN103117438 A CN 103117438A CN 201310066735X A CN201310066735X A CN 201310066735XA CN 201310066735 A CN201310066735 A CN 201310066735A CN 103117438 A CN103117438 A CN 103117438A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- cavity
- inductive coupling
- coupling window
- resonant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims abstract description 91
- 238000010168 coupling process Methods 0.000 claims abstract description 91
- 238000005859 coupling reaction Methods 0.000 claims abstract description 91
- 230000001939 inductive effect Effects 0.000 claims abstract description 66
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 238000005192 partition Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000008054 signal transmission Effects 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 2
- 239000010931 gold Substances 0.000 claims 2
- 229910052737 gold Inorganic materials 0.000 claims 2
- 238000004891 communication Methods 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明涉及太赫兹波导腔体滤波器,由位于上部的上腔体和位于下部的下腔体层叠构成,所述上腔体封盖在下腔体上并在两者结合处具有镂空结构形成的波导腔,所述波导腔位于下腔体内;所述第三谐振腔与波导输出段之间通过第五感性耦合窗串联;所述波导输入段、第一感性耦合窗、第一谐振腔、第三感性耦合窗、第二谐振腔、第二感性耦合窗和波导输出段依次串联构成耦合路径一作为主信号通路;所述波导输入段、第四感性耦合窗、第三谐振腔、第五感性耦合窗和波导输出段依次串联构成耦合路径二,用于在通带低端形成一个传输零点。本发明的有益效果是:波导腔体滤波器通带位于380~390GHz频段,可以利用本频段大气吸收窗口实现特定条件下的通信等特点。
The invention relates to a terahertz waveguide cavity filter, which is composed of an upper cavity at the upper part and a lower cavity at the lower part. The upper cavity is covered on the lower cavity and has a hollow structure at the junction of the two. A waveguide cavity, the waveguide cavity is located in the lower cavity; the third resonant cavity and the waveguide output section are connected in series through the fifth inductive coupling window; the waveguide input section, the first inductive coupling window, the first resonant cavity, the second Three inductive coupling windows, the second resonant cavity, the second inductive coupling window and the waveguide output section are sequentially connected in series to form a coupling path—as the main signal path; the waveguide input section, the fourth inductive coupling window, the third resonant cavity, the fifth inductive The coupling window and the waveguide output section are sequentially connected in series to form the second coupling path, which is used to form a transmission zero point at the low end of the passband. The beneficial effect of the present invention is that: the passband of the waveguide cavity filter is located in the 380-390 GHz frequency band, and the atmospheric absorption window of this frequency band can be used to realize communication under specific conditions and the like.
Description
技术领域technical field
本发明属于太赫兹无源器件技术领域,特别涉及一种适用于325~500GHz频段的基于体硅刻蚀工艺的WR2.2(横截面积为0.56mm×0.28mm)矩形波导腔体带通滤波器。The invention belongs to the technical field of terahertz passive devices, in particular to a WR2.2 (cross-sectional area of 0.56mm×0.28mm) rectangular waveguide cavity band-pass filter suitable for 325-500GHz frequency band based on bulk silicon etching process device.
背景技术Background technique
太赫兹频率一般指300GHz~3000GHz范围内的电磁频段,它位于微波频段(300MHz~300GHz)与红外频段之间,限于技术水平,过去一直没有得到利用,成为一段太赫兹空白(Terahertz Gap)。由于电磁频谱的日益拥挤,300GHz以下的频谱资源开发殆尽,这一段“空白”亟需加以利用。近年来,随着技术的进步,对适用于太赫兹频段的器件以及系统的研究得以进行,其中作为太赫兹系统的重要组成部件—太赫兹滤波器已成为目前研究的热点。但在太赫兹频率区间的不同频段,电磁波的传输有不同的特性,因此,研究开发适用于特定频段的太赫兹频段的波导滤波器存在很大困难。为了拓展频谱资源的利用范围,改变电磁频谱日益拥挤的现状,研究开发可适用于太赫兹频率特定频段的波导滤波器,是所属领域的科技工作者共同面临的课题。Terahertz frequency generally refers to the electromagnetic frequency band in the range of 300GHz to 3000GHz. It is located between the microwave frequency band (300MHz to 300GHz) and the infrared frequency band. It is limited to the technical level and has not been used in the past. It has become a Terahertz gap (Terahertz Gap). Due to the increasingly crowded electromagnetic spectrum, the spectrum resources below 300 GHz have been exhausted, and this "blank" needs to be utilized urgently. In recent years, with the advancement of technology, research on devices and systems suitable for terahertz frequency bands has been carried out, and terahertz filters, as an important component of terahertz systems, have become a hot research topic at present. However, in different frequency bands in the terahertz frequency range, the transmission of electromagnetic waves has different characteristics. Therefore, it is very difficult to research and develop waveguide filters suitable for specific frequency bands in the terahertz frequency band. In order to expand the utilization range of spectrum resources and change the increasingly crowded electromagnetic spectrum, research and development of waveguide filters applicable to specific frequency bands of terahertz frequencies is a common task faced by scientific and technological workers in the field.
滤波器是一个二端口网络,它通过在滤波器通带频率内提供信号传输并在阻带内提供衰减的特性,用以选择系统中某处的频率响应。典型的频率响应包括低通、高通、带通和带阻特性。滤波器实际上已广泛应用于各种类型的通信、雷达测试或测量系统中。滤波器的实现形式主要分为平面电路(微带线、共面波导等)和金属腔体电路(矩形波导),实现原理是将一个或多个谐振单元通过耦合的形式连接起来,实现一定的频率响应。其频率响应直接由谐振单元的特性、单元之间耦合的强弱以及整体结构拓扑决定:谐振单元特性主要包括其具体形状和Q值;耦合的形式则可以根据耦合面上的场分布分为磁耦合、电耦合以及混合形式的耦合,又可以根据耦合面处等效电路的性质分为容性耦合、感性耦合等;而整体结构拓扑则决定滤波器的阶数、零极点位置。目前太赫兹频段,传统的平面电路滤波器由于其介质损耗过高而无法使用;纯金属波导电路又由于其结构细微,传统金属加工工艺无法实现;其它光子晶体结构滤波器又欠缺通用性,所以还缺乏性能成熟的、具有通用性的滤波器形式。A filter is a two-port network that is used to select the frequency response somewhere in the system by providing signal transmission in the passband frequency of the filter and attenuation in the stopband. Typical frequency responses include low-pass, high-pass, band-pass and band-stop characteristics. Filters are actually widely used in various types of communication, radar test or measurement systems. The implementation forms of filters are mainly divided into planar circuits (microstrip lines, coplanar waveguides, etc.) and metal cavity circuits (rectangular waveguides). The realization principle is to connect one or more resonant units through coupling to achieve a certain Frequency response. Its frequency response is directly determined by the characteristics of the resonant unit, the strength of the coupling between units, and the overall structural topology: the characteristics of the resonant unit mainly include its specific shape and Q value; the form of coupling can be divided into magnetic and magnetic based on the field distribution on the coupling surface. Coupling, electrical coupling, and hybrid coupling can be divided into capacitive coupling, inductive coupling, etc. according to the nature of the equivalent circuit at the coupling surface; while the overall structural topology determines the order of the filter and the position of the zero pole. At present, in the terahertz frequency band, the traditional planar circuit filter cannot be used due to its high dielectric loss; the pure metal waveguide circuit cannot be realized by traditional metal processing technology due to its fine structure; other photonic crystal structure filters lack versatility, so There is also a lack of mature and versatile filter forms.
发明内容Contents of the invention
本发明的目的是针对现有滤波器在太赫兹频段上的不足,提供一种可应用于325~500GHz频段的太赫兹波导腔体滤波器,力求改变目前太赫兹频段缺乏通用滤波器的现状。The purpose of the present invention is to provide a terahertz waveguide cavity filter applicable to the 325-500 GHz frequency band in view of the shortcomings of existing filters in the terahertz frequency band, and strive to change the current situation of lack of general filters in the terahertz frequency band.
本发明的技术方案是:太赫兹波导腔体滤波器,由位于上部的上腔体和位于下部的下腔体层叠构成,所述上腔体封盖在下腔体上并在两者结合处具有镂空结构形成的波导腔,所述波导腔位于下腔体内;其特征在于,所述波导腔包括呈长方体的波导输入段和波导输出段,位于波导输入段和波导输出段之间并且也呈长方体的第一谐振腔、第二谐振腔和第三谐振腔,所述波导输入段与第一谐振腔之间通过第一感性耦合窗串联,所述第一谐振腔与第二谐振腔通过第三感性耦合窗串联,所述第二谐振腔与波导输出段通过第二感性耦合窗串联,所述波导输入段与第三谐振腔之间通过第四感性耦合窗串联,所述第三谐振腔与波导输出段之间通过第五感性耦合窗串联;所述波导输入段、第一感性耦合窗、第一谐振腔、第三感性耦合窗、第二谐振腔、第二感性耦合窗和波导输出段依次串联构成耦合路径一作为主信号通路;所述波导输入段、第四感性耦合窗、第三谐振腔、第五感性耦合窗和波导输出段依次串联构成耦合路径二,用于在通带低端形成一个传输零点;所述第一谐振腔、第二谐振腔和第三谐振腔的中间部位具有用以间隔三个谐振腔、波导输入段和波导输出段的凸台。The technical solution of the present invention is: a terahertz waveguide cavity filter, which is composed of an upper cavity on the upper part and a lower cavity on the lower part, the upper cavity is covered on the lower cavity and has a A waveguide cavity formed by a hollow structure, the waveguide cavity is located in the lower cavity; it is characterized in that the waveguide cavity includes a cuboid waveguide input section and a waveguide output section, which are located between the waveguide input section and the waveguide output section and are also in the shape of a cuboid The first resonant cavity, the second resonant cavity and the third resonant cavity, the waveguide input section and the first resonant cavity are connected in series through the first inductive coupling window, and the first resonant cavity and the second resonant cavity are connected through the third resonant cavity The inductive coupling window is connected in series, the second resonant cavity is connected in series with the waveguide output section through the second inductive coupling window, the waveguide input section and the third resonant cavity are connected in series through the fourth inductive coupling window, and the third resonant cavity is connected in series with the third resonant cavity. The waveguide output sections are connected in series through the fifth inductive coupling window; the waveguide input section, the first inductive coupling window, the first resonant cavity, the third inductive coupling window, the second resonant cavity, the second inductive coupling window and the waveguide output section The first coupling path is formed in series as the main signal path; the waveguide input section, the fourth inductive coupling window, the third resonant cavity, the fifth inductive coupling window and the waveguide output section are sequentially connected in series to form a coupling path two, which is used for the low passband The ends form a transmission zero point; the middle parts of the first resonant cavity, the second resonant cavity and the third resonant cavity have bosses for separating the three resonant cavities, waveguide input section and waveguide output section.
本发明的有益效果是:本发明的波导腔体滤波器通带位于380~390GHz频段,可利用94GHz的大气窗口实现四倍频大功率输出,又可以利用本频段大气吸收窗口实现特定条件下的通信等特点,具有优良的传输性能。同时摒弃了现有技术的滤波器在上、下腔体分别蚀刻一半滤波结构的设计结构,完全避免了上、下腔体闭合时有可能产生对位不准的问题,大大提高了滤波器的加工制作性。The beneficial effects of the present invention are: the passband of the waveguide cavity filter of the present invention is located in the 380-390 GHz frequency band, and the atmospheric window of 94 GHz can be used to realize quadrupling frequency high-power output, and the atmospheric absorption window of this frequency band can be used to realize high-power output under specific conditions. Communication and other characteristics, with excellent transmission performance. At the same time, the design structure of half of the filter structure etched in the upper and lower cavities of the filter in the prior art is abandoned, which completely avoids the problem of misalignment that may occur when the upper and lower cavities are closed, and greatly improves the efficiency of the filter. Manufacturability.
附图说明Description of drawings
图1为本发明的太赫兹波导腔体滤波器主视结构示意图。Fig. 1 is a schematic diagram of the front view structure of the terahertz waveguide cavity filter of the present invention.
图2为本发明的太赫兹波导腔体滤波器俯视结构示意图。Fig. 2 is a schematic top view structure diagram of the terahertz waveguide cavity filter of the present invention.
图3为本发明的太赫兹波导腔体滤波器的下腔体的主视结构示意图。Fig. 3 is a front view schematic diagram of the lower cavity of the terahertz waveguide cavity filter of the present invention.
图4为本发明的太赫兹波导腔体滤波器的下腔体的俯视结构示意图。FIG. 4 is a schematic plan view of the lower cavity of the terahertz waveguide cavity filter of the present invention.
图5为本发明的太赫兹波导腔体滤波器的下腔体的俯视结构的关键尺寸示意图。FIG. 5 is a schematic diagram of key dimensions of the top view structure of the lower cavity of the terahertz waveguide cavity filter of the present invention.
图6为本发明的太赫兹波导腔体滤波器在325~440GHz频段下的测试曲线。Fig. 6 is a test curve of the terahertz waveguide cavity filter of the present invention in the frequency band of 325-440 GHz.
附图标记说明:上腔体1、下腔体2、波导腔3、波导输入段4、波导输出段5、第一谐振腔6、第二谐振腔7、第三谐振腔8、第一感性耦合窗9、第二感性耦合窗10、第三感性耦合窗11、第四感性耦合窗12、第五感性耦合窗13、凸台14、短路端15、短路端16。Description of reference numerals:
具体实施方式Detailed ways
本发明申请的发明人在研究中发现,在太赫兹频段,各种介质材料的介质损耗急剧增大,含有介质填充的滤波器难以应用在这个频段,例如基于微带的平面滤波器。发明人同时发现,在其通带的380~390GHz太赫兹频段,可以利用94GHz的大气窗口实现四倍频大功率输出,又可以利用本频段大气吸收窗口实现特定条件下的通信。发明人基于上述发现,研究开发出了通带位于380~390GHz的太赫兹波导腔体滤波器。The inventors of the present application found that in the terahertz frequency band, the dielectric loss of various dielectric materials increases sharply, and it is difficult to apply filters with dielectric filling in this frequency band, such as planar filters based on microstrip. The inventor also discovered that in the 380-390GHz terahertz frequency band of its passband, the 94GHz atmospheric window can be used to achieve quadrupled high-power output, and the atmospheric absorption window of this frequency band can be used to realize communication under specific conditions. Based on the above findings, the inventors researched and developed a terahertz waveguide cavity filter with a passband in the range of 380-390 GHz.
如图1、图2、图3和图4所示,本发明申请提供的太赫兹波导腔体滤波器,由位于上部的上腔体1和位于下部的下腔体2层叠构成,所述上腔体1封盖在下腔体2上并在两者结合处具有镂空结构形成的波导腔3,所述波导腔3位于下腔体2内;其特征在于,所述波导腔3包括呈长方体的波导输入段4和波导输出段5,位于波导输入段4和波导输出段5之间并且也呈长方体的第一谐振腔6、第二谐振腔7和第三谐振腔8,所述波导输入段4与第一谐振腔6之间通过第一感性耦合窗9串联,所述第一谐振腔6与第二谐振腔7通过第三感性耦合窗11串联,所述第二谐振腔7与波导输出段5通过第二感性耦合窗10串联,所述波导输入段4与第三谐振腔8之间通过第四感性耦合窗12串联,所述第三谐振腔8与波导输出段5之间通过第五感性耦合窗13串联;所述波导输入段4、第一感性耦合窗9、第一谐振腔6、第三感性耦合窗11、第二谐振腔7、第二感性耦合窗10和波导输出段5依次串联构成耦合路径一作为主信号通路,用于形成中心频率位于385GHz的二阶带通滤波特性;所述波导输入段4、第四感性耦合窗12、第三谐振腔8、第五感性耦合窗13和波导输出段5依次串联构成耦合路径二,用于在通带低端形成一个传输零点,从而优化带通滤波在低端的带外抑制;所述第一谐振腔6、第二谐振腔7和第三谐振腔8的中间部位具有用以间隔三个谐振腔、波导输入段4和波导输出段5的凸台14。As shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4, the terahertz waveguide cavity filter provided by the present application is composed of an
上述波导腔3以空气为填充介质,上腔体1和下腔体2为硅基镀金材质,波导腔3的波导输入段4和波导输出段5为标准WR2.2矩形波导,横截面的宽、高尺寸分别为560μm±5μm、280μm±5μm。The above-mentioned
下面结合附图和具体实施例对本发明做进一步的说明,并通过实施例对本发明作进一步的具体描述。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, and the present invention will be further specifically described through the embodiments.
如图4和5所示,太赫兹波导滤波器的波导腔主要由波导输入段4、波导输出段5以及位于波导输入段4和波导输出段5之间的3个矩形谐振腔(6、7、8)构成。波导输入段4、波导输出段5为WR2.2规格的标准矩形波导,横截面的宽、高尺寸分别为0.56mm±5μm、0.28mm±5μm。整个滤波结构由波导输入段4、波导输出段5两段WR2.2标准矩形波导和三个矩形谐振腔构成,各结构之间由感性耦合窗(9、10、11、12、13)分隔形成,从原理上分为两个信号耦合路径,耦合路径一经过右侧串联的两个谐振频率位于385Ghz的第一谐振腔6和第二谐振腔7,为主信号通路,用于形成中心频率位于385GHz的二阶带通滤波特性,其间三个感性耦合窗口的厚度和宽度将决定频率响应波形;耦合路径二经过左侧一个矩形谐振腔(即第三谐振腔8),用于在通带低端形成一个传输零点,优化带通滤波在低端的带外抑制。As shown in Figures 4 and 5, the waveguide cavity of the terahertz waveguide filter is mainly composed of a
耦合路径一包含波导输入段4[2403μm×(560±5μm)×(280±5μm)]、第一谐振腔6[(506±3μm)×(506±3μm)×(280±5μm)]、第二谐振腔7[(506±3μm)×(506±3μm)×(280±5μm)]、波导输出段5[2403um×(560±5μm)×(280±5μm)]、波导输入段4与第一谐振腔6之间的第一感性耦合窗9[(306±3μm)×(44±3μm)×(280±5μm)]、第一谐振腔6与第二谐振腔7之间的第三感性耦合窗11[(216±3μm)×(74±3μm)×(280±5μm)]、第二谐振腔7与波导输出段5之间的第二感性耦合窗10[(306±3μm)×(44±3μm)×(280±5μm)]。方括号内的数据分别表示了长方体形的谐振腔和耦合窗在长、宽和高的三维尺寸,±表示其三维尺寸所允许的误差值。
耦合路径二包含波导输入段4[2403um×(560±5μm)×(280±5μm)]、第三谐振腔8[(506±3μm)×(806±3μm)×(280±5μm)]、波导输出段5[2403um×(560±5μm)×(280±5μm)]、波导输入段4与第三谐振腔8之间的第四感性耦合窗12[(206±3μm)×(114±3μm)×(280±5μm)]、第三谐振腔8与波导输出段5之间的第五感性耦合窗13[(206±3μm)×(114±3μm)×(280±5μm)]。
第一感性耦合窗9距离波导输入段4的短路端15的距离为50±5μm,第二感性耦合窗10距离波导输出段5的短路端16的距离为50±5m,第三感性耦合窗11距离第一谐振腔6的第一感性耦合窗9端面的距离为140±5m,第四感性耦合窗12贴紧波导输入段4的短路端15,第五感性耦合窗13贴紧波导输出段5的短路端16。The distance between the first
上述感性耦合窗由位于其两侧的隔墙构成,隔墙的上缘与下腔体2的硅质基片表面平齐,隔墙的下缘与下腔体2的谐振腔底面平齐,即感性耦合窗的高度也为280μm±5μm。The above-mentioned inductive coupling window is composed of partition walls located on both sides thereof, the upper edge of the partition wall is flush with the surface of the silicon substrate of the
为了更好地实现本发明的目的,本发明还可进一步采取以下技术措施。以下技术措施可单独采取,也可组合采取,甚至一并采取。In order to better realize the purpose of the present invention, the present invention can further adopt the following technical measures. The following technical measures can be taken individually, in combination, or even together.
上述太赫兹波导滤波器为剖分结构,闭合形成滤波器波导腔3的上腔体1的结合面为平整基片,下腔体2的接合面为在基片上通过蚀刻加工出滤波器波导腔的整体结构,上腔体1封盖在下腔体3键合构成太赫兹波导滤波器。太赫兹波导滤波器采取上述结构,可完全避免传统滤波器上、下腔体分别蚀刻一半滤波结构,在上、下腔体闭合时可能产生对位不准的问题。The above-mentioned terahertz waveguide filter has a split structure, the joint surface of the
上述波导腔的平面结构可设计为相对垂直于信号传输方向的中心线对称,如相对图4中的中心线A-A对称。The planar structure of the above-mentioned waveguide cavity can be designed to be symmetrical with respect to the center line perpendicular to the signal transmission direction, for example, it is symmetrical with respect to the center line A-A in FIG. 4 .
上述感性耦合窗两侧的隔墙,其上缘与下腔体基片表面平齐,下端与谐振腔底面平齐。The upper edge of the partition walls on both sides of the inductive coupling window is flush with the surface of the lower cavity substrate, and the lower end is flush with the bottom surface of the resonant cavity.
上述波导腔最好采取在硅质基片上通过蚀刻加工出波导腔的整体结构,再通过溅射镀金工艺在波导腔结构上镀覆镀金层。镀金层的厚度最好为2.5~3.5μm。Preferably, the above-mentioned waveguide cavity adopts the overall structure of the waveguide cavity processed by etching on the silicon substrate, and then a gold-plated layer is plated on the waveguide cavity structure by sputtering gold-plating process. The thickness of the gold-plated layer is preferably 2.5-3.5 μm.
本发明提供的太赫兹波导腔体滤波器,采取体硅加工工艺加工制取。体硅加工工艺是MEMS(Microelectromechanical Systems,微机电系统)工艺中具有代表性的一种。MEMS所代表的是由特征尺寸在0.001mm~0.1mm的组件所集成的系统,具有微米量级的加工精度。体硅加工工艺在保证一定工艺水平的同时具有加工费用相对低廉、加工条件相对简单以及技术要求相对较低的特点。The terahertz waveguide cavity filter provided by the present invention is manufactured by bulk silicon processing technology. The bulk silicon processing technology is a representative one of the MEMS (Microelectromechanical Systems, microelectromechanical systems) technology. MEMS represents a system integrated with components with a feature size of 0.001 mm to 0.1 mm, and has a processing accuracy of the order of microns. Bulk silicon processing technology has the characteristics of relatively low processing cost, relatively simple processing conditions and relatively low technical requirements while ensuring a certain technological level.
所述体硅加工工艺,其工艺流程大致如下:The bulk silicon processing technology, its technological process is roughly as follows:
首先,在硅质基片的表面生成一层不同化学成分的掩模层。First, a mask layer with different chemical compositions is formed on the surface of the silicon substrate.
然后,通过光刻的方式在掩模层上生成图形,图形位于需要腐蚀的硅质基片部分在掩模层上的对应位置,并将这部分的掩模层除去,裸露出之下的硅质基片。Then, generate a pattern on the mask layer by photolithography, the pattern is located at the corresponding position on the mask layer of the silicon substrate part that needs to be etched, and remove this part of the mask layer to expose the underlying silicon. quality substrate.
随后,通过气相腐蚀剂腐蚀硅质基片,得到规定深度和形状的矩形槽,气相腐蚀剂具有各向异性的特点,以保证其主要在深度上进行腐蚀,并且对掩模层没有腐蚀作用,通过残留的掩模层可以保护其下的硅质基片不受腐蚀。Subsequently, the silicon substrate is etched by a gas-phase etchant to obtain a rectangular groove of specified depth and shape. A mask layer can protect the underlying silicon substrate from corrosion.
其后,通过腐蚀剂清除残留的掩模层,该腐蚀剂应对硅质基片没有腐蚀作用,该工序完成后,只余下经过刻蚀处理的硅质基片。Thereafter, the residual mask layer is removed by an etchant, which should have no corrosion effect on the silicon substrate, and only the etched silicon substrate remains after the process is completed.
此后,在硅质基片的表面,以及矩形槽的表面通过金属溅射的方式进行金属化操作。Thereafter, a metallization operation is performed on the surface of the silicon substrate and the surface of the rectangular groove by metal sputtering.
最后,将该基片与另外一块经过表面金属化处理的基片进行键合,形成一个内表面金属化的腔,该腔即为滤波器的谐振腔(图4中的6、7或8)。Finally, bond the substrate with another substrate that has undergone surface metallization to form a metallized cavity on the inner surface, which is the resonant cavity of the filter (6, 7 or 8 in Figure 4) .
如图6所示,本发明提供的太赫兹波导腔体滤波器,是以空气为填充介质的波导滤波结构,即滤波器的功能构件是以空气为填充介质的波导。采用矢量网络分析仪系统(Agilent N5245A)结合频率拓展模块(OML-V022VNA2)对其进行测量,测量结果是在387GHz中心频点损耗为4.37dB,3-dB带宽为12.8GHz(380.6~393.4GHz),反射约为-20dB,带外抑制大于20dB。这意味着本发明的波导滤波器在太赫兹低端(325~500GHz)可以实现完整滤波性能和较低的插入损耗,解决了其它形式滤波器由于损耗过大,难以应用在这个频段的难题。As shown in Fig. 6, the terahertz waveguide cavity filter provided by the present invention is a waveguide filter structure with air as the filling medium, that is, the functional component of the filter is a waveguide with air as the filling medium. The vector network analyzer system (Agilent N5245A) combined with the frequency expansion module (OML-V022VNA2) is used to measure it. The measurement result shows that the loss at the center frequency of 387GHz is 4.37dB, and the 3-dB bandwidth is 12.8GHz (380.6~393.4GHz). , the reflection is about -20dB, and the out-of-band rejection is greater than 20dB. This means that the waveguide filter of the present invention can achieve complete filtering performance and low insertion loss at the low end of terahertz (325-500 GHz), which solves the problem that other types of filters are difficult to apply in this frequency band due to excessive loss.
本发明的波导腔体滤波器通带位于380~390GHz频段,可利用94GHz的大气窗口实现四倍频大功率输出,又可以利用本频段大气吸收窗口实现特定条件下的通信等特点,具有优良的传输性能。The passband of the waveguide cavity filter of the present invention is located in the 380-390 GHz frequency band, and the 94 GHz atmospheric window can be used to realize quadruple frequency high-power output, and the atmospheric absorption window of this frequency band can be used to realize communication under specific conditions, etc., and has excellent performance transmission performance.
本发明提供的太赫兹波导滤波器,结构设计采取了以平整基片作为闭合形成滤波器波导腔的上腔体,在作为下腔体的基片上通过蚀刻加工出滤波器波导腔的整体结构,上腔体封盖在下腔体键合构成太赫兹波导滤波器,摒弃了现有技术的滤波器在上、下腔体分别蚀刻一半滤波结构的设计结构,完全避免了上、下腔体闭合时有可能产生对位不准的问题,大大提高了滤波器的加工制作性。The structure design of the terahertz waveguide filter provided by the present invention adopts a flat substrate as the upper cavity to close the filter waveguide cavity, and the overall structure of the filter waveguide cavity is processed by etching on the substrate as the lower cavity. The cover of the upper cavity is bonded to the lower cavity to form a terahertz waveguide filter, which abandons the design structure of the filter in the prior art to etch half of the filter structure in the upper and lower cavities respectively, and completely avoids the problem when the upper and lower cavities are closed. There may be a problem of inaccurate alignment, which greatly improves the manufacturability of the filter.
本发明的太赫兹波导腔体滤波器,采用WR2.2标准矩形波导接口,具有工作频率高,损耗小,易于制造,通用性强等优点,在太赫兹系统中具有良好的应用前景。The terahertz waveguide cavity filter of the present invention adopts the WR2.2 standard rectangular waveguide interface, has the advantages of high operating frequency, low loss, easy manufacture, strong versatility, etc., and has good application prospects in terahertz systems.
有必要在此指出的是,上面的实施例只是用于进一步阐述本发明,以便于本领域的普通技术人员更好地理解本发明。本发明已通过文字揭露了其首选实施方案,但通过阅读这些技术文字说明可以领会其中的可优化性和可修改性,并在不偏离本发明的范围和精神上进行改进,但这样的改进应仍属于本发明权利要求的保护范围。It is necessary to point out that the above embodiments are only used to further illustrate the present invention, so that those skilled in the art can better understand the present invention. The present invention has disclosed its preferred embodiment by text, but can comprehend optimization and modifiability wherein by reading these technical text description, and can improve without departing from the scope and spirit of the present invention, but such improvement should Still belong to the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310066735XA CN103117438A (en) | 2013-03-04 | 2013-03-04 | Terahertz waveguide cavity filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310066735XA CN103117438A (en) | 2013-03-04 | 2013-03-04 | Terahertz waveguide cavity filter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103117438A true CN103117438A (en) | 2013-05-22 |
Family
ID=48415748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310066735XA Pending CN103117438A (en) | 2013-03-04 | 2013-03-04 | Terahertz waveguide cavity filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103117438A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183896A (en) * | 2014-08-11 | 2014-12-03 | 电子科技大学 | Four-port device testing structure applicable to terahertz frequency band |
CN104658837A (en) * | 2015-02-09 | 2015-05-27 | 中国科学院电子学研究所 | Terahertz electromagnetic wave power transmission window provided with dual-wedge long-strip-shaped rectangular window flake |
CN104795616A (en) * | 2015-04-17 | 2015-07-22 | 电子科技大学 | Cross-coupled terahertz rectangular cavity filter with transmission zeros |
CN104795620A (en) * | 2015-04-10 | 2015-07-22 | 电子科技大学 | Manufacturing method of terahertz waveguide passive device |
CN105893682A (en) * | 2016-04-05 | 2016-08-24 | 电子科技大学 | Optimum design method based on overall performance of terahertz frequency band device |
CN109546275A (en) * | 2018-12-07 | 2019-03-29 | 中国船舶重工集团公司第七二四研究所 | A kind of high-performance isomery cavity Terahertz duplexer |
CN110932672A (en) * | 2019-11-18 | 2020-03-27 | 东南大学 | Full-band terahertz quadrupler module |
CN113241507A (en) * | 2021-05-10 | 2021-08-10 | 南京智能高端装备产业研究院有限公司 | Rectangular cavity band-pass filter based on stacked structure |
CN113315475A (en) * | 2021-05-28 | 2021-08-27 | 中电科思仪科技股份有限公司 | Terahertz broadband down-conversion device and working method thereof |
CN114824706A (en) * | 2022-04-22 | 2022-07-29 | 电子科技大学 | Integrally processed filter and method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1538692A1 (en) * | 2003-12-05 | 2005-06-08 | Alcatel | Rectangular waveguide filter with extracted poles |
CN1797842A (en) * | 2004-12-21 | 2006-07-05 | 华为技术有限公司 | Band-pass filter with transmission zero |
CN202217764U (en) * | 2011-08-29 | 2012-05-09 | 武汉凡谷电子技术股份有限公司 | Capacitive coupling structure of filter |
CN203288724U (en) * | 2013-03-04 | 2013-11-13 | 电子科技大学 | Terahertz waveguide cavity filter |
-
2013
- 2013-03-04 CN CN201310066735XA patent/CN103117438A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1538692A1 (en) * | 2003-12-05 | 2005-06-08 | Alcatel | Rectangular waveguide filter with extracted poles |
CN1797842A (en) * | 2004-12-21 | 2006-07-05 | 华为技术有限公司 | Band-pass filter with transmission zero |
CN202217764U (en) * | 2011-08-29 | 2012-05-09 | 武汉凡谷电子技术股份有限公司 | Capacitive coupling structure of filter |
CN203288724U (en) * | 2013-03-04 | 2013-11-13 | 电子科技大学 | Terahertz waveguide cavity filter |
Non-Patent Citations (1)
Title |
---|
JIANG HU ET AL.: "Micromachined Terahertz Rectangular Waveguide Bandpass Filter on Silicon-Substrate", 《IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104183896B (en) * | 2014-08-11 | 2016-11-09 | 电子科技大学 | Four-port device test structure for terahertz frequency band |
CN104183896A (en) * | 2014-08-11 | 2014-12-03 | 电子科技大学 | Four-port device testing structure applicable to terahertz frequency band |
CN104658837A (en) * | 2015-02-09 | 2015-05-27 | 中国科学院电子学研究所 | Terahertz electromagnetic wave power transmission window provided with dual-wedge long-strip-shaped rectangular window flake |
CN104795620B (en) * | 2015-04-10 | 2017-08-25 | 电子科技大学 | A kind of manufacture method of terahertz waveguide passive device |
CN104795620A (en) * | 2015-04-10 | 2015-07-22 | 电子科技大学 | Manufacturing method of terahertz waveguide passive device |
CN104795616A (en) * | 2015-04-17 | 2015-07-22 | 电子科技大学 | Cross-coupled terahertz rectangular cavity filter with transmission zeros |
CN105893682A (en) * | 2016-04-05 | 2016-08-24 | 电子科技大学 | Optimum design method based on overall performance of terahertz frequency band device |
CN109546275A (en) * | 2018-12-07 | 2019-03-29 | 中国船舶重工集团公司第七二四研究所 | A kind of high-performance isomery cavity Terahertz duplexer |
CN110932672A (en) * | 2019-11-18 | 2020-03-27 | 东南大学 | Full-band terahertz quadrupler module |
CN113241507A (en) * | 2021-05-10 | 2021-08-10 | 南京智能高端装备产业研究院有限公司 | Rectangular cavity band-pass filter based on stacked structure |
CN113315475A (en) * | 2021-05-28 | 2021-08-27 | 中电科思仪科技股份有限公司 | Terahertz broadband down-conversion device and working method thereof |
CN114824706A (en) * | 2022-04-22 | 2022-07-29 | 电子科技大学 | Integrally processed filter and method thereof |
CN114824706B (en) * | 2022-04-22 | 2023-06-23 | 电子科技大学 | Integrated filter and method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103117438A (en) | Terahertz waveguide cavity filter | |
CN104467681B (en) | Terahertz subharmonic frequency multiplier mixer device based on monolithic integrated optical circuit | |
CN108417938B (en) | A Microstrip Filter Power Divider | |
CN103326093A (en) | Novel cross coupling substrate integrated waveguide band-pass filter | |
CN203288724U (en) | Terahertz waveguide cavity filter | |
CN103413997B (en) | Vertical interdigitated LTCC bandpass filter | |
CN105406159B (en) | A kind of CT structure Terahertzs cross-couplings waveguide filter | |
CN109728389A (en) | A double-layer stacked differential microwave wide stopband bandpass filter structure | |
CN107256995B (en) | Microstrip dual-passband band-pass filter | |
CN201387928Y (en) | Hairpin microstrip bandpass filter | |
CN108428979A (en) | A kind of microstrip bandpass filter and its design method | |
CN107895829A (en) | A kind of microstrip filter with the accurate oval bandpass response of three ranks | |
CN104795616B (en) | A kind of cross-couplings Terahertz rectangular cavities wave filter with transmission zero | |
CN103956542A (en) | Broadband substrate integration waveguide filter adopting U-shaped groove line | |
US20180248243A1 (en) | Filtering Unit and Filter | |
CN105896008B (en) | A kind of equal compact bandpass filter containing transmission zero in high and low frequency | |
Li et al. | Silicon micromachined W-band bandpass filter using DRIE technique | |
CN105322259A (en) | Differential band-pass filter based on half mode substrate integrated waveguide structure | |
CN108461876B (en) | Dielectric integrated waveguide filter based on gallium arsenide process | |
CN112271421B (en) | Glass-based high-isolation three-dimensional duplexer | |
CN105680127B (en) | Differential bandpass filter based on signal interference theory | |
Challal et al. | Novel design of miniaturized broad stopband bandpass filter using defected ground structure | |
CN2938443Y (en) | Integrated waveguide cavity filter | |
CN110350279B (en) | Substrate integrated waveguide power divider with filtering function | |
Huang et al. | Silicon RFIC UWB bandpass filter using bulk-micromachined trench couplers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130522 |