CN103106676A - 一种基于低剂量投影数据滤波的x射线ct图像重建方法 - Google Patents

一种基于低剂量投影数据滤波的x射线ct图像重建方法 Download PDF

Info

Publication number
CN103106676A
CN103106676A CN2013100451228A CN201310045122A CN103106676A CN 103106676 A CN103106676 A CN 103106676A CN 2013100451228 A CN2013100451228 A CN 2013100451228A CN 201310045122 A CN201310045122 A CN 201310045122A CN 103106676 A CN103106676 A CN 103106676A
Authority
CN
China
Prior art keywords
projection
data
filtering
image
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100451228A
Other languages
English (en)
Other versions
CN103106676B (zh
Inventor
马建华
边兆英
黄静
张华�
高杨
陈武凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201310045122.8A priority Critical patent/CN103106676B/zh
Publication of CN103106676A publication Critical patent/CN103106676A/zh
Application granted granted Critical
Publication of CN103106676B publication Critical patent/CN103106676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种基于低剂量投影数据滤波的X射线CT图像重建方法,包括:(1)获取CT设备的系统参数和低剂量扫描协议下的投影数据
Figure 2013100451228100004DEST_PATH_IMAGE002
;(2)对步骤(1)中所获取的投影数据
Figure 2013100451228100004DEST_PATH_IMAGE004
进行方差
Figure DEST_PATH_IMAGE006
估计;(3)进行滤波器设计,对步骤(1)中获取的投影数据
Figure DEST_PATH_IMAGE008
进行滤波,获得滤波后的投影数据
Figure DEST_PATH_IMAGE010
;(4)对步骤(3)中获得的滤波后的投影数据
Figure 958615DEST_PATH_IMAGE010
进行CT图像重建,得到最终的CT图像。步骤(3)具体包括:进行滤波器形式设计
Figure DEST_PATH_IMAGE012
(I);将步骤(1)中的投影数据
Figure 751121DEST_PATH_IMAGE002
代入公式(I)循环执行公式(I),达到预设的次数时停止,所得到的迭代运算结果为最终滤波后的投影数据。该方法可在大幅减少图像噪声和伪影的同时较好地保持原有图像的分辨率,最终实现CT图像的优质重建。

Description

一种基于低剂量投影数据滤波的X射线CT图像重建方法
技术领域
 本发明涉及一种医学影像的图像重建方法,具体涉及一种基于投影数据滤波的X射线CT图像重建方法。
背景技术
  X射线CT扫描已经广泛应用于临床医学影像诊断,但是CT扫描过程中过高的X射线辐射剂量会存在致癌风险。为了降低对使用者的损害,如何最大限度地降低X射线使用剂量已经成为医学CT成像领域研究的关键技术之一。
 为了降低X射线辐射剂量,现有技术中使用的最简便的途径就是降低CT扫描过程中的管电流和扫描时间。然而,由于降低了管电流和扫描时间,就会使得投影数据中含有大量的噪声,基于传统的滤波反投影方法重建的图像质量存在严重的退化现象,难以满足临床诊断需要。
 为了在保证图像质量的前提下大幅降低X射线辐射剂量,诸多基于降低管电流和扫描时间的低剂量CT图像重建方法相继提出,例如基于统计模型的迭代重建方法和基于投影数据滤波的解析重建方法。其中,基于统计模型的迭代重建方法,通过对采集的投影数据的噪声以及成像系统进行图像重建模型构建,可以实现低剂量CT图像优质重建;基于投影数据滤波的解析重建方法,是通过对采集的投影数据的噪声以及成像系统进行数据滤波建模,再通过解析重建方法实现快速且优质的低剂量CT图像重建。
     在重建同样大小的CT图像时,基于统计模型的迭代重建方法需要对目标函数进行几十甚至上百次的反复迭代求解,导致图像重建时间大幅增加。所花费的时间远远大于传统的解析重建方法,不能满足临床的所需要的CT实时显像要求。
而现有技术中的基于投影数据滤波的解析重建方法,在投影数据降噪过程中不可避免地会导致图像原有细节信息的丢失,从而导致相应CT图像分辨率的下降。
因此,针对现有技术不足,提供一种基于低剂量投影数据滤波的X射线CT图像重建方法,能够针对降低管电流和扫描时间的低剂量CT投影数据进行图像重建,所重建的图像质量好,能够保持原有图像的分辨率。
发明内容
本发明提供一种基于低剂量投影数据滤波的X射线CT图像重建方法, 能够针对降低管电流和扫描时间的低剂量CT投影数据进行图像重建,所重建的图像质量好,能够保持原有图像的分辨率。
本发明的上述目的通过如下技术手段实现。
一种基于低剂量投影数据滤波的X射线CT图像重建方法,依次包括如下步骤:
(1)    获取CT设备的系统参数和低剂量扫描协议下的投影数据                                                
Figure 2013100451228100002DEST_PATH_IMAGE001
(2)    对步骤(1)中所获取的投影数据
Figure 132678DEST_PATH_IMAGE001
进行逐个数据点上的方差
Figure 708147DEST_PATH_IMAGE002
估计;
(3)进行滤波器设计,对步骤(1)中获取的投影数据进行滤波,获得滤波后的投影数据
Figure 325948DEST_PATH_IMAGE004
(4)对步骤(3)中获得的滤波后的投影数据
Figure 962292DEST_PATH_IMAGE004
进行 CT图像重建,得到最终的CT图像。
上述步骤(3)具体包括:
(3.1)进行滤波器形式设计,为:
Figure 2013100451228100002DEST_PATH_IMAGE005
       (I);
   其中为步骤(1)中采集的投影数据; 
Figure 677493DEST_PATH_IMAGE006
分别为第n次和第n+1次滤波后的投影数据,
Figure 962849DEST_PATH_IMAGE008
为自然数,表示迭代运算的次数; 
Figure 2013100451228100002DEST_PATH_IMAGE009
为权重因子;
   (3.2)将步骤(1)中的投影数据
Figure 464369DEST_PATH_IMAGE001
作为初始值
Figure 225389DEST_PATH_IMAGE010
 ,代入公式(I)中进行迭代运算,得到滤波后的投影数据
Figure 2013100451228100002DEST_PATH_IMAGE011
 ;然后以同样的方法依次进行下一次迭代运运算,依次不断地循环执行公式(I),当循环次数达到预设的次数时即停止迭代运算,并将所得到的迭代运算结果作为最终的滤波后的投影数据
Figure 267295DEST_PATH_IMAGE004
其中,迭代运算的次数
Figure 740913DEST_PATH_IMAGE008
范围设置为大于等于5而小于等于30。
优选的,迭代运算的次数
Figure 600285DEST_PATH_IMAGE008
设置为9或者10。
其中,权重因子
Figure 84487DEST_PATH_IMAGE009
为方差
Figure 569564DEST_PATH_IMAGE002
的负相关函数。
权重因子
Figure 642562DEST_PATH_IMAGE009
与方差
Figure 485884DEST_PATH_IMAGE002
的关系为
Figure 893601DEST_PATH_IMAGE012
或者
Figure 2013100451228100002DEST_PATH_IMAGE013
或者
Figure 277309DEST_PATH_IMAGE014
,其中
Figure 2013100451228100002DEST_PATH_IMAGE015
Figure 781977DEST_PATH_IMAGE016
表示正实数。
上述步骤(1)中CT设备的系统参数包括X射线入射光子强度 、 系统电子噪声的方差
Figure 125363DEST_PATH_IMAGE018
上述步骤(2)采用基于小邻域图像的局部方差估计方法或者基于CT投影数据噪声特性的方差估计方法对步骤(1)获取的投影数据
Figure 584158DEST_PATH_IMAGE001
进行逐个数据点上的方差
Figure 896190DEST_PATH_IMAGE002
估计。
具体的,方差
Figure 193048DEST_PATH_IMAGE002
的估计公式为:
Figure 2013100451228100002DEST_PATH_IMAGE019
,其中,
Figure 440490DEST_PATH_IMAGE017
为第个数据点的X射线入射光子强度;
Figure 698165DEST_PATH_IMAGE018
为系统电子噪声的方差。
上述步骤(4) 具体是采用滤波反投影法或者迭代重建法进行CT图像重建。
本发明提供一种基于低剂量投影数据滤波的X射线CT图像重建方法, 依次包括如下步骤:(1)获取CT设备的系统参数和低剂量扫描协议下的投影数据
Figure 813888DEST_PATH_IMAGE001
;(2)对步骤(1)中所获取的投影数据
Figure 965253DEST_PATH_IMAGE001
进行逐个数据点上的方差
Figure 321279DEST_PATH_IMAGE002
估计;(3)进行滤波器设计,对步骤(1)中获取的投影数据
Figure 676037DEST_PATH_IMAGE003
进行滤波,获得滤波后的投影数据
Figure 912895DEST_PATH_IMAGE004
;(4)对步骤(3)中获得的滤波后的投影数据
Figure 420231DEST_PATH_IMAGE004
进行 CT图像重建,得到最终的CT图像。该方法通过对CT投影数据的噪声设计滤波(I)式中的权重因子,将滤波后投影数据与原始采集的投影数据进行加权融合,有效解决了一般性降噪技术进行投影数据滤波所导致的噪声去除与分辨率保持的矛盾性问题,可以在大幅减少图像噪声和伪影的同时较好地保持原有图像的分辨率,最终实现CT图像的优质重建。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。
图1为本发明方法的流程示意图。
图2为本发明实施例2中仿真所使用的Shepp-Logan体模数据示意图。
图3为本发明实施例2中模拟生成的低剂量CT投影数据;其中,(a)为模拟生成的低剂量CT投影数据
Figure 134109DEST_PATH_IMAGE001
图像;(b)为本发明方法滤波后的投影数据
Figure 553327DEST_PATH_IMAGE022
图像;(c)为图像(a)与(b)的差图。
图4为本发明实施例2中由滤波处理后的低剂量投影数据FBP重建的图像:其中,(a)为本发明方法滤波后投影数据的重建结果;(b)为一般的均值滤波方法滤波后投影数据的重建结果,均值滤波窗为3×3。
图5为由模拟生成的低剂量投影数据直接通过FBP法重建的图像。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1。
一种基于低剂量投影数据滤波的X射线CT图像重建方法,依次包括如下步骤。
(1)获取CT设备的系统参数和低剂量扫描协议下的投影数据
Figure 761585DEST_PATH_IMAGE001
(2)对步骤(1)中所获取的投影数据
Figure 684280DEST_PATH_IMAGE001
进行逐个数据点上的方差估计。
(3)进行滤波器设计,对步骤(1)中获取的投影数据
Figure 977038DEST_PATH_IMAGE003
进行滤波,获得滤波后的投影数据
Figure 221943DEST_PATH_IMAGE004
(4)对步骤(3)中获得的滤波后的投影数据
Figure 953139DEST_PATH_IMAGE004
进行 CT图像重建,得到最终的CT图像。
具体的,步骤(1)中CT设备的系统参数包括X射线入射光子强度
Figure 87448DEST_PATH_IMAGE017
 、 系统电子噪声的方差
Figure 881923DEST_PATH_IMAGE018
等,通常这些数值可以直接从测试设备读取或者得到。
步骤(2)采用基于小邻域图像的局部方差估计方法或者基于CT投影数据噪声特性的方差估计方法对步骤(1)获取的投影数据进行逐个数据点上的方差
Figure 345583DEST_PATH_IMAGE002
估计。
方差
Figure 821432DEST_PATH_IMAGE002
的估计公式可以为:
Figure 938424DEST_PATH_IMAGE019
,其中,
Figure 541444DEST_PATH_IMAGE017
为第
Figure 230920DEST_PATH_IMAGE021
个数据点的X射线入射光子强度;为系统电子噪声的方差。
需要说明的是,方差的估计公式并不局限于本实施例中的这种情况,也可以根据需要灵活设置或者选择。
步骤(3)具体包括:
(3.1)进行滤波器形式设计,为:
Figure 232691DEST_PATH_IMAGE005
       (I);
   其中
Figure 888669DEST_PATH_IMAGE001
为步骤(1)中采集的投影数据; 
Figure 262013DEST_PATH_IMAGE006
Figure 830397DEST_PATH_IMAGE007
分别为第n次和第n+1次滤波后的投影数据,为自然数,表示迭代运算的次数; 
Figure 121931DEST_PATH_IMAGE009
为权重因子。
Figure 2013100451228100002DEST_PATH_IMAGE023
为传统的滤波器,例如均值滤波、中值滤波,非局部平均滤波等。
   (3.2)将步骤(1)中的投影数据
Figure 910633DEST_PATH_IMAGE001
作为初始值
Figure 400651DEST_PATH_IMAGE010
 ,代入公式(I)中进行迭代运算,得到滤波后的投影数据
Figure 900903DEST_PATH_IMAGE011
 ;然后以同样的方法依次进行下一次迭代运运算,依次不断地循环执行公式(I),当循环次数达到预设的次数时即停止迭代运算,并将所得到的迭代运算结果作为最终的滤波后的投影数据
Figure 961000DEST_PATH_IMAGE004
通常,本发明的方法迭代运算的次数
Figure 981040DEST_PATH_IMAGE008
范围设置为大于等于5而小于等于30,优选设置为9次或者10次。不仅能够有效满足图像处理的要求,而且迭代次数少,图像重建时间短。
权重因子
Figure 156806DEST_PATH_IMAGE009
为方差
Figure 455938DEST_PATH_IMAGE002
的负相关函数,二者之间的关系为 
Figure 493296DEST_PATH_IMAGE012
或者
Figure 882689DEST_PATH_IMAGE013
或者
Figure 558519DEST_PATH_IMAGE014
,其中
Figure 518516DEST_PATH_IMAGE015
Figure 920416DEST_PATH_IMAGE016
表示正实数。
步骤(4) 具体是采用滤波反投影法或者迭代重建法进行CT图像重建。
本发明所公开方法,相比一般的投影数据滤波方法,充分考虑了CT投影数据的噪声特性,能够准确进行建模,并根据噪声方差设计权重将滤波后投影数据与原始采集的投影数据进行加权融合,解决了一般性单纯滤波降噪强度过大引起的图像细节丢失。实践证明,通过本发明的方法所实现的CT重建图像,在大幅减少图像噪声和伪影的同时能够较好地保持原有图像的分辨率。
实施例2。
以计算机仿真的数字体模数据为例来描述本发明的基于低剂量投影数据滤波的X射线CT图像重建方法的具体实施过程。
如图1所示,本发明一种基于低剂量投影数据滤波的X射线CT图像重建方法,具体包括下列步骤。
采用图2所示的Shepp-Logan数字体模图像作为本发明的计算机仿真实验对象。体模图像像素矩阵大小设为512×512,模拟CT机的X射线源到旋转中心和探测器的距离分别为570 mm和1040 mm,旋转角在
Figure 164316DEST_PATH_IMAGE024
间,采样值为1160,每个采样角对应672个探测器单元,探测器单元的大小为1.407 mm。
首先进行步骤(1),通过CT系统仿真生成大小为1160×672的投影数据,如图3(a)所示,其中X射线的入射光子强度为2.5×105,系统电子噪声的方差
Figure 334769DEST_PATH_IMAGE018
为11.0。在实际的CT数据采集中,投影数据和系统参数即入射光子强度
Figure 183907DEST_PATH_IMAGE017
和系统电子噪声的方差
Figure 183962DEST_PATH_IMAGE018
均可以直接获取。
(2)接着,对步骤1中模拟生成的CT投影数据和系统参数
Figure 550669DEST_PATH_IMAGE017
Figure 86605DEST_PATH_IMAGE018
,进行逐个数据点上的方差估计。
方差
Figure 430179DEST_PATH_IMAGE002
的估计公式为:
Figure 649676DEST_PATH_IMAGE019
,其中,
Figure 722675DEST_PATH_IMAGE017
为第
Figure 565997DEST_PATH_IMAGE021
个数据点的X射线入射光子强度,即
Figure 2013100451228100002DEST_PATH_IMAGE025
为系统电子噪声的方差,即
(3)接着利用本发明所示的滤波方法进行滤波。
根据迭代公式(I):  
Figure 65352DEST_PATH_IMAGE005
权重因子
Figure 2013100451228100002DEST_PATH_IMAGE027
,参数;滤波器
Figure 765466DEST_PATH_IMAGE023
为3×3邻域的均值滤波,其形式为
Figure 2013100451228100002DEST_PATH_IMAGE029
Figure 218444DEST_PATH_IMAGE030
为第
Figure 515302DEST_PATH_IMAGE021
个数据点周围3×3的邻域。
然后将步骤1中的投影数据
Figure 700427DEST_PATH_IMAGE001
作为初始值
Figure 567889DEST_PATH_IMAGE010
 ,代入公式(I)中进行迭代运算,得到滤波后的投影数据
Figure 932880DEST_PATH_IMAGE011
 ,然后以同样的方法依次进行下一次迭代运算,依次不断地循环迭代运算,当循环次数达到10次时,得到最终的滤波后的投影数据,如图3(b)所示。
(4)最后对对滤波的投影数据使用传统扇形束滤波反投影(Filtered Back-Projection, FBP)算法进行重建,得到重建图像,如图4(a)所示。
为了对比本发明所示方法的效果,对模拟生成的同组CT投影数据,采用一般的均值滤波技术进行滤波处理,然后对滤波的投影数据采用传统扇形束FBP算法进行重建,得到重建图像,如图4(b)所示。
将图4中(a)和(b)两种滤波方法对应的重建结果进行比较可见,本发明方法能够在保持图像分辨率的同时,更好地减少图像中的噪声和伪影,如图4箭头所示。
同时,为了说明投影数据滤波对传统扇形束FBP算法重建图像质量的影像,图5给出了由CT投影数据直接采用传统扇形束FBP算法重建得到的图像。比较图4和图5中的重建结果,可以看出本发明的投影数据滤波技术可以有效地减少重建图像中的噪声和伪影。
本发明的基于低剂量投影数据滤波的X射线CT图像重建方法,通过对CT投影数据的噪声设计滤波(I)式中的权重因子,将滤波后投影数据与原始采集的投影数据进行加权融合,有效解决了一般性降噪技术进行投影数据滤波所导致的噪声去除与分辨率保持的矛盾性问题,可以在大幅减少图像噪声和伪影的同时较好地保持原有图像的分辨率,最终实现CT图像的优质重建。
需要说明的是,本发明中一般的高斯型滤波器均可选为滤波器
Figure 2013100451228100002DEST_PATH_IMAGE031
,如均值滤波、中值滤波,非局部平均滤波等。
需要说明的是,权重因子构造为方差
Figure 935974DEST_PATH_IMAGE002
的负相关函数,除了本发明实例中给出的反比例函数
Figure 589809DEST_PATH_IMAGE012
外,也可以为
Figure 929436DEST_PATH_IMAGE014
或者
Figure 394046DEST_PATH_IMAGE013
等其他函数形式,其中
Figure 236100DEST_PATH_IMAGE015
,表示正实数。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于:依次包括如下步骤:
(1)获取CT设备的系统参数和低剂量扫描协议下的投影数据 
Figure 2013100451228100001DEST_PATH_IMAGE001
(2)对步骤(1)中所获取的投影数据
Figure 227932DEST_PATH_IMAGE001
进行逐个数据点上的方差估计;
(3)进行滤波器设计,对步骤(1)中获取的投影数据
Figure 2013100451228100001DEST_PATH_IMAGE003
进行滤波,获得滤波后的投影数据
Figure 675542DEST_PATH_IMAGE004
(4)对步骤(3)中获得的滤波后的投影数据
Figure 8435DEST_PATH_IMAGE004
进行 CT图像重建,得到最终的CT图像。
2.根据权利要求1所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于: 
所述步骤(3)具体包括:
(3.1)进行滤波器形式设计,为:
Figure 9757DEST_PATH_IMAGE006
       (I);
   其中
Figure 455389DEST_PATH_IMAGE001
为步骤(1)中采集的投影数据; 
Figure 2013100451228100001DEST_PATH_IMAGE007
Figure 847056DEST_PATH_IMAGE008
分别为第n次和第n+1次滤波后的投影数据,
Figure 2013100451228100001DEST_PATH_IMAGE009
为自然数,表示迭代运算的次数; 
Figure 609738DEST_PATH_IMAGE010
为权重因子;
   (3.2)将步骤(1)中的投影数据
Figure 465567DEST_PATH_IMAGE001
作为初始值
Figure 2013100451228100001DEST_PATH_IMAGE011
 ,代入公式(I)中进行迭代运算,得到滤波后的投影数据 ;然后以同样的方法依次进行下一次迭代运运算,依次不断地循环执行公式(I),当循环次数达到预设的次数时即停止迭代运算,并将所得到的迭代运算结果作为最终的滤波后的投影数据
Figure 774113DEST_PATH_IMAGE004
3.根据权利要求2所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于: 迭代运算的次数范围设置为大于等于5而小于等于30。
4.根据权利要求3所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于: 迭代运算的次数设置为9或10。
5.根据权利要求2所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于:
权重因子
Figure 215086DEST_PATH_IMAGE010
为方差
Figure 643663DEST_PATH_IMAGE002
的负相关函数。
6.根据权利要求2所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于: 
权重因子
Figure 856469DEST_PATH_IMAGE010
与方差
Figure 185426DEST_PATH_IMAGE002
的关系为
Figure 2013100451228100001DEST_PATH_IMAGE013
或者
Figure 582909DEST_PATH_IMAGE014
或者
Figure 2013100451228100001DEST_PATH_IMAGE015
,其中
Figure 937929DEST_PATH_IMAGE016
Figure 2013100451228100001DEST_PATH_IMAGE017
表示正实数。
7.根据权利要求1所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于: 
所述步骤(1)中CT设备的系统参数包括X射线入射光子强度
Figure 141378DEST_PATH_IMAGE018
 、 系统电子噪声的方差
8.根据权利要求2所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于:
所述步骤(2)采用基于小邻域图像的局部方差估计方法或者基于CT投影数据噪声特性的方差估计方法对步骤(1)获取的投影数据
Figure 449475DEST_PATH_IMAGE001
进行逐个数据点上的方差
Figure 158805DEST_PATH_IMAGE002
估计。
9.根据权利要求2所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于:
方差
Figure 797859DEST_PATH_IMAGE002
的估计公式为:
Figure 618047DEST_PATH_IMAGE020
,其中,
Figure 157482DEST_PATH_IMAGE018
为第
Figure 723199DEST_PATH_IMAGE022
个数据点的X射线入射光子强度;
Figure 98817DEST_PATH_IMAGE019
为系统电子噪声的方差。
10.据权利要求1所述的基于低剂量投影数据滤波的X射线CT图像重建方法,其特征在于:所述步骤(4) 具体是采用滤波反投影法或者迭代重建法进行CT图像重建。
CN201310045122.8A 2013-02-05 2013-02-05 一种基于低剂量投影数据滤波的x射线ct图像重建方法 Active CN103106676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310045122.8A CN103106676B (zh) 2013-02-05 2013-02-05 一种基于低剂量投影数据滤波的x射线ct图像重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310045122.8A CN103106676B (zh) 2013-02-05 2013-02-05 一种基于低剂量投影数据滤波的x射线ct图像重建方法

Publications (2)

Publication Number Publication Date
CN103106676A true CN103106676A (zh) 2013-05-15
CN103106676B CN103106676B (zh) 2016-04-06

Family

ID=48314503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310045122.8A Active CN103106676B (zh) 2013-02-05 2013-02-05 一种基于低剂量投影数据滤波的x射线ct图像重建方法

Country Status (1)

Country Link
CN (1) CN103106676B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103810735A (zh) * 2014-02-28 2014-05-21 南方医科大学 一种低剂量x射线ct图像统计迭代重建方法
CN104166971A (zh) * 2013-05-17 2014-11-26 上海联影医疗科技有限公司 一种ct图像重建的方法
CN104050631B (zh) * 2013-11-25 2017-01-11 中国科学院上海应用物理研究所 一种低剂量ct图像重建方法
CN106683146A (zh) * 2017-01-11 2017-05-17 上海联影医疗科技有限公司 一种图像重建方法和图像重建算法的参数确定方法
CN106910227A (zh) * 2015-12-23 2017-06-30 通用电气公司 一种恢复低可信度的ct数据的方法及装置
CN107622481A (zh) * 2017-10-25 2018-01-23 沈阳东软医疗系统有限公司 降低ct图像噪声的方法、装置和计算机设备
CN112116677A (zh) * 2020-09-23 2020-12-22 赣南师范大学 一种基于低维流形先验的低剂量ct重建方法
CN112712572A (zh) * 2021-01-11 2021-04-27 明峰医疗系统股份有限公司 Ct扫描设备的低信号噪声的抑制方法、系统及计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024724A2 (en) * 2003-09-04 2005-03-17 Koninklijke Philips Electronics N.V. Locally adaptive nonlinear noise reduction
CN102737392A (zh) * 2012-06-07 2012-10-17 南方医科大学 一种低剂量x线ct图像的非局部正则化先验重建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024724A2 (en) * 2003-09-04 2005-03-17 Koninklijke Philips Electronics N.V. Locally adaptive nonlinear noise reduction
CN102737392A (zh) * 2012-06-07 2012-10-17 南方医科大学 一种低剂量x线ct图像的非局部正则化先验重建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENGRONG LIANG等: "Variance analysis of x-ray CT sinograms in the presence of electronic noise background", 《MEDICAL PHYSICS》, vol. 39, no. 7, 31 July 2012 (2012-07-31), pages 4051 - 4065, XP012161108, DOI: 10.1118/1.4722751 *
王东明等: "基于统计特性的小波噪声抑制在低剂量CT中的应用", 《中国图象图形学报》, vol. 13, no. 5, 31 May 2008 (2008-05-31), pages 876 - 881 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166971A (zh) * 2013-05-17 2014-11-26 上海联影医疗科技有限公司 一种ct图像重建的方法
CN104166971B (zh) * 2013-05-17 2015-07-22 上海联影医疗科技有限公司 一种ct图像重建的方法
CN104050631B (zh) * 2013-11-25 2017-01-11 中国科学院上海应用物理研究所 一种低剂量ct图像重建方法
CN103810735A (zh) * 2014-02-28 2014-05-21 南方医科大学 一种低剂量x射线ct图像统计迭代重建方法
CN106910227B (zh) * 2015-12-23 2023-06-13 通用电气公司 一种恢复低可信度的ct数据的方法及装置
CN106910227A (zh) * 2015-12-23 2017-06-30 通用电气公司 一种恢复低可信度的ct数据的方法及装置
CN106683146A (zh) * 2017-01-11 2017-05-17 上海联影医疗科技有限公司 一种图像重建方法和图像重建算法的参数确定方法
CN107622481A (zh) * 2017-10-25 2018-01-23 沈阳东软医疗系统有限公司 降低ct图像噪声的方法、装置和计算机设备
CN107622481B (zh) * 2017-10-25 2022-09-30 东软医疗系统股份有限公司 降低ct图像噪声的方法、装置和计算机设备
US10783614B2 (en) 2017-10-25 2020-09-22 Beijing Neusoft Medical Equipment Co., Ltd. Denoising CT image
CN112116677A (zh) * 2020-09-23 2020-12-22 赣南师范大学 一种基于低维流形先验的低剂量ct重建方法
CN112116677B (zh) * 2020-09-23 2024-01-23 赣南师范大学 一种基于低维流形先验的低剂量ct重建方法
CN112712572A (zh) * 2021-01-11 2021-04-27 明峰医疗系统股份有限公司 Ct扫描设备的低信号噪声的抑制方法、系统及计算机可读存储介质

Also Published As

Publication number Publication date
CN103106676B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103106676A (zh) 一种基于低剂量投影数据滤波的x射线ct图像重建方法
Wang et al. Metal artifact reduction in CT using fusion based prior image
Lauzier et al. Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction
Godfrey et al. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging
RU2629432C2 (ru) Устранение шума в области изображения
CN111429379B (zh) 一种基于自监督学习的低剂量ct图像去噪方法及系统
CN103065279B (zh) 圆轨道锥束计算机断层摄影(ct)中用于大幅度地减轻伪影的方法以及系统
CN103247061B (zh) 一种x射线ct图像的增广拉格朗日迭代重建方法
US8805037B2 (en) Method and system for reconstruction of tomographic images
CN107481297A (zh) 一种基于卷积神经网络的ct图像重建方法
CN102314698A (zh) 基于阿尔法散度约束的全变分最小化剂量ct重建方法
CN105118039B (zh) 实现锥束ct图像重建的方法及系统
CN103810734B (zh) 一种低剂量x射线ct投影数据恢复方法
Zhang et al. Iterative metal artifact reduction for x‐ray computed tomography using unmatched projector/backprojector pairs
CN102663790B (zh) 一种稀疏角度ct图像的重建方法
US8913710B2 (en) Truncation correction imaging enhancement method and system
US20130004041A1 (en) Methods and apparatus for texture based filter fusion for cbct system and cone-beam image reconstruction
CN101980302A (zh) 投影数据恢复导引的非局部平均低剂量ct重建方法
Xue et al. LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks
WO2016106990A1 (zh) Ct成像方法和系统
CN103180879A (zh) 用于从投影数据对对象进行混合重建的设备和方法
Liang et al. Guest editorial low-dose CT: what has been done, and what challenges remain?
CN106056644A (zh) Ct扫描的数据处理方法及装置
KR102348139B1 (ko) 이중 해상도의 관심 영역 내외 투영 데이터를 이용한 체내 단층 촬영 방법 및 시스템
Hu et al. Sinogram Restoration for Low‐Dosed X‐Ray Computed Tomography Using Fractional‐Order Perona‐Malik Diffusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant