CN103102944A - 一种渣油加氢处理及轻质化的组合工艺方法 - Google Patents

一种渣油加氢处理及轻质化的组合工艺方法 Download PDF

Info

Publication number
CN103102944A
CN103102944A CN2011103523820A CN201110352382A CN103102944A CN 103102944 A CN103102944 A CN 103102944A CN 2011103523820 A CN2011103523820 A CN 2011103523820A CN 201110352382 A CN201110352382 A CN 201110352382A CN 103102944 A CN103102944 A CN 103102944A
Authority
CN
China
Prior art keywords
oil
catalyst
catalytic cracking
bed hydrogenation
catalyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103523820A
Other languages
English (en)
Other versions
CN103102944B (zh
Inventor
朱慧红
方向晨
孙素华
刘杰
杨光
金浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201110352382.0A priority Critical patent/CN103102944B/zh
Publication of CN103102944A publication Critical patent/CN103102944A/zh
Application granted granted Critical
Publication of CN103102944B publication Critical patent/CN103102944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种渣油加氢处理及轻质化的组合工艺方法,包括:(1)劣质重油原料进入溶剂脱沥青装置,得到脱沥青油和脱油沥青;(2)将步骤(1)得到的脱油沥青与至少部分油浆混合进入沸腾床加氢处理装置,进行沸腾床加氢处理;(3)将步骤(2)得到的沸腾床加氢处理反应流出物与脱沥青油混合,同时加入至少部分催化裂化装置的回炼油,然后进入固定床加氢处理装置,固定床加氢处理反应流出物得到的生成油作为催化裂化装置的原料;(4)催化裂化装置分馏塔得到的催化裂化反应产物包括汽油馏分、柴油馏分、回炼油和油浆。与现有技术相比,本发明方法原料来源广泛,装置投资低,运转稳定,操作周期长,组合工艺协同配合效果好。

Description

一种渣油加氢处理及轻质化的组合工艺方法
技术领域
本发明涉及一种渣油加氢处理及轻质化的组合工艺方法,特别适用于重金属含量较高的劣质渣油的有效加工处理。
背景技术
随着原油重质化、劣质化程度的增加,以及市场对轻油需求结构的变化,劣质重油(包括各种重油和渣油等)加工技术已成为各大石油公司和石油科研机构的研究重点方向。劣质重油的加工处理不但是要将其裂化为低沸点的产物,如石脑油、中间馏分油及减压瓦斯油等,而且还要提高它们的氢碳比,因此其加工的基本途径基本是采用加氢或脱碳两种方法。脱碳工艺包括焦化、溶剂脱沥青、重油催化裂化等;加氢包括加氢裂化、加氢精制等。加氢法即能加氢转化渣油,提高液体产品的产率,而且还能脱除其中的杂原子,产品质量还好。目前渣油加氢已经开发了固定床、沸腾床、悬浮床和移动床四种工艺类型。其中固定床转化率较低(一般低于35%),主要为催化裂化装置提供优质原料;沸腾床转化率较高高(一般高于60%),可以得到大量轻质油品,但轻质油品需进一步处理才能得到合格产品;悬浮床可以获得更高的转化率(一般高于80%),但装置稳定性较差,目前仍难以实现工业运转;移动床介于固定床和沸腾床之间,存在的问题是装置复杂,操作固难。
把廉价的渣油转化为高附加值的产品,是炼油工业的生命线。最大限度地提高减压渣油的利用率是企业追求的目标之一。溶剂脱沥青是重油加工的一种方法,该方法流程简单,能耗较低,得到的脱沥青油是很好的加氢处理原料。渣油加氢工艺液体收率高,在产品结构、产品质量以及环保方面都具有明显的优势。
溶剂脱沥青工艺通过选择合适的溶剂和工艺条件,使渣油中的沥青质与油进行适度分离,并使渣油中的金属、硫、氮化物大部分或部分浓缩到沥青质中,脱沥青油中的沥青质和重金属等杂质含量大幅度降低,可以通过加氢处理、加氢裂化、加氢处理-催化裂化等工艺深度加工。
USP7214308公开了一种溶剂脱沥青与沸腾床有效结合的工艺过程。该工艺主要特点是重的减压渣油原料送入溶剂脱沥青装置中,采用C4或C5溶剂来得到脱沥青油和脱油沥青。这两种原料分别采用沸腾床体系来加工,根据原料性质来设计和优化操作条件。其中脱沥青油沸腾床反应器操作条件:总压3.45~20.69MPa,反应温度388~438℃,液体体积空速0.2~1.5h-1。脱油沥青沸腾床反应器操作条件:总压10~20.69MPa,反应温度399~454℃,液体空速0.1~1.0h-1。要求该工艺总转化率大于65%。该方法采用两套沸腾床加氢体系,装置投资大,操作复杂,总转化率过高,会引起加工脱油沥青的沸腾床反应器局部结焦,从而影响装置平稳运转。
CN200710157792.3公开了一种处理劣质渣油的组合工艺。该方法包括渣油原料进入溶剂脱沥青装置,得到脱沥青油和脱油沥青,所得的脱沥青油进入沸腾床加氢装置进行处理,得到轻质馏分和加氢尾油去催化裂化装置进行处理,并由此得到的轻质馏分和油浆,至少部分油浆与脱油沥青混合进入悬浮床加氢装置进行处理,得到轻质馏分和未转化的尾油,其中未转化的尾油循环回溶剂脱沥青装置,轻质馏分与脱沥青油混合进入沸腾床加氢装置。该方法没有充分发挥沸腾床和悬浮床加工劣质渣油的能力,悬浮床加氢技术由于稳定性问题目前仍难以正常工业应用,也给该方法实际应用带来了固难。
CN1393525A公开了一种溶剂脱沥青、固定床加氢处理和催化裂化相组合加工高硫高金属渣油的方法。渣油经过溶剂抽提得到脱沥青油和脱油沥青,其中脱沥青油与任选的催化裂化重循环油送入固定床加氢处理装置改质,加氢尾油送入催化裂化装置裂解,其产物中全部或部分重循环油循环至固定床加氢处理装置,全部或部分催化油浆循环回溶剂脱沥青装置。这一方法存在以下问题,其一催化油浆中含有催化裂化催化剂粉末,通过溶剂抽提容易携带到脱沥青油中,脱沥青油送入固定床加氢装置后,催化剂粉末很容易沉积在催化剂床层上,找出床层压降升高和堵塞;其二是溶剂脱沥青装置脱除的沥青没有较好地加以利用,这部分组分难以成为沥青产品,只能作为沥青调和料或燃料油,造成资源浪费。
由于劣质重油加工时,其体积空速较低,因此一般需要多个反应器串联使用(串联使用指反应物料依次通过各个反应器),同时设置2个或2个以上平行系列。因此,劣质重油加氢装置一般包括多个反应器,对于年加工量200万吨规模的装置来说,按目前的设备制造水平通常需要8个反应器。对于沸腾床反应器来说,每个反应器均需一套催化剂在线加排系统,这套催化剂在线加排系统的投资很高(经评估占沸腾床加氢装置总投资的一半左右),操作复杂,出现的故障率也最高。
发明内容
针对现有技术的不足,本发明提供一种渣油加氢处理及轻质化的组合工艺方法,本发明方法能有效加工劣质原料,使渣油转化为有用的轻质馏分,并且装置投资低,运转周期长。
本发明渣油加氢处理及轻质化的组合工艺方法,包括如下内容:
(1)劣质重油原料进入溶剂脱沥青装置,得到脱沥青油和脱油沥青;
(2)将步骤(1)得到的脱油沥青与至少部分催化裂化装置得到的油浆混合进入沸腾床加氢处理装置,在氢气和沸腾床加氢处理催化剂存在下,进行沸腾床加氢处理;
(3)将步骤(2)得到的沸腾床加氢处理反应流出物与脱沥青油混合,同时加入至少部分催化裂化装置的回炼油,然后进入固定床加氢处理装置,在氢气与固定床加氢处理催化剂存在下,进行固定床加氢处理,固定床加氢处理反应流出物得到的生成油作为催化裂化装置的原料;
(4)催化裂化装置分馏塔得到的催化裂化反应产物包括汽油馏分、柴油馏分、回炼油和油浆。
在步骤(1)中涉及的劣质重油原料包括原油蒸馏得到的减压渣油或其它来源的劣质重油,劣质重油原料中的金属含量至少为120μg/g,优选为180μg/g以上,最优选为220μg/g以上。溶剂脱沥青装置和操作条件是本领域技术人员熟知的内容,溶剂选自C3-C8烷烃、C3-C8烯烃、凝析油或轻石脑油中的一种或多种,优选轻石脑油。
劣质重油原料和溶剂可以分别从溶剂脱沥青装置的上部和下部进入,在抽提塔内进行逆流接触,也可以先通过预混合再进入抽提塔进行分离。本发明中溶剂脱沥青的操作条件一般为:温度为60~250℃,压力为1.0~5.0MPa,剂油体积比(溶剂和劣质重油原料体积比)为1.0:1~10.0:1;优选温度为60~200℃,压力为2.5~5.0MPa,剂油体积比为4.0:1~8.0:1。溶剂脱沥青操作采用常规流程,可以是单段也可以是两段。
溶剂脱沥青装置控制指标为,脱沥青油(DAO)中庚烷不溶物的含量一般小于1.5wt%,最好小于0.5wt%;而DAO重量收率一般为20%-85%,优选20%-60%,同时要求DAO中金属含量低于80μg/g,优选低于50μg/g。
步骤(2)中涉及沸腾床反应器可以采用现有技术中的常规沸腾床反应器。可以设置一个沸腾床反应器,也可以设置2个串联设置的沸腾床反应器,串联设置指反应物料依次通过设置的反应器。沸腾床加氢处理条件可以根据原料性质及反应转化率要求具体确定,一般为:反应温度为350~430℃,最好380~430℃;反应压力为8~25MPa,最好为8.0~16MPa;氢油体积比100:1~1000:1,最好为500:1~1000:1;液体体积空速(LHSV)为0.3~5.0h-1,最好为0.3-2.0h-1;沸腾床加氢处理不以转化率(轻质化)和脱硫脱氮为主要目标,而是以脱金属为固定床加氢处理提供合格进料为主要目标,沸腾床加氢处理反应后液体产物中金属含量要求低于120μg/g,优选低于90μg/g,最优选低于60μg/g。
由于沸腾床加氢处理装置加工的脱油沥青中含有大量的胶质和沥青质,而沥青质的化学结构非常复杂,是由聚合芳烃、烷烃链、环烷烃组成,分子量很大,平均分子大小约6~9nm。沥青质结构中还含有硫、氮、金属等杂原子,原油中80%~90%的金属均富集在沥青质中。这些杂质均“深藏”在分子内部,需要在苛刻的操作条件下才能脱除杂质。沥青质在加氢过程的分解率与所用催化剂的孔径有关。催化剂孔径至少要大于10nm,沥青质有可能扩散到催化剂孔道内。因此对沸腾床催化剂必须有较多的大孔。该沸腾床加氢催化剂比表面为80~200m2/g,孔直径30~300nm的孔容占总孔容的35%~60%(压汞法),催化剂的平均孔直径为20nm以上,优选为22~40nm。催化剂中,以重量计,催化剂含ⅥB族金属氧化物(如MoO3)1.0%~10.0%,最好为1.5%~8.5%,含第Ⅷ族金属氧化物(如NiO或CoO)0.1%~8.0%,最好是0.5%~5.0%。载体可以为氧化铝、氧化铝-氧化硅,氧化铝-氧化钛的一种或几种,催化剂的形状可以为条形或球形,颗粒直径为0.1~0.8mm。
本发明沸腾床加氢处理反应器中优选使用两种催化剂的混合催化剂,即催化剂A和催化剂B的混合催化剂,所述催化剂A和催化剂B混合体积比为1:(0.1~2),优选为1:(0.2~0.5),即催化剂A和催化剂B的混合体积比为1:0.1~1:2,优选为1:0.2~1:0.5。催化剂A即上述含有较多大孔的沸腾床加氢催化剂。其中催化剂B的性质为:催化剂比表面为180~300m2/g,孔直径在5~20nm的孔至少占总孔容的70%,孔直径>20nm的孔所占孔容不小于0.1mL/g,一般为0.1~0.3mL/g;以重量计,催化剂含ⅥB族金属氧化物(如MoO3)3.0%~25.0%,最好为6.0%~20.0%,含Ⅷ族金属氧化物(如NiO或CoO)0.3%~8.0%,最好是0.5%~5.0%。含有至少一种助剂,选自如下几种元素:B、Ca、F、Mg、P、Si、Ti等,助剂含量为0.5%~5.0%。以氧化物重量计,催化剂B加氢活性金属(ⅥB族金属氧化物和Ⅷ族金属氧化物)比催化剂A加氢活性金属含量高1~18个百分点,优选高3~15个百分点。催化剂A和催化剂B颗粒均为球形,直径为0.1~0.8mm,优选为0.1~0.6mm;磨损≤2.0wt%。催化剂A和催化剂B的颗粒平径直径相同。
步骤(3)中涉及的固定床加氢处理过程中使用的原料为沸腾床的反应流出物和步骤(1)的脱沥青油混合物,也可以加入其它适宜采用固定床进行处理的重质原料。固定床加氢处理的液相进料中的金属含量要低于80μg/g,优选低于50μg/g,以保护较长的操作周期。固定床加氢过程使用本领域常规的组合催化剂体系,一般包括加氢脱金属催化剂、加氢脱硫催化剂和加氢脱氮催化剂等,这些催化剂一般都是以多孔耐熔无机氧化物如氧化铝为载体,第VIB族和/或VIII族金属如W、Mo、Co、Ni等的氧化物为活性组分,选择性地加入其它各种助剂如P、Si、F、B等元素的催化剂,例如由抚顺石油化工研究院研制开发的FZC系列重、渣油加氢催化剂。
固定床加氢处理条件一般为:反应温度为350~420℃,反应压力为8~25MPa,氢油体积比100:1~1000:1,液体体积空速(LHSV)为0.2~2.0h-1。根据所需的加氢处理程度和装置规模,可以设置一个固定床加氢反应器,也可以设置多个固定床加氢反应器。
固定床加氢处理后得到的生成油可以作为后续工艺的优质原料,例如催化裂化。
本发明方法中,进入沸腾床反应器的催化裂化油浆可以是全部或部分,催化裂化油浆可以先分离出固体杂质,也可以直接进入沸腾床反应器,催化裂化油浆一般占沸腾床反应器总进料重量的40%以下,一般为5%~40%,优选为10%~30%。进入固定床的催化裂化回炼油可以是全部或部分,催化裂化回炼油也可先脱除固体杂质,也可以与沸腾床反应器反应流出物混合后再采取过滤器或积垢器等方式脱除杂质,进入固定床反应器的催化裂化回炼油一般占固定床总进料重量的30%以下,一般为5%~30%,优选为10%~20%。
本发明方法中,催化裂化可以采用本领域常规技术。催化裂化装置可以是一套或一套以上,每套装置至少应包括一个反应器、一个再生器。催化裂化装置设置分馏塔,可以每套催化裂化装置分别设定,也可以共用。催化裂化分馏塔将催化裂化反应流出物分馏为干气、液化气、催化裂化汽油、回炼油和油浆等。催化裂化装置按本领域一般条件操作:反应温度一般为450~600℃,最好是480~550℃;再生温度为600~800℃,最好为650~750℃,剂油(催化剂与原料油)重量比2:1~30:1,最好是4:1~10:1;与催化剂接触时间0.1~15秒,最好0.5~5秒;压力0.1~0.5MPa。所采用的催化裂化催化剂包括通常用于催化裂化的催化剂,如硅铝催化剂、硅镁催化剂、酸处理的白土及X型、Y型、ZSM-5、M型、层柱等分子筛裂化催化剂,最好是分子筛裂化催化剂,这是因为分子筛裂化催化剂的活性高,生焦少,汽油产率高,转化率高。所述的催化裂化装置的反应器可以是各种型式的催化裂化反应器,最好是提升管反应器或提升管加床层反应器。工艺流程一般为:原料油从提升管反应器底部注入,与来自再生器的高温再生催化剂接触,裂化反应生成的油气和沉积焦炭的催化剂混合物沿提升管反应器向上移动,完成整个原料油的催化裂化反应。
本发明方法中,可以根据原料来源性质及加工要求具体确定具体工艺条件,工艺条件的优化和确定是本领域技术人员熟知的内容。
本发明具有以下优点:
1、将溶剂脱沥青、沸腾床加氢及固定床加氢工艺及催化裂化工艺有机结合在一起,扩大的原料的适用范围,可以处理更重质、更劣质的减压渣油原料等,特别是可以处理金属杂质含量较高的劣质原料,同时使渣油得到转化。
2、该组合工艺充分利用了溶剂脱沥青工艺副产品脱油沥青,实现了最大限度的利用渣油原料。沸腾床反应器一般仅设置一台,其目的为固定床加氢反应器进行原料预处理,与目前沸腾床渣油加氢技术需要较高转化率的操作目的不同,结合了固定床与沸腾床的综合优势。沸腾床反应器使用适宜性质催化剂的混合催化剂,提高了沸腾床加氢处理反应效果。
3、催化裂化油浆循环加入到沸腾床反应器中,能够对脱油沥青起到稀释作用,使其性质得到改善,降低了沸腾床渣油加氢反应难度和加工苛刻度;尤其是原料粘度的降低能够改善原料在反应系统中的物流分布以及传质,减小扩散在沸腾床渣油加氢处理过程中的影响,改善镍、钒等有害金属在催化反应系统中的沉积分布,降低反应难度,提高杂质脱除深度。
4、催化裂化重循环油可在固定床加氢反应区进一步脱除杂质,芳烃饱和,成为更好的催化裂化原料组成,进一步提高了催化裂化高附加值产品收率。
附图说明
图1是本发明渣油转化组合工艺流程示意图。
其中:1-渣油原料,2-溶剂,3-静态混合器,4-脱沥青抽提塔,5-脱沥青油,6-脱油沥青,7-氢气,8-沸腾床加氢反应器,9-固定床加氢反应器(可以串联设置一台或几台),10-固定床反应器反应流出物,11-气液分离器,12-循环氢,13-催化裂化反应器,14-催化裂化分馏塔,15-汽油,16-柴油,17-回炼油,18-油浆,19-过滤器。
具体实施方式
下面结合图1对本发明提供的方法进一步说明。
渣油原料1和溶剂2预先混合,也可以分别油管线送入静态混合器3混合均匀,混合好的物料送入溶剂脱沥青装置4,溶剂脱沥青操作可以是一段式也可以是两段式,得到脱沥青油(DAO)5和脱油沥青6,脱油沥青6预热后与油浆18及氢气7混合进入沸腾床加氢反应器8,在装入上述制备的沸腾床加氢催化剂及工艺条件下进行加氢反应,脱除金属、硫等杂原子,使沥青质转化为胶质或更小分子,降低产品粘度。沸腾床反应流出物与脱沥青油及回炼油17混合进入固定床加氢反应器9,在固定床级配催化剂和反应条件下进行加氢反应,得到反应流出物10,进一步在气液分离器11中分得,分离得到气相进一步脱硫化氢后作为循环氢12循环回反应系统,分离得到的液相直接作为催化裂化装置原料,液相也可以进入分馏系统分馏出加氢渣油进入催化裂化装置。催化裂化装置包括催化裂化反应器13和催化裂化分馏塔14,催化裂化分馏塔得到汽油15、柴油16、回炼油17和油浆19。沸腾床反应流出物与回炼油混合后可以进入过滤器19或积垢器后再进入固定床反应器,脱除可能存在的固体杂质等。上述装置为一个系列的工艺流程,根据装置规模的要求,可以并列设置两个或多个系列。
为进一步说明本发明要点,采用图1的流程,列举以下实施例,但不限制其范围。
实施例1
本实施例采用溶剂脱沥青、沸腾床和固定床、催化裂化组合工艺进行渣油加氢转化。首先将渣油原料与戊烷溶剂在静态混合器中均匀混合,然后进入两段溶剂脱沥青装置,得到脱沥青油和脱油沥青,脱油沥青预热后和油浆共同与氢气混合进入沸腾床加氢处理装置,在所制备的沸腾床加氢催化剂及工艺条件下进行加氢反应,脱除原料中的硫、氮、金属等杂原子,同时使沥青质转化为胶质或更小分子,降低产品粘度,沸腾床加氢产物与回炼油混合过滤脱除杂质与脱沥青油混合进入固定床加氢装置进行反应,在固定床级配催化剂和反应条件下得到生成油。该生成油进入催化裂化装置进一步裂化转化为干气、催化裂化汽油及催化裂化重循环油和催化裂化油浆,将催化裂化油浆与脱油沥青混合进入沸腾床反应器中进行加氢,而催化裂化重循环油与脱沥青油混合进入固定床反应器中进行加氢。
其中溶剂脱沥青、沸腾床加氢、固定床加氢、催化裂化的反应条件见表1,实验结果见表2。
沸腾床加氢处理催化剂可以根据性能需要采用现有方法制备,如参考US7074740、US5047142、US4549957、US4328127、CN200710010377.5等现有技术制备。催化剂A的性质比表面积142m2/g,孔容1.45mL/g(压汞法),孔直径30~300nm的孔容占总孔容的52%(压汞法),MoO3含量为6.02%,NiO含量为1.54%,球形颗粒直径为0.4mm。催化剂B的性质为比表面积239m2/g,孔容0.67mL/g(氮吸附法),5-20nm孔的孔容占78%,>20nm孔的孔容为0.16mL/g,MoO3含量为12.58%,CoO含量为2.34%,球形颗粒直径为0.4mm。实施例1沸腾床反应器使用催化剂A,实施例2使用催化剂A与催化剂B体积比为1:0.4的混合催化剂。沸腾床反应器进料中催化裂化油浆占20wt%(重量,下同)。
固定床催化剂采用工业装置使用抚顺石油化工研究院研制生产的商品催化剂FZC-28、FZC-30和FZC-41,固定床反应器装填催化剂FZC-28、FZC-30和FZC-41,装填体积比例为3:2:1。固定床反应器进料中回炼油占20wt%。
催化裂化催化剂为大连石化分公司350万吨/年重油催化裂化装置使用的催化剂,为工业平衡催化剂。其新鲜剂组成为:95wt%LBO-16降烯烃催化剂+5wt%LBO-A提高辛烷值助剂。
表1原料性质。
项目 数据
密度,(20℃)/Kg·m-3 1001.2
粘度,mm2/s(100℃) 265
硫,wt% 3.81
残炭,wt% 15.15
Ni,μg·g-1 47.91
V,μg·g-1 134.11
Fe,μg·g-1 8.84
表2组合工艺试验条件。
项目 实施例
溶剂脱沥青工艺条件  
温度(塔顶),℃ 190
压力,MPa 4.2
溶剂比,v/v 8
脱沥青油收率,wt% 45
脱沥青油金属含量,μg/g 34
沸腾床加氢工艺条件  
反应温度/℃ 405
反应压力/MPa 15
体积空速/h-1 0.6
氢油体积比,v/v 900:1
沸腾床转化率,wt% 30
沸腾床产物金属含量,μg/g 84
固定床加氢工艺条件  
反应温度/℃ 385
反应压力/MPa 15
体积空速/h-1 0.4
氢油体积比,v/v 900:1
催化裂化工艺条件  
    反应温度/℃ 505
    油剂重量比 7.5
表3 渣油加氢生成油性质。
项 目 实施例
密度(20℃),g/cm3 922.4
粘度(100℃),mm2.s-1 28.95
硫,wt% 0.33
残炭,wt% 5.75
Ni+V+Fe,μg.g-1 13.23
表4 组合工艺总的产品分布*。
项 目 实施例
干气, wt% 2.12
液化气, wt% 15.51
汽油, wt% 55.7
柴油, wt% 19.1
油浆, wt% -
焦炭, wt% 6.15
*以渣油原料重量为100%计算。
实施例2
与实施例1相比,沸腾床反应器使用混合催化剂。固定床长期稳定性良好,具体结见表4,其中在5000、8000、12000小时固定床反应器各提温3℃。
表5  固定床加氢反应系统稳定性结果。
实施例 实施例1 实施例2
运转时间,小时 最终生成油金属含量(μg/g)/固定床反应系统总压力降(MPa) 最终生成油金属含量(μg/g)/固定床反应系统总压力降(MPa)
500 13.2/0.06 11.4/0.06
5000 12.6/0.09 10.8/0.07
8000 14.5/0.10 11.6/0.08
12000 13.8/0.12 12.3/0.10
从上述固定床反应系统的稳定性实验结果可以看出,本发明方法可以实现固定床加氢处理装置的长周期稳定运转,根据发展趋势可以预计,本发明方法可以实现2~3年的稳定运转,明显长于目前固定床渣油加氢装置1年以内的运周期,并且不受原料来源质量的限制,可以实现与催化裂化装置同周期操作,有利于两套装置的协同运转。

Claims (10)

1.一种渣油加氢处理及轻质化的组合工艺方法,其特征在于包括如下内容:
(1)劣质重油原料进入溶剂脱沥青装置,得到脱沥青油和脱油沥青;
(2)将步骤(1)得到的脱油沥青与至少部分催化裂化装置得到的油浆混合进入沸腾床加氢处理装置,在氢气和沸腾床加氢处理催化剂存在下,进行沸腾床加氢处理;
(3)将步骤(2)得到的沸腾床加氢处理反应流出物与脱沥青油混合,同时加入至少部分催化裂化装置的回炼油,然后进入固定床加氢处理装置,在氢气与固定床加氢处理催化剂存在下,进行固定床加氢处理,固定床加氢处理反应流出物得到的生成油作为催化裂化装置的原料;
(4)催化裂化装置分馏塔得到的催化裂化反应产物包括汽油馏分、柴油馏分、回炼油和油浆。
2.按照权利要求1所述的方法,其特征在于:在步骤(1)中的劣质重油原料中的金属含量至少为120μg/g。
3.按照权利要求1所述的方法,其特征在于:溶剂脱沥青的操作温度为60~250℃,压力为1.0~5.0MPa,溶剂和劣质重油原料体积比为1.0:1~10.0:1,溶剂脱沥青装置控制指标为,脱沥青油中庚烷不溶物的含量小于1.5wt%,脱沥青油重量收率为20%-85%,脱沥青油中金属含量低于80μg/g。
4.按照权利要求1所述的方法,其特征在于:步骤(2)中设置一台沸腾床反应器,沸腾床加氢处理反应温度为350~430℃,反应压力为8~25MPa,氢油体积比100:1~1000:1,液体体积空速为0.3~5.0h-1,沸腾床加氢处理反应后液体产物中金属含量要求低于120μg/g。
5.按照权利要求1所述的方法,其特征在于:沸腾床加氢处理催化剂使用含有较多大孔的沸腾床加氢催化剂,催化剂的比表面为80~200m2/g,孔直径30~300nm的孔容占总孔容的35%~60%,催化剂的平均孔直径为20nm以上,催化剂中,以重量计,催化剂含ⅥB族金属氧化物1.0%~10.0%,含第Ⅷ族金属氧化物0.1%~8.0%。
6.按照权利要求5所述的方法,其特征在于:沸腾床加氢处理反应器中使用两种催化剂的混合催化剂,即催化剂A和催化剂B的混合催化剂,所述催化剂A和催化剂B混合体积比为1:0.1~1:2,催化剂A为所述的含有较多大孔的沸腾床加氢催化剂,催化剂B的性质为:催化剂比表面为180~300m2/g,孔直径在5~20nm的孔至少占总孔容的70%,孔直径>20nm的孔所占孔容不小于0.1mL/g,以重量计,催化剂含ⅥB族金属氧化物3.0%~25.0%,含Ⅷ族金属氧化物0.3%~8.0%,以氧化物重量计,催化剂B加氢活性金属比催化剂A加氢活性金属含量高1~18个百分点,催化剂A和催化剂B颗粒均为球形,催化剂A和催化剂B的颗粒平径直径相同。
7.按照权利要求1所述的方法,其特征在于:中固定床加氢处理的液相进料中的金属含量低于80μg/g,固定床加氢处理的反应温度为350~420℃,反应压力为8~25MPa,氢油体积比100:1~1000:1,液体体积空速为0.2~2.0h-1
8.按照权利要求1所述的方法,其特征在于:催化裂化油浆占沸腾床反应器总进料重量的40%以下。
9.按照权利要求1所述的方法,其特征在于:进入固定床反应器的催化裂化回炼油占固定床总进料重量的30%以下。
10.按照权利要求1所述的方法,其特征在于:催化裂化装置操作反应温度为450~600℃,催化剂与原料油重量比2:1~30:1,与催化剂接触时间0.1~15秒,压力0.1~0.5MPa。
CN201110352382.0A 2011-11-10 2011-11-10 一种渣油加氢处理及轻质化的组合工艺方法 Active CN103102944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110352382.0A CN103102944B (zh) 2011-11-10 2011-11-10 一种渣油加氢处理及轻质化的组合工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110352382.0A CN103102944B (zh) 2011-11-10 2011-11-10 一种渣油加氢处理及轻质化的组合工艺方法

Publications (2)

Publication Number Publication Date
CN103102944A true CN103102944A (zh) 2013-05-15
CN103102944B CN103102944B (zh) 2015-04-01

Family

ID=48311150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110352382.0A Active CN103102944B (zh) 2011-11-10 2011-11-10 一种渣油加氢处理及轻质化的组合工艺方法

Country Status (1)

Country Link
CN (1) CN103102944B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105505452A (zh) * 2014-10-15 2016-04-20 中国石油化工股份有限公司 降低减压渣油中钙含量的方法及减压渣油的加工处理方法
CN105567308A (zh) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 降低常压渣油中钙含量的方法及常压渣油的加工处理方法
CN107541249A (zh) * 2017-07-01 2018-01-05 上海英保能源化工科技有限公司 一种劣质重油轻质化组合工艺
CN108102706A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种重油加氢处理方法
CN108102711A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种生产针状焦的组合工艺方法
US10494578B2 (en) 2017-08-29 2019-12-03 Saudi Arabian Oil Company Integrated residuum hydrocracking and hydrofinishing
CN110734783A (zh) * 2018-07-19 2020-01-31 中山市亿鼎杰纳米科技有限公司 一种劣质重油的加工方法
US10836967B2 (en) 2017-06-15 2020-11-17 Saudi Arabian Oil Company Converting carbon-rich hydrocarbons to carbon-poor hydrocarbons
CN112342058A (zh) * 2019-08-06 2021-02-09 中国石油化工股份有限公司 一种催化裂化油浆的处理方法及其系统
CN114763491A (zh) * 2021-01-11 2022-07-19 中国石油化工股份有限公司 一种提高沸腾床加氢装置运行稳定性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207041B1 (en) * 1997-10-14 2001-03-27 Institut Francais Du Petrole Process for converting heavy crude oil fractions, comprising an ebullating bed hydroconversion step and a hydrotreatment step
CN1393525A (zh) * 2001-06-29 2003-01-29 中国石油化工股份有限公司 一种高硫高金属渣油转化方法
CN1735678A (zh) * 2002-12-06 2006-02-15 阿尔伯麦尔荷兰有限公司 使用催化剂混合物的烃的加氢处理方法
CN1766059A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种劣质重、渣油的处理方法
US20060118463A1 (en) * 2004-12-06 2006-06-08 Colyar James J Integrated SDA and ebullated-bed process
CN101376834A (zh) * 2007-08-27 2009-03-04 中国石油化工股份有限公司 一种沸腾床组合工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207041B1 (en) * 1997-10-14 2001-03-27 Institut Francais Du Petrole Process for converting heavy crude oil fractions, comprising an ebullating bed hydroconversion step and a hydrotreatment step
CN1393525A (zh) * 2001-06-29 2003-01-29 中国石油化工股份有限公司 一种高硫高金属渣油转化方法
CN1735678A (zh) * 2002-12-06 2006-02-15 阿尔伯麦尔荷兰有限公司 使用催化剂混合物的烃的加氢处理方法
CN1766059A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种劣质重、渣油的处理方法
US20060118463A1 (en) * 2004-12-06 2006-06-08 Colyar James J Integrated SDA and ebullated-bed process
CN101376834A (zh) * 2007-08-27 2009-03-04 中国石油化工股份有限公司 一种沸腾床组合工艺

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105505452A (zh) * 2014-10-15 2016-04-20 中国石油化工股份有限公司 降低减压渣油中钙含量的方法及减压渣油的加工处理方法
CN105567308A (zh) * 2014-10-15 2016-05-11 中国石油化工股份有限公司 降低常压渣油中钙含量的方法及常压渣油的加工处理方法
CN108102711B (zh) * 2016-11-25 2020-03-17 中国石油化工股份有限公司 一种生产针状焦的组合工艺方法
CN108102711A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种生产针状焦的组合工艺方法
CN108102706B (zh) * 2016-11-25 2019-09-10 中国石油化工股份有限公司 一种重油加氢处理方法
CN108102706A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种重油加氢处理方法
US10836967B2 (en) 2017-06-15 2020-11-17 Saudi Arabian Oil Company Converting carbon-rich hydrocarbons to carbon-poor hydrocarbons
CN107541249A (zh) * 2017-07-01 2018-01-05 上海英保能源化工科技有限公司 一种劣质重油轻质化组合工艺
US10723963B2 (en) 2017-08-29 2020-07-28 Saudi Arabian Oil Company Integrated residuum hydrocracking and hydrofinishing
US10494578B2 (en) 2017-08-29 2019-12-03 Saudi Arabian Oil Company Integrated residuum hydrocracking and hydrofinishing
US11118122B2 (en) 2017-08-29 2021-09-14 Saudi Arabian Oil Company Integrated residuum hydrocracking and hydrofinishing
CN110734783A (zh) * 2018-07-19 2020-01-31 中山市亿鼎杰纳米科技有限公司 一种劣质重油的加工方法
CN112342058A (zh) * 2019-08-06 2021-02-09 中国石油化工股份有限公司 一种催化裂化油浆的处理方法及其系统
CN112342058B (zh) * 2019-08-06 2022-04-12 中国石油化工股份有限公司 一种催化裂化油浆的处理方法及其系统
CN114763491A (zh) * 2021-01-11 2022-07-19 中国石油化工股份有限公司 一种提高沸腾床加氢装置运行稳定性的方法
CN114763491B (zh) * 2021-01-11 2023-05-05 中国石油化工股份有限公司 一种提高沸腾床加氢装置运行稳定性的方法

Also Published As

Publication number Publication date
CN103102944B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
CN103102944B (zh) 一种渣油加氢处理及轻质化的组合工艺方法
CN102399586B (zh) 一种生产喷气燃料的中压加氢裂化方法
CN101684417B (zh) 一种优化的加氢-催化裂化组合工艺方法
CN103102980B (zh) 渣油深度转化的组合工艺方法
CN103059972B (zh) 一种生产化工原料的组合加氢方法
CN104449840B (zh) 一种加工劣质重油的方法
CN101418222A (zh) 一种处理劣质渣油的组合工艺
CN103102982B (zh) 渣油转化组合工艺方法
CN103059986B (zh) 一种生产化工原料的加氢裂化方法
CN105623725B (zh) 一种重/渣油加工的组合工艺
CN103773495A (zh) 一种加氢处理—催化裂化组合工艺方法
CN104560188A (zh) 一种多产汽油的加氢组合方法
CN103773486A (zh) 一种多产高价值产品的组合方法
CN103102981B (zh) 一种重质原料的加工方法
CN103305273B (zh) 一种降低焦炭和干气产率的催化转化方法
CN103305272B (zh) 一种降低焦炭产率的催化转化方法
CN102453544B (zh) 一种渣油加氢处理和催化裂化组合方法
CN102311798B (zh) 一种渣油加氢处理和催化裂化组合加工方法
CN103102945B (zh) 一种劣质重油加工方法
CN106753556B (zh) 使用劣质重油生产润滑油基础油和液体燃料的加工方法
CN102465011A (zh) 重馏分油加氢处理方法
CN103102985B (zh) 一种渣油加氢处理与催化裂化组合工艺方法
CN102911730B (zh) 一种高硫蜡油的催化转化方法
CN103059993B (zh) 一种石油烃的催化转化方法
CN103059992B (zh) 一种石油烃的有效催化转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant