CN103097411B - 糖类结合模块及其用途 - Google Patents

糖类结合模块及其用途 Download PDF

Info

Publication number
CN103097411B
CN103097411B CN201080021113.XA CN201080021113A CN103097411B CN 103097411 B CN103097411 B CN 103097411B CN 201080021113 A CN201080021113 A CN 201080021113A CN 103097411 B CN103097411 B CN 103097411B
Authority
CN
China
Prior art keywords
hiv
rosbd
sbd
binding
cbm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080021113.XA
Other languages
English (en)
Other versions
CN103097411A (zh
Inventor
张大慈
李远川
黄荣渊
林淑娟
周维宜
刘锡辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103097411A publication Critical patent/CN103097411A/zh
Application granted granted Critical
Publication of CN103097411B publication Critical patent/CN103097411B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • AIDS & HIV (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种抑制受试者HIV感染的方法,所述方法包括给予受试者有效量的特异性结合至HIV糖蛋白表位的糖类结合模块(CBM)的抗体模拟物。本发明还提供一种药物组合物,所属药物组合物包含治疗或预防有效量的糖类结合模块的抗体模拟物和药学可接受载体。本发明提供预防性地或治疗性地抑制受试者的HIV感染的方法,所述方法包括给予受试者有效量的特异性结合至HIV糖蛋白表位的糖类结合模块(CBM)的抗体模拟物。

Description

糖类结合模块及其用途
发明领域
本发明涉及糖类结合模块(CBM)的抗体模拟物,其特异结合至HIV糖蛋白的抗原表位。本发明也涉及抑制HIV活性的方法。
发明背景
已知人免疫缺陷病毒(HIV)引起获得性免疫缺陷综合征(AIDS),且因为HIV表现快速遗传漂移,出现了广泛分歧的株。因此,检测和治疗变异株已证明为有挑战的且是困难的。
也有紧急的需要开发有效的防病的疫苗和其他治疗策略以在该流行病持续不衰退时限制HIV传播。最成功的疫苗由可活性衰减的或灭活的病毒颗粒组成。然而,HIV相关的猿免疫缺陷病毒的活性衰减,引起没有所得病原性的保护性的反应还未被实现,产生使人类实验棘手的安全问题。同样,HIV有许多复杂的机制来有效地躲避被膜糖蛋白定向的抗体反应,包括通过构象和立体限制的聚糖屏蔽和掩饰脆弱的受体结合位点所得屏蔽井-保守的结构。因此,研究转向基于被膜蛋白的免疫原作为引出抗体的方法。糖蛋白120(gp120)为HIV-1被膜棘突的重要组分。Gp120的内部结构域与gp41相互作用,并且外部结构域十分可变且被重糖基化(Kwong,RD.等.Structure of an HIVgp120 envelope glycoprotein incomplex with the CD4 receptor and a neutralizing human antibody.Nature 393,648-659(1998))。基于比较序列分析,gp120被分成五个保守段(C1至C5)和五个可变(V1至V5)区域(Willey,R.L.等.Identification of conserved and divergent domainswithin the envelope gene of the acquired immunodeficiency syndromeretrovirus.Proc Natl Acad Sci U S A 83,5038-5042(1986)和Modrow,S.等.Computer-assisted analysis of envelope protein sequences of seven humanimmunodeficiency virus isolates:prediction of antigenic epitopes in conservedand variable regions.J Virol 61,570-578(1987))。C1和C5区域提供gp120与gp41接触的主要区域(Helseth,E.,Olshevsky,U.,Furman,C.&Sodroski,J.Humanimmunodeficiency virus type 1 gp120envelope glycoprotein regions importantfor association with the gp41transmembrane glycoprotein.J Virol 65,2119-2123(1991)),其他保守区域(C2至C4)在gp120分子内形成疏水核(Moore,J.P.,Sattentau,QJ.,Wyatt,R.&Sodroski,J.Probing the structure of the human immunodeficiency virussurface glycoprotein gp 120 with a panel of monoclonal antibodies.J Virol 68,469-484(1994)and Moore,J.P.,Willey,R.L.,Lewis,GK.,Robinson,J.&Sodroski,J.Immunological evidence for interactions between the first,second,and fifthconserved domains of the gp120 surface glycoprotein of human immunodeficiencyvirus type 1.J Virol 68,6836-6847(1994))且可变区域,V1至V3,暴露在单肢gp120表面,并具有用于抗体识别和CD4的结合位点的主要表位(Chen,L.等.Structural basis ofimmune evasion at the site of CD4attachment on HIV-1 gp120.Science 326,1123-1127(2009),Moore,J.P.&Sodroski,J.Antibody cross-competition analysis of thehuman immunodeficiency virus type 1 gp120 exterior envelope glycoprotein.JVirol 70,1863-1872(1996),Pollard,S.R.,Rosa,M.D.,Rosa,JJ.&Wiley,D.C.Truneatedvariants of gp120 bind CD4 with high affinity and suggest a minimum CD4binding region.EMBO J 11,585-591(1992)and Olshevsky,U.等.Identification ofindividual human immunodeficiency virus type 1 gp120 amino acids importantfor CD4 receptor binding.J Virol 64,5701-5707(1990))。
目前,在美国47例中和的识别HIV的单克隆抗体(mAbs)已进入I期或II期临床试验。其中,人mAb 2F5、4E10和2G12已经以其识别HIV-1被膜糖蛋白被很好表征(Armbruster,C.等.A phase I trial with two human monoclonal antibodies(hMAb 2F5,2G12)against HIV-1.AIDS 16,227-233(2002)和Stiegler,G.等.Antiviral activity of theneutralizing antibodies 2F5 and 2Gl 2 in asymptomatic HIV-1-infected humans:aphase I evaluation.AIDS 16,2019-2025(2002))。大多数这些抗体主要靶向在病毒表面以其成熟三聚体形式封闭的gp120区域(Zwick,M.B.&Burton,D.R.HIV-1 neutralization:mechanisms and relevance to vaccine design.Curr HIV Res 5,608-624(2007)和Krauss,IJ.等.Fully synthetic carbohydrate HIV antigens designed on the logicof the 2G12 antibody.JAm Chem Soc 129,11042-11044(2007))。Gp120剩余的暴露面被用N连接的甘露糖聚糖Man9-GlcNAc(M9)重糖基化,且很少抗体被分离至成功结合至此种(免疫沉默的)区域。然而人mAb2G12被报道具有对抗HIV-1的分化体A和B的中和活性(Trkola,A.等.Human monoclonal antibody 2Gl 2 defines a distinctiveneutralization epitope on the gp120 glycoprotein of human immunodeficiencyvirus type1.J Virol 70,1100-1108(1996))并结合至HIV-1 gp120的“沉默的表面”上的表位。使用位点定向突变的丙氨酸扫描研究显示该表位主要覆盖高-甘露糖或gp120上残基N295,N332,N386,N392,N397和N448的杂合聚糖结构(Sanders,R.W.等.The mannose-dependent epitope for neutralizing antibody 2Gl 2 on human immunodeficiencyvirus type 1 glycoprotein gp120.J Virol 76,7293-7305(2002)和Scanlan,CN.等.Thebroadly neutralizing anti-human immunodeficiency virus type 1antibody 2Gl 2recognizes a cluster of alphal->2mannose residues on the outer face ofgp120.J Virol 76,7306-7321(2002)),不像多数抗体识别氨基酸侧链的特异构型。因此存在以下可能:2G12可被转变成基于糖类表位识别的宽范围的HIV中和抗体。
2G12(PDB ID:1ZLS)的晶体结构及其与寡糖M9的复合物(PDB ID:1OP5)显示两个Fab组装成VH结构域交换二聚体,且该VH结构域位于直接与N-连接的M9相互作用的2G12重链上,尤其是在gp120上包含四甘露糖Manα(1,2)Manα(1,2)Manα(1,3)Manα(Man4)部分的D1臂。此外,在gp120上的2G12识别位点的分子模型已显示在N332,N339和N392上的N-连接聚糖对于2G12结合是关键的(Calarese,D.A.等.Antibody domain exchange is an immunologicalsolution to carbohydrate cluster recognition.Science 300,2065-2071(2003))。合成的寡糖Man4和Man9可抑制gp120和2G12之间的结合,因此这些寡甘露糖dendrion被鉴定为HIV1中和剂。而且,几种HIV mAb的IC50中和曲线显示2G12的中和能力是中等的(Binley,J.M.等.Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies.J Virol78,13232-13252(2004))。
根据蛋白结构分类数据(Protein Structure Classification Database)(CATH)(Orengo,CA.等.CATH-a hierarchic classification of protein domainstructures.Structure 5,1093-1108(1997)),2G12的VH结构域被分类为具有特特异性特征β-夹心折叠,免疫球蛋白类(Ig-类)结构的超家族2.60.40.10。有趣的是,黑曲霉(Aspergillus niger)葡萄糖淀粉酶的粒状淀粉结合结构域(SBD),AnSBD,(PDB ID:IACO)也已被鉴定于相同的同源超家族中(Christiansen,C.等.The carbohydrate-bindingmodule family 20-diversity,structure,and function.FEBS J 276,5006-5029(2009))。2G12和此糖类结合模块(CBM)之间的结构相似性可暗示可被阐明的作为有效的检测和预防疾病疫苗的共同功能。
发明概述
本发明提供预防性地或治疗性地抑制受试者的HIV感染的方法,其中所述方法包括给予受试者有效量的特异性结合至HIV糖蛋白表位的糖类结合模块(CBM)的抗体模拟物。
本发明还提供一种药物组合物,所述药物组合物包含治疗或预防有效量的糖类结合模块的抗体模拟物和药学可接受载体。
附图简述
图1.淀粉结合CBM和2G12的结构、序列和功能的比较。RoSBD与以下的结构重叠(深灰):(a)AnSBD(浅灰);(b)2G12VH结构域(浅灰)和(c)2G12VL结构域(浅灰)。(b)中的Man4以黏代表显示,(d)基于Dali重叠结果的RoSBD,AnSBD,2G12VH和2G12VL的多重序列比对。下划线的残基表示β-链区域,且黑体字形式的氨基酸表示在SBD中的配体结合残基和在2G12VH结构域中的Man4-结合位点,(e)将一百微升的HIV-PC溶液加载至96孔ELISA板,所述ELISA板分别包被有100nM人IgG1第二抗体(2C11),HIV-1 p24 mAb(N29)、HIV-1 gp41mAb(AG10H9)、HIV-1 gp120 mAb(ED8.D4),2G12,RoSBO和AnSBD。HRP结合的重组gp120抗原用于信号检测。差异为统计学显著的(P<0.0001)。
图2.RoSBD-HIV结合的特异性。一百微升HIV-PC,RoSBD mAb和HCV-PC在一起混合,加载至RoSBD包被的ELISA板,使其在37℃反应1h。通过加入100μL的:(a)HRP-结合的重组gp120抗原;(b)HRP-结合的HCV重组抗原;(c)HRp-结合的HTLV重组抗原或(d)抗小鼠IgGHRP结合来实现检测。在此甄别值(COV)被定义为ELISA分析中来自正常人血清得到的吸收值加0.1,最大甄别指数(COI)值通过OD值除以COV计算。差异为统计学显著的(P<0.05)。
图3.AnSBD-HIV结合的特异性。一百微升HIV-PC,RoSBD mAb和HCV-PC在一起混合,加载至AnSBD包被的ELISA板,使其在37℃反应1h。通过加入100μL的:(a)HRP-结合的重组gp120抗原;(b)HRP-结合的HCV重组抗原;(c)HRP-结合的HLV抗原或(d)HRP-结合的抗小鼠IgG来实现检测。在此甄别值(COV)被定义为在ELISA分析中来自正常人血清得到的吸收值加0.1,最大甄别指数(COI)值通过OD值除以COV计算。差异为统计学显著的(P<0.0001)。
图4.HIV至SBD的竞争性结合。HIV-PC分别与相同体积的500nM gp140、2G12mAb,gp120 mAb(ED8.D4),gp41 mAb(AG10H9),p24mAb(N29)或人IgG1第二抗体(2C11)在37℃混合1h。该混合物呗转移至包被有(a)RoSBD或(b)AnSBD的板并用HRP结合的重组gp120抗原检测。差异为统计学显著的(P<0.0001)。
图5.聚糖的竞争性结合。HIV-PC与500μM的大豆凝集素(SBA)、G7、βCD或甘露糖的每一种在37℃混合1h。该混合物被转移至用100nM:(a)RoSBD和(b)AnSBD预包被的ELISA板。该反应用HRP结合重组gp120抗原检测。差异为统计学显著的(P<0.01)。
图6.使用mAb和SBD100μL的HIV-1发生率/患病率性能组(PRB601)成员的HIV结合曲线被分别加载到用100nM:(a)HIV-1-p24mAb(N29);(b)HIV-1-gp41mAb(AG10H9);(c)gp120mAb(ED8.D4);(d)HIV-1-2G12mAb;(e)RoSBO或(f)AnSBD预包被的ELISA板且用HRP-结合重组的gp120抗原检测。在此甄别值(COV)被定义为在ELISA分析中来自正常人血清得到的吸收值加0.1,最大甄别指数(COI)值通过OD值除以COV计算。
图7.HIV-2G12和HIV-SBD结合曲线。一百微升HIV-1性能组(PRB601)成员被分别加载至用100nM(a)2G12,(b)RoSBD和(c)AnSBD预包被的96孔ELISA板。该反应用HRP结合重组的gp120抗原检测。含5%BSA的PBS(PH7.4)被用作NC阴性对照(NC)。甄别值(COV)被定义为在ELISA分析中来自正常人血清得到的吸收值加0.1,最大甄别指数(COI)值通过OD值除以COV计算。差异为统计学显著的(P<0.0001)。
图8.RoSBD的聚糖结合活性。(a)聚糖微阵列分析通过对功能的Glycomics,核心H设备的联合进行。用于分析的第一抗体为抗RoSBD单克隆抗体,且第二抗体为Alexa Fluor488-结合的山羊抗小鼠IgG。(b)六十微升0.7pM IgG1(2C11)、HIV-1gp140、Man4-OR或Man1-Asn/PBS(pH7.4)置于玻璃管中,并将60μL磁性试剂加入该玻璃管并在4℃混合15秒然后进行磁性减少测量。该混合物的磁性感受性使用XacPro-S101阅读器在25℃测量。
图9.合成的Man4的结构(为6-氨基己基糖苷Man4-OR)和M9-Asn(来自SBA)。
图10.RoSBD上的Man4结合位点。(a)使用PyMOL计算和显示的表面能力,显示阴性(红色)和阳性(蓝色)能力。左边组:具有标记的残基Thr33,Tyr56和Asp100的VH-Man4,Man4以褐色显示。右边组:显示位点I的关键结合残基(Trp47,Tyr83和Tyr94)和位点II的关键结合残基(Tyr32和Phe58)的标记RoSBD-G7复合物。G7分子以青色(cyan)显示,(b)预测的RoSBD上Man4结合位点的带状图。Man4分子以褐色显示。左边组:显示Tyr32,Ser33和Lys34残基。右边组:显示Tyr32,Ser33和Lys34残基,(c)野生型和突变的RoSBD的HIV结合。将100μL HIV-PC溶液加载至用100nM野生型RoSBD或突变的RoSBD N29A,Y32A,S33A,K34A,W47A,F58A,Y83A,Y93A和Y94A预包被的96孔ELISA板中。HRP结合重组的gp120抗原用于信号检测。显示的结果表示一式三份样品的±SD。,p<0.05;,p<0.01;,p<0.0001。
图11.RoSBD氨基酸对于HIV-1复制和细胞存活力的影响。HIV-1RTMF(AZT-抗性病毒),用增加浓度的RoSBD处理。8天后通过使用HIV-1p24抗原ELISA测量病毒复制,且根据剂量响应曲线计算对于抑制的IC50值。不同浓度的RoSBD对H9细胞存活力的影响和MTT分析被用于检测H9细胞培养中的细胞毒性。
图12.对于抑制HIV-1进入的可能策略,(a)HIV-1进入靶细胞需要gp120与细胞表面受体CD4和共受体CCR-5的结合。(b)中和mAb2G12通过识别HIV gp120的CD4结合结构域阻碍HIV-1感染。(c)SBD/CBM可识别HIV-1并作为2G12mAb的模拟物来阻碍HIV-1感染。
发明详述
本发明提供预防性地或治疗性地抑制受试者的HIV感染的方法,所述方法包括给予受试者有效量的特异性结合至HIV糖蛋白表位的糖类结合模块(CBM)的抗体模拟物。
此处使用的术语“CBM”指在糖类-活性酶中与具有糖类结合活性的谨慎折叠邻近的(contiguous)氨基酸序列。在糖苷水解酶的一级结构分类中,按基于氨基酸序列相似性SBM被分类至59家族且它们表现出不同的配体特异性,依照糖类活性酶(Carbohydrate-Active EnZyme)(CAZy)数据库(Cantarel,B.L.等.The Carbohydrate-Active EnZymesdatabase(CAZy):an expert resource for Glycogenomics.Nucleic Acids Res 37,D233-238(2009)),其包括几种特异性例如纤维素、木聚糖和淀粉结合。本发明中,SBM特异性地结合至存在于HIV糖蛋白表位中的聚糖结构。优选的实施方案中,所述HIV糖蛋白为gp120,且所述聚糖结构为N连接的高甘露糖聚糖Man9-GlcNAc(M9)。
此处使用的术语“抗体模拟物”指与抗体在对抗靶结构结合方面具有相似功能的物体,但其结构比抗体简单。为生产大量抗体需要如下步骤:(a)将单抗体形成细胞融合至培养生长的肿瘤细胞。所得的细胞被称为杂交瘤,(b)每种杂交瘤产生相对大量的相同的抗体分子,和(c)使得该杂交瘤在培养中增加,有可能产生细胞群,该细胞群的每个细胞产生相同的抗体分子。制造真正的抗体是消耗劳动和消耗费用的;然而,本发明中,广泛的包括细菌、酵母、昆虫和哺乳动物细胞的宿主可被用于产生CBM的抗体模拟物而不使用动物,这更简单且更经济。
此处使用的术语“受试者”指动物,优选哺乳动物,且更优选人。本发明中,优选的CBM为淀粉结合结构域(SBD)。此处使用的术语“SBD”指可结合粒状或可溶淀粉的功能性结构域,以增加酶的活性位点的底物的局部浓度,且这也可以分裂淀粉表面的结构,由此增强淀粉分解率。目前,有九种淀粉结合CBM家族:CBM20、CBM21、CBM25、CBM26、CBM34、CBM41、CBM45、CBM48和CBM53。本发明的优选的实施方案中,SBD为SBM家族20和21的成员,它分别得自黑曲霉(Aspergillus niger)葡萄糖淀粉酶(AnSBD)和稻根霉(Rhizopus oryzae)葡萄糖淀粉酶(RoSBD)。使用分子模型的稻根霉(Rhizopus oryzae)葡萄糖淀粉酶(RoSBD)的SBD的结构-功能关系(Chou,W.I.,Pai,T.W.,Liu,S.H.,Hsiung,B.K.&Chang,M.D.The family 21carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists oftwo sites playing distinct roles in ligand binding.Biochem J 396,469-477(2006))和核磁共振(NMR)光谱已被验证(Liu,Y.N.,Lai,Y.T.,Chou,W.I.,Chang,M.D.&Lyu,RC.Solution structure of family 21 carbohydrate-binding module fromRhizopus oryzae glucoamylase.Biochem J 403,21-30(2007))。此外,RoSBD上的maltoheptaose(G7)和β-环糊精(β-CD)结合位点已通过X-射线结晶照相法(crystallography)检测(Tung,J.Y.等.Crystal structures of the starch-bindingdomain from Rhizopus oryzae glucoamylase reveal a polys accharide-bindingpath.Biochem J 416,27-36(2008))。
本发明还提供一种药物组合物,所述药物组合物包含治疗或预防有效量的糖类结合模块的抗体模拟物和药学可接受载体。
术语“药学可接受载体”、“药学可接受赋形剂”、“生理学可接受载体”或“生理学可接受赋形剂”指药学可接受材料、组合物或载体,例如液体或固体填充剂、稀释剂、赋形剂、溶剂或封装材料。每种组分应为在与药物制剂的其他成分可相容的意义上是“药学可接受的”。它还应该适合用于与人和动物的组织或器官而没有过多的毒性、刺激、过敏反应、免疫发生或其他问题或并发症,与合理的收益/风险比相称。
此处公开的药物组合物可以单位剂型或多剂型公开。此处使用的单位剂型指物理学上离散的适合给予至人和动物受试者的单位且被本领域已知的独立包装。每个单位剂量包含预测定量的足以产生所需的治疗效果的活性成分,结合所需的药物载体或赋形剂。单位剂型的实例包括注射剂(ampoule)、注射管(syringe)和独立包装的片剂和胶囊。单位剂型可以其部分或其多数给予。多剂型为包装在单容器中以被以分开的单位剂型给予的复数的相同单位剂型。多剂量的实例包括小瓶的、瓶的片剂或胶囊或瓶的品脱或加仑(pints orgallons)。
此处公开的组合物可被单独给予,或与一种或多种其他此处公开的化合物、一种或多种其他活性成分组合。包含此处公开的化合物的药物组合物可被配制成多种用于经口的、肠胃外的和局部给予的剂型。该药物组合物还可被配制为改性释放的剂型,包括延迟-、增强的-、延长的-、持续的-、脉动的-、控制的-、加速的-和快速的-、靶向的-、程序化的-释放、和胃的保留剂型。这些剂型可按照本领域技术人员已知的常规方法和技术制备。
此处公开的药物组合物可一次给予,或者在时间间隔多次给予。应理解治疗的精确剂量和持续时间可随着年龄、重量和待治疗的患者的状态变化,且可被经验地使用已知的测试方案测定或通过插补法从体内或体外试验或诊断数据测定。还应理解对于任何特定的个体,特定的剂量方案应随时间根据个体需要和管理或监督该配方的给予的人的职业判断来调整。
此处公开的药物组合物可以用于经口给予的固体、半固体或液体剂型公开。此处使用的,经口给予也包括颊的、舌的和舌下给予。合适的经口剂型包括,但不限于,片剂、胶囊、丸、糖锭(troches)、锭剂(lozenges)、软锭剂(pastilles)、扁囊(cachets)、丸(pellets)、含药口香糖、整装粉剂、泡腾的(effervescent)或非冒泡的粉末或颗粒、溶液、乳液、悬液、溶液、薄脆饼(wafes)、喷洒(sprinkles)、酏和糖浆。除了活性成分,该药物组合物还包含一种或多种药学可接受的载体或赋形剂,包括但不限于,结合剂、填充剂、稀释剂、崩解剂、湿润剂、润滑剂、助流剂、着色剂、染料迁移抑制剂、增舔剂和调味剂。本发明还提供检测样品的HIV的方法,所述方法包括将特异性结合至HIV糖蛋白表位的糖类结合模块(CBM)的抗体模拟物加入至样品;和检测所述抗体和样品之间的结合反应。在检测HIV的方法中,SBM特异性地结合至存在于糖蛋白表位中的聚糖结构。如下实施例为非限制性的且仅代表本发明的各方面和特征。
实施例
实施例1
SBD和2G12之间的结构关系
基于结构的多重序列比对
二级结构预测使用Jpred服务器(server)(Cuff,J.A.,Clamp,M.E.,Siddiqui,A.S.,Finlay,M.&Barton,GJ.JPred:a consensus secondary structure predictionserver.Bioinformatics 14,892-893(1998))和网络蛋白序列分析(Network ProteinSequence Analysis)(NPSA)服务器。Jpred和NPSA服务器提供一致的结果,分别来自六种(NNSSP,DSC,PREDATOR,MULPRED,ZPRED和PHD)和十二种(SOPM,SOPMA,HNN,MLRC,DPM,DSC,GORI,GORII,GORIV,PHD,PREDATOR和SIMPA96)不同的方法。
结果
RoSBD或AnSBD和其他蛋白结构域之间的结构-功能关系检测通过使用DALI数据库in silico进行(Holm,L.,Kaariainen,S.,Rosenstrom,P.&Schenkel,A.Searchingprotein structure databases with DaliLite v.3.Bioinformatics 24,2780-2781(2008))。总计对于RoSBD和AnSBD分别有555和535种结构上相关的蛋白被检索到,并按照它们功能分类。如预期的,两种情况下最相似的蛋白(即,在前200)主要为淀粉处理酶或CBM,然后是抗体家族。特别是,RoSBD和AnSBD分别与158和57种免疫球蛋白结构关联。其中,RoSBD类似于三种糖结合mAb:2G12、2H1和F22-4,它们分别识别致病的微生物HIV,新型串酵母(Cryptococcus neoformans)和弗氏志贺菌(Shigella flexneri)。此外,RoSBD;类似于13HIV中和mAb包括2F5和FAB 1583。类似地,AnSBD类似于两种糖结合抗体:2H1和SEl 55-4mAb的单链抗体可变结构域(ScFv);和两种HIV结合mAb、2F5和G3-519。2G12、RoSBD和AnSBD之间的结构关联使得容易推导出这些SBD可具有识别HIV的糖蛋白的能力。
图1显示对于RoSBD、AnSBD,和2G12人mAb的VH和VL结构域的结构比较结果。虽然RoSBD和AnSBD、VH和VL之间的序列同一性低至分别为8.3%、9.5%和10.9%,但重叠的影响表明在结构配对之间总体三维结构是非常相似,平均根均值方差(root mean squaredeviation)(RMSD)值分别为1.4Ao(图1a)、2.9Ao(图1b)和3.0Ao(图1c)。虽然图1d中RoSBD、AnSBD、VH和VL的多重序列比对显示出低的同源性,但两种SBD和VH中关键的配体结合位点是很保守的(Tung,J.Y.等.Crystal structures of the starch-binding domain fromRhizopus oryzae glucoamylase reveal a polys accharide-binding path.Biochem J416,27-36(2008))。RoSBD,AnSBD和2G12的VH和VL结构域之间的结构相似性可表明对于SBD和2G12的相似的结合特异性。
实施例2
SBD和2G12之间的功能关系
微生物和质粒
大肠杆菌(Escherichia coli)Top10F′(Invitrogen)被用于质粒处理,而大肠杆菌(E.coli)BL21-Gold(DE3)(Invitrogen)用于蛋白表达。载体pET-23a(+)和pET-15b(Novagen),都包含T7引物(promoter),都分别用于在大肠杆菌细胞中重组的RoSBD和AnSBD表达。用于pET23a(+)-RoSBD的正向(forward)引物5′
-CATATGGCAAGTATTCCTAGCAGT-3′(SEQ ID号1)和反向引物5′-CTCGAGTCATGTAGATACTTGGT-3′(SEQ ID号2)分别包含NdeI和XhoI限制(restriction)位点,以及用于pET15b-AnSBD的正向引物5′-CATATGAGCAAGACCAGCACCAGT-3′(SEQ ID号3)和反向引物5′-CTCGAGCTACCGCCAGGTGT-3′(SEQ ID号4)分别包含NdeI和XhoI限制位点,这些引物用于克隆和序列分析。
SBD的转化和表达
使用热激方法将pET表达载体转化至大肠杆菌(E.coli)表达细胞(Chou,W.I.,Pai,TW.,Liu,S.H.,Hsiung,B.K.&Chang,M.D.The family 21 carbohydrate-bindingmodule of glucoamylase from Rhizopus oryzae consists of two sites playingdistinct roles in ligand binding.Biochem J 396,469-477(2006))。100微升感受态细胞核100ng DNA或20μL连接混合物被混合,然后冰上孵育30min。将细胞在42℃水浴中加热30至60秒,然后置于冰上超过2min。将转化细胞铺展至含100μg/mL氨苄青霉素的Luria-Bertani(LB)琼脂板上并在37℃孵育过夜以测定转化细胞的数量。
蛋白表达通过将0.5mM异丙基β-D-硫代半乳糖苷(IPTG)(Promega)加入至培养基诱导,并在20℃以250x g震荡下孵育16h。通过在4℃以3,700X g离心15min收获细胞。
SBD的纯化
包含重组蛋白的大肠杆菌(E.coli)的细胞沉淀物(pellet)重悬于100mL结合缓冲液(50mM NaOAc,pH 5.5)中,通过匀浆裂解(EmulsiFlex-C5 homogenizer,AVESTIN),且细胞碎片通过在4℃16,000x g离心30min除去。将所得细胞裂解液加载至5mL直链淀粉树脂柱(New England Biolabs)上。然后将该柱用50mL结合缓冲液(50mMNaOAc,pH 5.5)洗涤,且所吸附的蛋白用洗脱缓冲液(10mM甘氨酸-NaOH,pH 11洗脱。纯化的SBD通过在超滤单元(Centricon-10,Millipore)中离心浓缩并且缓冲液换成50mM NaOAc,pH 5.5(Lin,S.C.等.CBM21 starch-binding domain:a new purification tag for recombinant proteinengineering.Protein Expr Purif 65,261-266(2009))。
质谱分析
重组蛋白的分子量检测通过液相色谱/质谱仪(LC/MS)(Waters)进行。完整的SBD(100pmol)用在50%(v/v)乙腈中的0.1%甲酸酸化,且数据在正常扫描分辨率(scanresolution)下800-1800m/z范围获得。对最初的具有多重的荷电的离子系列的电喷射质谱去卷积(deconvoluted)以得到质谱。
夹心ELISA
首先将纯化的SBD(100μL的100nM溶液)稀释至SBD包被缓冲液(50mM Tris-HCl缓冲液,pH 8),然后用移液管加入(pipeted)至96孔ELISA板(Greiner-Bio One),然后在4℃孵育16h。相似地,首先将100μL的100nM 2G12 mAb(Polymum Scientific)稀释至2G12包被缓冲液(50mM甘氨酸-HCl缓冲液,pH 3),然后用移液管加入至第二ELISA板,4℃16h。分别将以下四种试剂的每一种(100μL)加入至SBD-包被的或2G12-包被的ELISA板,并使其在37℃反应1h:(i)HIV-PC(HIV抗原和抗体阳性血清,ID#9144532;SeraCare Life Sciences),(ii)1.0μg/mL Anti-RoSBD mAb(由作者生产,可通过索取获得),(iii)HCV-PC(抗-HCVMixed Titer Performance Panel;成员(member)10,ID#PHV205;SeraCare LifeSciences)和(iv)HTLV-PC(Anti-HTLV I/II Mixed Titer Performance Panel;成员10,ID#PRP206;SeraCare Life Sciences)。分别使用HIV p24ELISA试剂盒(Perkin Elmer)和抗HIV抗体1+2ELISA试剂盒(Abbott Diagnostics),根据说明书,将HIV-PC确认为HIV抗原阳性和抗-HIV抗体阳性。之后,将该板用PBST(0.01M磷酸盐缓冲液加0.05%tween-20,pH7.1)洗涤三次。
以下四种结合试剂的每一种被分别稀释成0.05μg/mL并以100μL/孔加入,37℃30min:(i)HRP-结合重组gp120抗原(General Biologicals),(ii)HRP-结合的抗小鼠IgG(Jackson ImmunoResearch),(iii)HRP-结合的HCV重组抗原(General Biologicals)和(iv)HRP-结合的HTLV重组抗原(General Biologicals),然后用PBST洗三次。3,3′,5,5′-四甲基联苯胺(General Biologicals)底物以100μL/孔加入,并使其在37℃进行30min颜色显现。通过加入100μL/孔的2N硫酸终止颜色反应,使用Emax精确微量培养板阅读器(Molecular Devices)在450nm测量吸光度。甄别值(COV)被定义为阴性对照的OD,(正常人血清)+0.1。显示出甄别指数(COI)大于1的样品被认为阳性,其中COI=(测试样品的OD)/COV。
统计分析
数据的统计分析通过双向(two-way)ANOVA进行,然后进行不成对的(unpaired)双尾t检验GraphPad Prism Version 4;GraphPad Software)。P<0.05被认为显著的。
结果
直接夹心酶联免疫吸附分析(ELISA)使用HIV-特异的mAb或SBD-包被的微量滴定板和辣根过氧化物酶(HRP)连接的重组gp120进行;显示甄别指数(COI)>1的样品被视为阳性。图1e显示在HIV抗原和抗体阳性对照(HIV-PC)中存在的HIV抗原通过抗-p24 mAb(N29),抗-gp41 mAb(AG10H9),抗-gp120 mAb(ED8.D4)和2G12如预期的被清楚滴检测到。在包被有任一SBD的板中观察到信号,这明显显示RoSBD和AnSBD具有相似的HIV检测能力。
图2a显示RoSBD结合仅在HIV-PC被测试时发生。观察到与抗-丙型肝炎病毒(HCV)混合的滴定度性能阳性对照(HCV-PC)或抗-人T-淋巴细胞病毒(HTLV)混合的滴定度性能阳性对照(HTLV-PC)的可忽略的交叉反应。此外,HRP-结合的HCV重组抗原、HRP-结合的HTLV重组抗原和HRP-结合的抗-小鼠IgG没有得到明显的表示RoSBD具有对HIV-PC特异识别的信号(图2),这可能由于结合至HIVgp120抗原。
图3a显示AnSBD结合至HIV-PC的最大COI与RoSBD的那种相似,且对于AnSBD结合至HIV-PC或HTLV-PC没有观察到交叉反应。图3b和3c显示在HRP-结合的重组gp120存在时AnSBD表现对HIV-PC的结合特异性。此外,在小鼠抗-RoSBD mAb和AnSBD之间没有结合(图3d)。
实施例3
RoSBD和AnSBD和HIV-1糖蛋白之间的特异性
HIV mAb和聚糖的竞争性ELISA
以下肽和mAb用于竞争性ELISA实验:(i)人IgG1第二抗体([2C11];对于人IgG1的亚类特异的且没有同型限制;Fc-区特异的)第二抗体,(ii)HIV-1 p24肽([N29],根据HIV-1p24的N-末端残基1-104的合成肽),(iii)HIV-1 gp120肽([ED8.D4];按照人HIV-1 BH8隔离gp160的残基427-448的合成肽),(iv)HIV-1 gp41肽([AG10H9],按照HIV-1 gp160的残基721-744的合成肽),(v)2G12 mAb(对抗HIV-1 gp120的重组人mAb),(vi)gp140(HIV分化体A,株92/UG/037)。所有得自Abeam,除了2G12和gp140,它们购自Polymun Scientific。
对于ELISA实验,50μL HIV-PC与等体积的500nM的以上(i)至(vi)的每种混合。将该混合物转移至RoSBD或AnSBD包被的板并在37℃孵育1h,然后用PBST洗涤三次。通过加入100μL的0.05μg/mLHIVl重组gp120 HRP-结合抗原检测反应。对于检测聚糖效果的实验,50μL的500μM的四种样品,大豆凝集素(SBA)、maltoheptaose(G7)、β-环糊精(βCD)和甘露糖(Sigma-Aldrich)的每一种与等体积的HIV-PC混合。将该混合物转移至RoSBD或AnSBD包被的板并在37℃孵育1h,然后用PBST洗涤三次。该反应通过加入100μL的0.05μg/mL重组gp120抗原检测。通过加入100μL的0.05μg/mL HRP-结合的HIV 1重组gp120抗原检测反应。
结果
两种SBD和HIV-1之间的分子相互作用的特异性在包括mAb、糖蛋白和聚糖的竞争者存在时被评估。图4a和4b中,人IgG1(2C11)第二抗体的存在未显示出抑制效果,表明没有非特异性竞争发生。然而,对于HIV-PC结合至RoSBO和AnSBD的COI值分别显著减少至72%和60%,在重组HIV-1 gp140存在时,中国仓鼠卵巢(CHO)-表达的包装糖蛋白包含与gp120相同的高甘露糖型聚糖。这表明SBD和HIV糖蛋白之间的分子相互作用。此外,mAb 2G12,抗-gp120 mAb,抗-gp41 mAb和抗-p24 mAb竞争剂对于RoSBD-HIV PC结合的抑制率分别为55%,42%,22%和13%,其中AnSBD的该值分别为33%,18%,6%和10%。在与mAb(对于gp120)的竞争时SBD和HIV-PC结合的明显减少导致对SBD识别HIV的结论的进一步支持。该数据明显显示每种SBD和HIV gp120之间的特异性相互作用,假定在gp120上包含聚糖部分。
此外,发现500μM四聚糖蛋白大豆凝集素(SBA)具有M9部分、maltoheptaose(G7)和β-环糊精(βCD)部分,对于RoSBD-HIV和AnSBD-HIV分别抑制结合达38%,20%和23%,以及16%,13%和11%,但甘露糖单糖未显示出抑制效果(图5)。这些数据暗示SBA和SBD的多糖配体对HIV结合弱竞争。
实施例4
SBD和2G12的竞争性HIV-1检测
为评估用于HIV ELISA的SBD的实际应用,一组HIV-1发生率/患病率性能组样品(PRB601;SeraCare Life Sciences),包含7个一致的发生和8个一致的患病样品,表征为HIV-1阳性的,被用于比较抗-p24,抗-gp41,抗-gp120和2G12 mAb,以及RoSBD和AnSBD之间的HIV检测性能。
结果
图6显示所有包被材料为活性的且此两种SBD显示明显的检测信号。虽然对于15个样品的类似的检测曲线在SBD或HIV-特异性的mAb包被的分析被观察到,2G12和RoSBD显示相对较高的检测灵敏度;显然,样品号5,6,8,10,11和13比其他包含更多的HIV-1抗原。这些数据明显支持我们的SBD的HIV-1抗原识别能力。
此外,不仅信号的检测模式而且信号的相对范围在2G12(图7a),RoSBD(图7b)和AnSBD(图7c)之间非常相似。2G12-,RoSBD-和AnSBD-包被的ELISA的检测率分别高至93%,93%和87%。应注意的是样品号1和号2分别未被RoSBD和2G12检测,但据发现它们的HIV-1RNA含量分别为3×104和2×103副本/mL。HIV抗原ELISA和HIV-1-RNA试验之间的偏差可来自于不同的检测目标或表面糖蛋白的不同表达水平。
实施例5
的特异甘露聚糖结合活性
RoSBD的聚糖阵列筛选
聚糖微阵列分析通过对功能的Glycomics的联合(CFG),核心H设备进行(Raman,R.等.Advancing glycomics:implementation strategies at the consortium forfunctional glycomics.Glycobiology 16,82R-90R(2006))。哺乳动物印刷阵列包含总计377不同的天然和合成的聚糖。简要地说,将七十微升的RoSBD(200μg/mL)施用至阵列的印刷的表面,覆有盖玻片,并在黑暗潮湿的小室中37℃孵育1h。孵育之后,移走盖玻片并用TSM缓冲液(50mM Tris-HCl,pH 7.5,10mMMgCl2和0.5M sucrose)冲洗四次。将七十微升的抗-RoSBD mAb施用至微阵列的印刷表面,并在潮湿的小室中于37℃孵育1h。为检测结合,将该微阵列与5μg/mL浓度,在PBS缓冲液中的第二抗体,Alexa Fluor 488-结合的山羊抗-小鼠IgG(Invitrogen)在37℃在潮湿的小室中孵育1h,然后进行洗涤步骤。结合程度使用Perkin-Elmer MicroarrayXL4000扫描仪测定,并使用Imagene(V.6)图像分析软件分析。完全的聚糖阵列数据组可在依据cfg_rRequest_l 340的CFG数据档案中发现。
磁性减少结合分析
对于磁性还原(MR)测量(MagQu),含均匀分散的涂有亲水表面活性剂(例如葡聚糖)的63.2nm磁性纳米颗粒(MagQu)溶液被使用。在外部多重ac磁性领域,该磁性纳米颗粒通过磁性相互作用震荡并显示出混合频率磁性感受性(χac),对存在与颗粒表面相互作用的分子敏感的磁性特性。在测试样品中χac值因此响应磁性纳米颗粒和结合分子之间的联合而减少以产生MR信号。
在包含理论空燃比(stoichiometric ratio)为1∶2的七水合硫酸亚铁(FeSO4·7H2O)和六水合氯化亚铁(FeCl3·H2O)的亚铁盐溶液与等体积的水性葡聚糖(Sigma-Aldrich)混合并在室温分散于水中。将该混合物加热至70-90℃并用10N NaOH(Showachemical)滴定以形成Fe3O4颗粒。通过在25℃以3,700×g离心15min和凝胶过滤层析(Sigma-Aldrich)去除凝聚物和过度的非结合葡聚糖。
含Fe3O4磁性纳米颗粒的磁性液体被用磷酸盐缓冲液(PBS,pH 7.4)稀释至0.3emu/g(或8.3mg Fe/mL),然后与纯化的RoSBD(200μL,1.0mg/mL)结合至葡聚糖上氧化的醛基以产生CH=N-连接。六十微升的0.7pM IgGl(2C11),HIV-1-gp 140,Man4(为6-氨基己基糖苷(Man4-0R)),M9-Asn(Oda,Y.等.Crocus sativus lectin recognizesMan3GlcNAc in theN-glycan core structure.J Biol Chem 275,26772-26779(2000)),或SBA与PBS(pH 7.4)溶液分离地加入至玻璃管并置于25℃。然后将另一60μL包含RoSBD-包被的纳米颗粒的磁性试剂加入至该玻璃管并在25℃混合15秒。最终,在25℃使用XacPro-S101阅读器(MagQu)用于测量MR信号,检测该混合物。随着该结合使得磁性纳米颗粒能变得较大或簇生的,试剂的减少的χac被记录。
结果
图8a清楚滴证实两个主要信号通过RoSBD检测:聚糖54Fucα(1,2)Galβ(1,3)GalNAcβ(1,3)Galα和聚糖187Manα(1,2)Manα(1,2)Manα(1,3)Manα(Man4)。前者与人血型O抗原糖基化联合(Korchagina,E.Y.等.Design of the blood group AB glycotope.Glycoconj J 22,127-133(2005)),而后者为HIV gp120以及SBA中M9的合成的聚糖组分(Wang,J.,Li,H.,Zou,G.&Wang,L.X.Novel template-assembled oligosaccharide clusters as epitopemimics for HIV-neutralizing antibody 2G12.Design,synthesis,and antibodybinding study.Org Biomol Chem 5,1529-1540(2007))。此种数据对于RoSBD和HIV gp120之间的相互作用提供了额外的和独立的证据路线,因为识别宿主上的CD4受体的Man4作为HIV-1进入的关键组分。有趣的是,2G12也已知结合至HIV-1 gp120的该Man4结构,使用聚糖阵列分析和其他方法(Ji,X.,Gewurz,H.&Spear,GT Mannose binding lectin(MBL)andHIV MoI Immunol 42,145-152(2005)和Liu,WT等.Identification andcharacterization of a novel fibril forming peptide in fungal starch bindingdomain.Biochem Biophys Res Commun 311,966-970(2008))。
RoSBD的实时聚糖结合信号被使用磁性减少(MR)分析检测(Hong C.Y,WCC,ChiuY.C,Yang S.Y,Horng H.E和Yang H.CMagnetic susceptibility reduction method formagnetically labeled immunoassay.Applied Physics Letters 88,21252(2006))。含RoSBD-包被的磁珠和磷酸盐缓冲液(PBS)或人IgG1的典型的实时磁性响应,χac,显示于图8b中(实心点和实心三角),表明RoSBD和人IgG1,第二抗体之间的非特异性相互作用不存在,也证实于图4。然而,在存在痕量的HIV-gp140(0.7pM)时,明显的减少的MR信号(开口正方形)被检测(Δχac为3.5%)。有趣的是,相同摩尔浓度的Man4(为6-氨基己基糖苷,Man4-OR),M9-Asn(来自SBA)和SBA(图9)的存在导致相似的MR信号(十字和开口三角形;Aχac分别为3.6%,3.6%和4.0)。
在MR实验中对于HIV-gp140,Man4-0R,M9-Asn和整个SBA清楚地观察到特征信号减少,对RoSBD和高甘露糖型聚糖之间的直接分子相互作用提供了强力证据。如根据其四价的特征预期的,SBA比其他反应快得多。
总之,这些结果证明RoSBD和AnSBD通过新的蛋白-聚糖相互作用结合至HIV-PC中的天然HIV抗原,特异靶向HIV-1 gp120上的Man4部分。
实施例6
SBD和Man4-结合蛋白之间的结构相似性和在RoSBD上定位(Mapping)Man4结合位点
推定的Man4结合位点的分子模型
RoSBD的推定的Man4结合位点的模型建立通过使用Dali服务器将RoSBD复合物(PDB ID:2V8M)和2G12-Man4复合物(PDB ID:1ZLS)的三维结构叠加进行。单糖Man4为了发现推定的RoSBD上半径内的结合残基。此外,使用来自2G12-Man4复合物的Man4相配之物,Man4适合于RoSBD-G7结构的G7结合位点,以此最保守的己糖环与结合位点I和II相互作用。在预计的RoSBD-Man4复合物中Man4的半径内的残基被标记。
RoSBD的定点突变
RoSBD及其突变体使用基于PCR的QuikChange定点突变方法(Stratagene)以pET23a-RoSBD作为模板产生。用于扩增SBD衍生物的引物对被设计并列于表1中。PCR混合物包含10ng模板、0.625μL的每种引物(10μM),2.5μL反应缓冲液(10x),3.125μL dNTP(2.5mM),0.25μL Pfu Turbo DNA聚合酶(20U/μL)(Stratagene),用ddH2O加至终体积为25μL。用于本研究的热循环条件为1周期的95℃5min和20周期的:95℃1min(变性),45℃至65℃30秒(退火)和68℃8min(延伸),和最终的1周期的68℃10min。PCR反应在热循环仪(9700,Applied Biosystems)中进行。每个突变质粒的序列通过DNA序列分析验证。
表1.用于定点突变的寡核苷酸引物。产生丙氨酸密码子的突变被加下划线。指示-F′和-R′的引物分别包含正义和反义链。
结果
当前,CFG Core H数据库可得的是10Man4-结合蛋白,其中两种为主要具有富β结构的钙依赖凝集素,得自青紫色素杆菌(Chromobacterium violaceum)的Cv凝集素(CV-IIL)和得自Burkholderia cenocepacia的BclA凝集素,属于与AnSBD相同的同源CATH超家族(2.60.120.400)。这些凝集素为在致病细菌中发现的致病因子,对甲基α-D-墨角藻糖苷(Emau,P.等.Griffithsin,a potent HIV entry inhibitor,is an excellent candidatefor anti-HIV microbicide.J Med Primatol 36,244-253(2007))和甲基α-D-甘露糖苷具最高的亲和力。它们可能的作用可涉及宿主识别、附着和生物膜形成(Fromme,R.等.Amonovalent mutant of cyanovirin-N provides insight into the role of multipleinteractions with gp120 for antiviral activity.Biochemistry 46,9199-9207(2007))。它们高度的结构相似性对于这两种真菌SBD和甘露聚糖结合蛋白之间的功能关联提供了强力证据。
图10a显示复合物2G12VH-Man4和RoSBD-G7的静电势。Man4的羟基形成至Thr33和Asp100的氢键,Man4的聚糖环III结合至2G12VH结构域的Tyr56(左边组),而G7环绕RoSBD的Tyr32周围,且可通过邻近的Trp47,Tyr83和Tyr 94被稳定化(右边组)。有趣的是,以四种不同构象的G7的聚糖环II和III的定位已显示出是很保守的29,且RoSBD中的Phe58的疏水苯基环提供了与G7的葡萄糖基单元的聚糖环III的有用的堆积相互作用。
为了预测RoSBD上推定的Man4结合位点,将Man4结构从其与VH结构域的复合物分离,并将其在对应的环叠加至RoSBD,如图1b所示,使用PDB ID:1ZLS结构中的Man4相配物(Calarese,D.A.等.Dissection of the carbohydrate specificity of the broadlyneutralizing抗-HIV-1 antibody 2G12.Proc Natl Acad Sci U S A 102,13372-13377(2005))作为中心点来寻找在RoSBD上小于半径内的邻近的残基。用此方法残基Tyr32和Ser33被预测为参与Man4结合(图10b,左边组)。已显示在RoSBD-G7复合物中有两种糖类结合位点,位点I和II,位点I在Trp47周围环β34,位点II在Tyr32周围环β23(Tung,J.Y.等.Crystal structures of the starch-binding domain from Rhizopus oryzaeglucoamylase reveal a polysaccharide-binding path.Biochem J 416,27-36(2008))。用Man4置换G7显示残基Asn29,Tyr32,Lys34,Trp47,Phe58,Glu68,Tyr83和Tyr94可能参与Man4的结合(图10b,右边组)。
图10c阐述了在位置Gln29,Tyr32,Ser33,Lys34,Trp47,Phe58,Tyr83,Tyr93和Tyr94丙氨酸取代的效果。有趣的是,N29A,Y32A,W47A和F58A分别显著地减少HIV结合活性至29%,43%,40%和53%,且K34A,Y83A和Y94A显示出在HIV结合方面中等的减少。然而,S33A和Y93A突变体,保持着与野生型RoSBD相同的HIV结合活性,反对图10a中的结合模型。芳香族残基Y32,W47和F58已被很好定义为RoSBD的重要的配体结合位点,Y83和Y94把持来自邻近的RoSBD的配体,且K34可使D6827稳定;这强力支持如图10b中阐述的Man4可被G7配体结合位点识别的预测。总之,淀粉结合CBM和HIV gp120聚糖结合2G12之间的结构-功能关系的insilico评估已被体外分析证实。
实施例7
通过RoSBD的HIV-1感染的抑制及其细胞毒性
细胞、病毒株和抗病毒分析
以下细胞核病毒株可得自AIDS Research and Reference Reagent Program,Division of AIDS,National Institute of Allergy and Infectious Disease:H9细胞核HIV-1RTMF的病毒株(AZT-抗性病毒)。H9细胞生长并保持在RPMI 1640培养基中,供有10%胎牛血清,100单位/ml青霉素和100mg/mL链霉素。H9细胞用HIV-1病毒在37℃孵育2小时。将H9细胞悬于培养基中,1×105细胞/ml,并以0.1的复合感染用HIV对其感染。感染后,将细胞用PBS洗涤二次,然后用培养基洗涤。将细胞悬液(100μL)加入至96-孔板的每一孔然后将增加浓度的SBD(0,1.25,2.5,5,10,20,40&80μM)加至该感染的细胞。孵育4天后,将该细胞用含合适浓度SBD的新鲜培养基亚培养(sub-cultured)另外的4天。SBD对抗HIV-1RTMF病毒在H9细胞中病毒复制的活性被检测。病毒活性通过使用HIV-1 p24抗原ELISA测定(di MarzoVeronese,F.等.Monoclonal antibodies specific for p24,the major core proteinof人T-cell leukemia virus type III.Proc Natl Acad Sci U SA 82,5199-5202(1985))。
细胞毒性分析
SBD对抗H9细胞的细胞毒性使用MTT测定分析。简要地讲,将指数增长的H9细胞接种至96-孔板,密度为3×104细胞/孔并在37℃孵育24h,然后药物接触。在处理的当天,将一系列SBD浓度(0,1.25,2.5,5,10和20μM)用于测试它们在H9细胞中的细胞毒性,如所述(Abd-Elazem,I.S.,Chen,H.S.,Bates,R.B.&Huang,R.C.Isolation of two highlypotent and non-toxic inhibitors of human immunodeficiency virus type 1(HIV-1)integrase from Salvia miltiorrhiza.Antiviral Res 55,91-106(2002))。8天孵育之后,加入50μl的MTT(1mg/mL终浓度),该板在37℃孵育4h以使MTT通过与代谢活性细胞形成甲赞结晶。该甲赞结晶用DMSO溶解。每孔的吸光度用微量滴定阅读器测量,光密度540nm。该反应为特异性的,对于死细胞没有显著量的甲赞可被检测。
结果
不存在和存在不同的RoSBD浓度时病毒复制被测量,使用HIV-1p24抗原ELISA在八天后进行。RoSBD对抗H9细胞中HIV-1感染的抗病毒活性如在材料与方法中所述进行检测。RoSBD抑制AZT-抗性病毒,其中由剂量响应曲线计算得IC50值为4.5μM(图11)。范围在1.25至80μM的一系列RoSBD浓度被用于测试RoSBD在H9细胞中的细胞毒性。使用MTT测定以检测培养的H9细胞的活性,其证实在整个培养期间细胞保持有活力的,除了较高浓度的SBD(40和80μM),此情况下H9细胞死掉。对于20μM浓度,细胞的存活率为约79%而在10μM为88%。

Claims (7)

1.一种组合物用于制备预防性地或治疗性地抑制受试者HIV-1感染的药物的用途,所述组合物包含治疗或预防有效量的糖类结合模块(CBM)和药学可接受载体,所述CBM为淀粉结合结构域(SBD),所述SBD为稻根霉葡萄糖淀粉酶的淀粉结合结构域(RoSBD)或黑曲霉葡萄糖淀粉酶的淀粉结合结构域(AnSBD)。
2.权利要求1所述的用途,其中所述SBD特异性结合至存在于HIV-1糖蛋白表位中的富甘露糖聚糖结构。
3.权利要求1所述的用途,所述组合物为片剂、胶囊或悬液的形式。
4.一种非疾病诊断和治疗目的的检测样品的HIV-1的方法,所述方法包括将特异性结合至HIV-1糖蛋白表位的糖类结合模块(CBM)加入至样品;和检测所述CBM和所述样品之间的结合反应;所述CBM为淀粉结合结构域(SBD),所述SBD为稻根霉葡萄糖淀粉酶的淀粉结合结构域(RoSBD)或黑曲霉葡萄糖淀粉酶的淀粉结合结构域(AnSBD)。
5.权利要求4所述的方法,其中所述SBD特异性结合至存在于糖蛋白表位中的富甘露糖聚糖结构。
6.权利要求4所述的方法,其中所述糖蛋白为HIV-1 gp120。
7.权利要求5所述的方法,其中所述聚糖结构为N-连接的高甘露糖聚糖Man9GlcNAc2。
CN201080021113.XA 2009-05-12 2010-05-12 糖类结合模块及其用途 Expired - Fee Related CN103097411B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/464,788 US20100291540A1 (en) 2009-05-12 2009-05-12 Carbohydrate binding module and use thereof
US12/464,788 2009-05-12
PCT/IB2010/001302 WO2010131114A2 (en) 2009-05-12 2010-05-12 Carbohydrate binding module and use thereof

Publications (2)

Publication Number Publication Date
CN103097411A CN103097411A (zh) 2013-05-08
CN103097411B true CN103097411B (zh) 2016-09-28

Family

ID=43068807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080021113.XA Expired - Fee Related CN103097411B (zh) 2009-05-12 2010-05-12 糖类结合模块及其用途

Country Status (6)

Country Link
US (2) US20100291540A1 (zh)
EP (1) EP2430045B1 (zh)
JP (1) JP5746149B2 (zh)
CN (1) CN103097411B (zh)
TW (1) TWI391491B (zh)
WO (1) WO2010131114A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6629325B2 (ja) * 2014-08-22 2020-01-15 ネクタジェン,インコーポレーテッド 親和性タンパク質及びその使用
CN105219753B (zh) * 2015-11-03 2018-11-02 绍兴加华生物科技有限公司 一种固定化的有机磷农药降解酶及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276227B2 (en) * 2002-02-25 2007-10-02 United States Of America, Repesented By The Secretary, Department Of Health And Human Services Obligate domain-swapped dimer of cyanovirin with enhanced anti-viral activity
WO2004031379A1 (en) * 2002-10-01 2004-04-15 Unilever N.V. Proteins having polysaccharidase activity
US7662918B2 (en) * 2005-03-03 2010-02-16 Simpson Biotech Co., Ltd. Recombinant protein comprising starch binding domain and use thereof
CN101313216A (zh) * 2005-09-22 2008-11-26 普洛茨股份有限公司 酵母突变体中产生的糖基化多肽及其使用方法
US8865876B2 (en) * 2008-06-02 2014-10-21 California Institute Of Technology Engineered lectin oligomers with antiviral activity

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21;Machovic et al;《FEBS J》;20051130;第272卷(第21期);5497-5513 *
Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12;Calarese et al;《Proc Nat Acad Sci》;20050920;第102卷(第38期);13372-13377 *
Proteins that bind high-mannose sugars of the HIV envelope;Botos et al;《Prog Biophys Mol Biol》;20050630;第88卷(第2期);233-282 *
Quantitative detection of HIV-1 particles using HIV-1 neutralizing antibody-conjugated beads;Byoung Chan Kim et al;《Analytical Chemistry》;20090315;第81卷(第6期);2388-2393 *
The highly specific carbohydrate -binding protein cyanovirin-N:structure,anti-HIV/Ebola activity and possibilities for therapy;Barrientos Laura G et al;《Mini Reviews in Medicinal Chemistry》;20050101;第5卷(第1期);21-31 *

Also Published As

Publication number Publication date
EP2430045B1 (en) 2015-07-08
JP5746149B2 (ja) 2015-07-08
WO2010131114A3 (en) 2011-11-24
US20100291540A1 (en) 2010-11-18
EP2430045A4 (en) 2013-02-13
US8293465B2 (en) 2012-10-23
CN103097411A (zh) 2013-05-08
US20100291601A1 (en) 2010-11-18
EP2430045A2 (en) 2012-03-21
TW201040280A (en) 2010-11-16
JP2012529426A (ja) 2012-11-22
TWI391491B (zh) 2013-04-01
WO2010131114A2 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
Burton et al. Broadly neutralizing antibodies to HIV and their role in vaccine design
Sajadi et al. Identification of near-pan-neutralizing antibodies against HIV-1 by deconvolution of plasma humoral responses
US10047148B2 (en) Neutralizing GP41 antibodies and their use
Zwick et al. Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120
Pinto et al. Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01
Li et al. The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates
Pantophlet et al. GP120: target for neutralizing HIV-1 antibodies
He et al. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses
CN103403026B (zh) Hiv-1中和抗体及其用途
Mouquet et al. Enhanced HIV-1 neutralization by antibody heteroligation
VanCott et al. Dissociation rate of antibody-gp120 binding interactions is predictive of V3-mediated neutralization of HIV-1.
US7556806B2 (en) Carbohydrate-based synthetic vaccines for HIV
US20210300999A1 (en) HUMAN MONOCLONAL ANTIBODIES TO SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-CoV-2)
EP2788026A2 (en) V1v2 immunogens
KR20200102524A (ko) 항-뎅기 바이러스 항체 및 이들의 용도
MX2013013360A (es) Anticuerpos que neutralizan el virus de inmunodeficiencia humano y metodos de uso de ellos.
US20070292390A1 (en) Broadly Cross-Reactive Hiv-1 Neutralizing Human Monoclonal Antibodies
US20210324050A1 (en) Human monoclonal antibodies that neutralize pandemic gii.4 noroviruses
US20140205607A1 (en) Focused evolution of hiv-1 neutralizing antibodies revealed by crystal structures and deep sequencing
CN109734801A (zh) 一种gii.4型诺如病毒广谱单克隆抗体的制备方法及用途
Heap et al. Analysis of a 17-amino acid residue, virus-neutralizing microantibody
Zhang et al. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1
CN103097411B (zh) 糖类结合模块及其用途
JPH05503851A (ja) 中和および/またはadcc仲介モノクローナルhiv抗体
CN114478755A (zh) 抗新型冠状病毒的全人源抗体及其组合物与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160928

Termination date: 20210512

CF01 Termination of patent right due to non-payment of annual fee