CN103058124A - 氧化铜分级阵列薄膜及其制备方法 - Google Patents

氧化铜分级阵列薄膜及其制备方法 Download PDF

Info

Publication number
CN103058124A
CN103058124A CN2011103299401A CN201110329940A CN103058124A CN 103058124 A CN103058124 A CN 103058124A CN 2011103299401 A CN2011103299401 A CN 2011103299401A CN 201110329940 A CN201110329940 A CN 201110329940A CN 103058124 A CN103058124 A CN 103058124A
Authority
CN
China
Prior art keywords
micron ball
sub
micrometer
balls
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103299401A
Other languages
English (en)
Inventor
李越
段国韬
刘广强
张洪文
蔡伟平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN2011103299401A priority Critical patent/CN103058124A/zh
Publication of CN103058124A publication Critical patent/CN103058124A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种氧化铜分级阵列薄膜及其制备方法。薄膜由位于基底上的表面覆有氧化铜的微米球和亚微米球组成,薄膜的厚度为1~10μm,其中的微米球按六方有序排列、亚微米球位于微米球之间,微米球和亚微米球的球直径分别为1~10μm和100~800nm,氧化铜为棒长为50~400nm、棒直径为30~60nm的棒簇状;方法为先于基底上将微米球合成为六方紧密排列的单层晶体模板,再使用活性等离子体刻蚀模板,得到其上的微米球呈六方有序松散排列的模板,接着,先将亚微米球充填于模板的微米球之间的空隙中,得到复合晶体模板,再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得目标产物。它可广泛地用于仿生材料、催化、光电子、微流体器件、气敏器件等领域。

Description

氧化铜分级阵列薄膜及其制备方法
技术领域
本发明涉及一种薄膜及制备方法,尤其是一种氧化铜分级阵列薄膜及其制备方法。
背景技术
近期,具有半导体和超导性能的氧化铜在国际上一直受到特别的关注,其缘由为其在气敏传感器、太阳能电池、场发射器和电子阴极材料等领域有着非常重要的应用前景。纳米结构的氧化铜因具有突出的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等特性,在磁学、光学、电学和热力学等方面表现出了不同于常规材料的奇特的物理和化学性能。目前,人们为了获得纳米氧化铜材料,做出了不懈的努力,如在2009年10月21日公开的中国发明专利申请公布说明书CN 101560320A中披露的“一种高分子微球表面包覆氧化铜的复合材料及其制备方法”。该说明书中提及的复合材料为核壳结构,其内核为直径为1~20微米的聚甲基丙烯酸甲酯微球,外壳为氧化铜包覆层;制备方法以可溶性铜盐和聚甲基丙烯酸甲酯微球为原料,通过对聚甲基丙烯酸甲酯微球进行表面处理,采用溶液反应方法合成聚甲基丙烯酸甲酯微球表面包覆氧化铜的复合材料——最终产物。但是,无论是最终产物,还是其制备方法,都存在着不足之处,首先,由无序状态的表面包覆氧化铜的聚甲基丙烯酸甲酯微球组成的最终产物,因其整体结构的不稳定性和性质的不均一性而难以将其作为微米-纳米结构器件来使用,大大地限制了其可应用的领域和范围;其次,最终产物仅具有微纳结构,且比表面积也因氧化铜仅为致密的颗粒状而有限,不能用于要求同时具备微米结构、亚微米结构和纳米结构以及更高比表面积的场合;最后,制备方法不能获得有序排列的,同时具有微米结构、亚微米结构和纳米结构的最终产物。
发明内容
本发明要解决的技术问题为克服现有技术中的不足之处,提供一种具有微米、亚微米和纳米结构的、有序排列的氧化铜分级阵列薄膜。
本发明要解决的另一个技术问题为提供一种上述氧化铜分级阵列薄膜的制备方法。
为解决本发明的技术问题,所采用的技术方案为:氧化铜分级阵列薄膜包括表面覆有氧化铜的微球,特别是,
所述微球为微米球和亚微米球,所述微米球和亚微米球位于基底上,并组成厚度为1~10μm的薄膜,所述薄膜中的微米球按六方有序排列、亚微米球位于微米球之间;
所述微米球的球直径为1~10μm,所述亚微米球的球直径为100~800nm;
所述氧化铜为棒簇状,所述构成棒簇的氧化铜棒的棒长为50~400nm、棒直径为30~60nm。
作为氧化铜分级阵列薄膜的进一步改进,所述的基底为导电体,或半导体,或绝缘体。
为解决本发明的另一个技术问题,所采用的另一个技术方案为:上述氧化铜分级阵列薄膜的制备方法包括物理沉积法,特别是完成步骤如下:
步骤1,先于基底上将球直径为1.5~15μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板,再使用活性等离子体刻蚀单层晶体模板2~10min,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板;
步骤2,先将球直径为100~800nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板,再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得氧化铜分级阵列薄膜。
作为氧化铜分级阵列薄膜的制备方法的进一步改进,所述的基底为导电体,或半导体,或绝缘体;所述的刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为80~120W;所述的亚微米球为聚苯乙烯胶体球,或有机玻璃球,或二氧化硅球。
相对于现有技术的有益效果是,其一,对制得的目标产物分别使用扫描电镜、透射电镜和X射线衍射仪进行表征,由其结果可知,目标产物为厚度1~10μm的薄膜,薄膜由位于基底上的微米球和亚微米球组成。薄膜中的微米球按六方有序排列、亚微米球位于微米球之间,其中,微米球的球直径为1~10μm、亚微米球的球直径为100~800nm。微米球和亚微米球的表面覆有棒簇状物,构成棒簇的棒的棒长为50~400nm、棒直径为30~60nm。棒簇状物中的棒为氧化铜棒。基底为导电体,或半导体,或绝缘体。其二,制备方法科学、有效,制得的目标产物既因薄膜中的微米球为有序阵列而使其整体结构的稳定性和性能的均一性均得到了极大的提高,大大地扩展了可应用的领域和范围,又由于具备了微米-亚微米-纳米的三级结构而使其不仅同时兼有了每级结构的性质,也具有了由此引发出的众多未知的因三者之间的协同、耦合效应而产生的新的性能,从而使其具有了许多不同于单纯微米结构或纳米结构或微纳结构材料的物理、化学特性,使其在很多方面有着重要的应用,如仿生材料、催化、光电子、微流体器件、气敏器件、电子存储等,还由于纳米结构中的棒簇构造而使其具有了更高的粗糙度和比表面积。其三,制备方法对目标产物中的微米结构、亚微米结构、纳米结构的尺度均可进行大范围的有效调控,保证了目标产物在各个应用领域中的性能优化。同时,制备方法还有着所需的原料少,无污染的优点,属于绿色合成技术,且生产效率高,适于大规模的工业化生产。
作为有益效果的进一步体现,一是基底优选为导电体,或半导体,或绝缘体,除基底可供选择的余地较大之外,也便于实施。二是刻蚀单层晶体模板时的活性等离子体优选为氧等离子体,其输出功率优选为80~120W,利于得到符合要求的其上的微米球呈六方有序松散排列的单层晶体模板。三是亚微米球优选为聚苯乙烯胶体球,或有机玻璃球,或二氧化硅球,不仅使得亚微米球的来源较为丰富,还使制备工艺更易实施且灵活。
附图说明
下面结合附图对本发明的优选方式作进一步详细的描述。
图1是对制得的目标产物使用扫描电镜(SEM)进行表征的结果之一。由SEM照片可见,目标产物中的微米球为六方有序松散排列,亚微米球位于微米球之间,纳米棒簇覆于微米球和亚微米球的表面。
图2是对图1所示的目标产物的断面使用扫描电镜进行表征的结果之一。由SEM照片可看出,目标产物为位于基底上的由微米球、亚微米球和纳米棒簇组成的薄膜。
图3是对制得的目标产物使用透射电镜(TEM)进行表征的结果之一。该TEM照片显示出覆于微米球和亚微米球表面的物体的形貌为棒簇状。
图4是对制得的目标产物使用X射线衍射(XRD)仪进行表征的结果之一。由XRD谱图可看出,目标产物表面的棒簇状物体为氧化铜。
具体实施方式
首先从市场购得或用常规方法制得:
作为基底的导电体、半导体和绝缘体;作为微米球的球直径为1.5~15μm的聚苯乙烯胶体球;作为亚微米球的球直径为100~800nm的聚苯乙烯胶体球、有机玻璃球和二氧化硅球。
接着,
实施例1
制备的具体步骤为:
步骤1,先于基底上将球直径为1.5μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板;其中,基底为绝缘体。再使用活性等离子体刻蚀单层晶体模板2min;其中,刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为120W,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板。
步骤2,先将球直径为800nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中;其中,亚微米球为有机玻璃球,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板。再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得近似于图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
实施例2
制备的具体步骤为:
步骤1,先于基底上将球直径为5μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板;其中,基底为绝缘体。再使用活性等离子体刻蚀单层晶体模板4min;其中,刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为110W,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板。
步骤2,先将球直径为600nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中;其中,亚微米球为有机玻璃球,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板。再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得近似于图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
实施例3
制备的具体步骤为:
步骤1,先于基底上将球直径为9μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板;其中,基底为绝缘体。再使用活性等离子体刻蚀单层晶体模板6min;其中,刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为100W,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板。
步骤2,先将球直径为350nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中;其中,亚微米球为有机玻璃球,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板。再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得如图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
实施例4
制备的具体步骤为:
步骤1,先于基底上将球直径为12μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板;其中,基底为绝缘体。再使用活性等离子体刻蚀单层晶体模板8min;其中,刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为90W,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板。
步骤2,先将球直径为200nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中;其中,亚微米球为有机玻璃球,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板。再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得近似于图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
实施例5
制备的具体步骤为:
步骤1,先于基底上将球直径为15μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板;其中,基底为绝缘体。再使用活性等离子体刻蚀单层晶体模板10min;其中,刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为80W,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板。
步骤2,先将球直径为100nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中;其中,亚微米球为有机玻璃球,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板。再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得近似于图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
再分别选用作为基底的导电体,或半导体,或绝缘体,以及作为亚微米球的聚苯乙烯胶体球,或有机玻璃球,或二氧化硅球,重复上述实施例1~5,同样制得了如或近似于图1、图2和图3所示,以及如图4中的曲线所示的氧化铜分级阵列薄膜。
显然,本领域的技术人员可以对本发明的氧化铜分级阵列薄膜及其制备方法进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

1.一种氧化铜分级阵列薄膜,包括表面覆有氧化铜的微球,其特征在于:
所述微球为微米球和亚微米球,所述微米球和亚微米球位于基底上,并组成厚度为1~10μm的薄膜,所述薄膜中的微米球按六方有序排列、亚微米球位于微米球之间;
所述微米球的球直径为1~10μm,所述亚微米球的球直径为100~800nm;
所述氧化铜为棒簇状,所述构成棒簇的氧化铜棒的棒长为50~400nm、棒直径为30~60nm。
2.根据权利要求1所述的氧化铜分级阵列薄膜,其特征是基底为导电体,或半导体,或绝缘体。
3.一种权利要求1所述氧化铜分级阵列薄膜的制备方法,包括物理沉积法,其特征在于完成步骤如下:
步骤1,先于基底上将球直径为1.5~15μm的聚苯乙烯胶体微米球合成为六方紧密排列的单层晶体模板,再使用活性等离子体刻蚀单层晶体模板2~10min,得到其上的聚苯乙烯胶体微米球呈六方有序松散排列的单层晶体模板;
步骤2,先将球直径为100~800nm的亚微米球充填于六方有序松散排列的单层晶体模板的聚苯乙烯胶体微米球之间的空隙中,得到六方有序松散排列的聚苯乙烯胶体微米球之间布满亚微米球的复合晶体模板,再使用激光脉冲沉积法于复合晶体模板上沉积氧化铜,制得氧化铜分级阵列薄膜。
4.根据权利要求3所述的氧化铜分级阵列薄膜的制备方法,其特征是基底为导电体,或半导体,或绝缘体。
5.根据权利要求3所述的氧化铜分级阵列薄膜的制备方法,其特征是刻蚀单层晶体模板时的活性等离子体为氧等离子体,其输出功率为80~120W。
6.根据权利要求3所述的氧化铜分级阵列薄膜的制备方法,其特征是亚微米球为聚苯乙烯胶体球,或有机玻璃球,或二氧化硅球。
CN2011103299401A 2011-10-21 2011-10-21 氧化铜分级阵列薄膜及其制备方法 Pending CN103058124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103299401A CN103058124A (zh) 2011-10-21 2011-10-21 氧化铜分级阵列薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103299401A CN103058124A (zh) 2011-10-21 2011-10-21 氧化铜分级阵列薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN103058124A true CN103058124A (zh) 2013-04-24

Family

ID=48101069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103299401A Pending CN103058124A (zh) 2011-10-21 2011-10-21 氧化铜分级阵列薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103058124A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103569955A (zh) * 2013-11-12 2014-02-12 无锡英普林纳米科技有限公司 胶体微球柱阵列的制备方法
CN111547759A (zh) * 2020-05-19 2020-08-18 姚丰硕 一种ps负载氧化铜纳米棒的制备方法
CN112279290A (zh) * 2020-09-18 2021-01-29 中国科学院合肥物质科学研究院 一种氧化铜微米球-纳米线微纳分级结构及其制备方法
CN113394343A (zh) * 2021-01-07 2021-09-14 湖州师范学院 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814562A (zh) * 2010-04-21 2010-08-25 哈尔滨工业大学 一种具有二维光子晶体的发光二极管
US20110212323A1 (en) * 2010-02-26 2011-09-01 Korea Institute Of Science And Technology Method for preparing oxide thin film gas sensors with high sensitivity
CN102199790A (zh) * 2010-03-23 2011-09-28 中国科学院合肥物质科学研究院 二元有序胶体晶体模板及其制备方法和用途
CN102212790A (zh) * 2011-05-19 2011-10-12 浙江大学 一种贵金属亚微米球壳阵列的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212323A1 (en) * 2010-02-26 2011-09-01 Korea Institute Of Science And Technology Method for preparing oxide thin film gas sensors with high sensitivity
CN102199790A (zh) * 2010-03-23 2011-09-28 中国科学院合肥物质科学研究院 二元有序胶体晶体模板及其制备方法和用途
CN101814562A (zh) * 2010-04-21 2010-08-25 哈尔滨工业大学 一种具有二维光子晶体的发光二极管
CN102212790A (zh) * 2011-05-19 2011-10-12 浙江大学 一种贵金属亚微米球壳阵列的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE LI, ET AL.: "Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices", 《COORDINATION CHEMISTRY REVIEWS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103569955A (zh) * 2013-11-12 2014-02-12 无锡英普林纳米科技有限公司 胶体微球柱阵列的制备方法
CN103569955B (zh) * 2013-11-12 2016-01-20 无锡英普林纳米科技有限公司 胶体微球柱阵列的制备方法
CN111547759A (zh) * 2020-05-19 2020-08-18 姚丰硕 一种ps负载氧化铜纳米棒的制备方法
CN112279290A (zh) * 2020-09-18 2021-01-29 中国科学院合肥物质科学研究院 一种氧化铜微米球-纳米线微纳分级结构及其制备方法
CN112279290B (zh) * 2020-09-18 2022-09-13 中国科学院合肥物质科学研究院 一种氧化铜微米球-纳米线微纳分级结构及其制备方法
CN113394343A (zh) * 2021-01-07 2021-09-14 湖州师范学院 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
Wen et al. Synthesis of Cu (OH) 2 and CuO nanoribbon arrays on a copper surface
US9221684B2 (en) Hierarchical carbon nano and micro structures
Yang et al. Continuous roll-to-roll production of carbon nanoparticles from candle soot
CN105056929A (zh) 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法
CN102530846B (zh) 带有尖端的金属纳米带阵列的制备方法
Li et al. Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition
Yang et al. Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer
CN104813425A (zh) 高比电容和高功率密度印刷柔性微型超级电容器
CN103641064B (zh) 金属-二氧化硅多层薄膜空心纳米结构阵列及其制备方法
CN102923647A (zh) 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
CN108466015B (zh) 一种纳米结构三维分布的超双疏金属表面及其制备方法
CN106504902A (zh) 一种CuO@MnO2核壳结构多孔纳米线材料及其制备方法
Sun et al. A universal approach to fabricate various nanoring arrays based on a colloidal‐crystal‐assisted‐lithography strategy
CN103058124A (zh) 氧化铜分级阵列薄膜及其制备方法
CN103641059A (zh) 硅柱支撑的金属膜纳米结构阵列及其制备方法
CN102079505B (zh) 二维空心球有序结构阵列及其制备方法
CN103359684A (zh) 一种疏水表面、制备方法及其在滴状冷凝传热中的应用
TW201117283A (en) Method for preparing patterned substrate by using nano- or micro- particles
Lv et al. Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies
JP2023518612A (ja) 炭素系複合材料及びその調製方法と応用
ai Hu et al. Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction
Zhou et al. Effects of etching parameters on ZnO nanotubes evolved from hydrothermally synthesized ZnO nanorods
Li et al. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film
CN106367717B (zh) 一维碳纳米管和三维石墨烯复合材料图形化生长方法
Gan Recent development of thermoelectric nanofibers and their composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130424