CN103056380B - 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法 - Google Patents

氨基化倍半硅氧烷自组装制备铋金属纳米线的方法 Download PDF

Info

Publication number
CN103056380B
CN103056380B CN201210583481.4A CN201210583481A CN103056380B CN 103056380 B CN103056380 B CN 103056380B CN 201210583481 A CN201210583481 A CN 201210583481A CN 103056380 B CN103056380 B CN 103056380B
Authority
CN
China
Prior art keywords
bismuth
metal
nano
poss
amination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210583481.4A
Other languages
English (en)
Other versions
CN103056380A (zh
Inventor
葛存旺
李玉松
金瑞娣
詹文毅
缪建文
金永龙
黄明宇
倪红军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201210583481.4A priority Critical patent/CN103056380B/zh
Publication of CN103056380A publication Critical patent/CN103056380A/zh
Application granted granted Critical
Publication of CN103056380B publication Critical patent/CN103056380B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种八氨基倍半硅氧烷自组装制备铋金属纳米线的方法,包括氨基化POSS和金属铋粒子的相互作用、金属铋盐的还原、金属纳米铋粒子成核生长、产物的洗涤和干燥等步骤。本发明方法简便、易操作;解决了硬模版制备方法中的设备要求高和程序繁琐的问题,本发明制备金属铋纳米线将用于负载其它金属催化剂,改善催化剂的催化活性和提高催化剂稳定性。

Description

氨基化倍半硅氧烷自组装制备铋金属纳米线的方法
技术领域
本发明涉及纳米材料制备技术领域,具体涉及一种八氨基倍半硅氧烷(POSS)自组装制备铋金属纳米线的方法。 
背景技术
自从一维碳纳米管发现以来,一维纳米结构材料(纳米管、纳米线、纳米带和纳米棒)以其独特的电学、光学和热学特性及其在纳米科技领域内的巨大应用潜力而备受瞩目。铋是典型的半金属,在所有金属中,铋的抗磁性最强、热导最小(除汞外)、电阻较大,并且具有最大的霍尔效应,表现出了与众不同的物理化学性质,其中最主要的是具有高度各向异性的费米面、非常小的电子有效质量、大的载流子平均自由程和半金属-半导体转变的特性等。由于量子限域效应,铋的热电性能随材料维度的降低显著提高,铋的电输运和热电性能会有显著的改变,因此,铋纳米线成为研究低维体系物理现象理想的材料之一,在热电、传感器、光电子、巨磁电阻和燃料电池催化剂等领域具有较高的研究价值和广泛的应用前景。 
倍半硅氧烷(POSS)是近年来出现的一种新型纳米结构材料,是一类结构为(RSiO1.5)n(n≥4)的多面体齐聚物(Marciniec,B.;Maciejewski,H.Coord.Chem.Rev.2001,223,301.),由Si-O-Si键构成的无机硅酸盐核心及连接于硅原子上的有机基团R构成,POSS介孔材料中的笼型立方体孔隙直径在0.5nm左右,立方体间的空隙在 1~50nm之间,具有很高的比表面积和功能基团数目,POSS单体本身就是一个核壳结构的有机/无机杂化分子,有机基团R可以为具有反应活性的有机官能团(如羟基/氨基、氢基、甲基丙烯酰氧基和烷氧基等)。 
近年来人们用多种方法制备各种形貌的铋单纳米线,主要有①硬模板法:以氧化铝等模板限制反应的几何形貌来制备纳米线的电化学沉积法(中科院合肥纳米材料与结构固态物理所李广海等Journal of Physical Chemistry B2006,110,26189,专利申请号:200910050277.4)、真空压力灌注法、气相模板法(唐春娟等,材料研究学报,2011,25,273)等,这些方法制备的条件苛刻,后处理过程较为麻烦;②软模板法:利用表面活性剂液相组装介观结构的界面模板方法,如中国科大陈乾望等(Zhang,H.L.;Chen,W.;Wang,X.S.;Yuhara,J.;Wee,A.T.S.Applied Surface Science2009,256,460.)利用乙二胺的模板效应组装控制生长,还原硝酸铋得金属铋纳米线,清华大学李亚栋等用溶剂热法用多元醇还原法制备铋纳米线该方法不需要硬模板,反应温度低,易于控制。本发明发展了铋纳米管、铋纳米线的合成方法,合理利用POSS组装纳米结构的取向生长特性来合成纳米线,以氨基化倍半硅氧烷和铋盐为初级原料,利用POSS和金属离子配位键作用,还原剂还原铋离子成铋纳米粒子,功能化的POSS诱导金属铋形成片状结构,最后卷曲成纳米线。该方法具有原料廉价易得,反应所需的设备简单,反应条件温和,易于控制,制备周期短,获得的纳米线结晶性好,可以实现批量化生产等特点。该发明建立了 低温液相还原合成金属铋纳米管的新方法,发展了低维纳米材料的调控合成技术,为其它金属纳米线的制备提供了一种切实可行的方法。 
发明内容
本发明的目的在于提供一种方便、易操作的八氨基倍半硅氧烷自组装制备铋金属纳米线的方法。 
本发明的技术解决方案是: 
一种八氨基倍半硅氧烷自组装制备金属铋纳米线的方法,其特征是:包括下列步骤: 
①氨基化POSS和金属铋粒子的相互作用:将金属铋盐和八氨基倍半硅氧烷溶于溶剂水或乙二醇中,用盐酸或硝酸调节pH值在1~2之间,在常温下搅拌1小时,得到A液;金属铋盐和八氨基倍半硅氧烷的摩尔比为1:1~5; 
②金属铋盐的还原: 
当步骤①的溶剂为水时,将还原剂配成溶液,用注射泵将还原剂滴加到上述A溶液中,在20~30℃反应1~8小时,得到含铋纳米粒子的B液;金属铋盐与还原剂的摩尔比为1:2~5; 
当步骤①的溶剂为乙二醇时,直接将A液在20~30℃反应1~8小时,得到含铋纳米粒子的B液; 
③金属纳米铋粒子成核生长,将上述B液升温至60~80℃,反应3~6小时,使金属纳米铋粒子成核生长,最后自组织成纳米片,再组装成纳米线; 
④产物的洗涤和干燥,将上述产物分别用乙醇和二次蒸馏水洗 涤2~3次,60℃条件下干燥得铋纳米片或纳米线。 
所述金属铋盐既是氯化铋或硝酸铋。 
还原剂是硼氢化钠或盐酸羟胺。 
本发明方法简便、易操作;解决了硬模版制备方法中的设备要求高和程序繁琐的问题,本发明制备金属铋纳米线将用于负载其它金属催化剂,改善催化剂的催化活性和提高催化剂稳定性。 
附图说明
下面结合附图和实施例对本发明作进一步说明。 
图1是基于POSS自组装铋纳米线的合成路径。 
图2是合成的Bi纳米线和纳米片的透射电子显微镜图。 
图3是合成Bi纳米线和纳米片的扫描透射电子显微镜图。 
图4是图3中选择微区的成份分析图。 
具体实施方式
实施例1 
水溶液中铋纳米线的制备过程。 
铋纳米线配合物的合成路径如图1所示。分为以下几步: 
①氨基化POSS和金属铋粒子的相互作用,将取2mL10mM的Bi(NO3)3和11.7mg的氨基化POSS放置在50mL的烧瓶中,加入38mL二次蒸馏水,加入200μL的浓盐酸调节pH值在1.5左右,在常温下剧烈搅拌1小时,得到A液; 
②金属铋盐的还原,7.6mg的硼氢化钠溶于10mL的水中,配成还原剂溶液,用注射泵将还原剂缓慢滴加到上述A溶液中,在20~30℃(例20℃、25℃、30℃)反应1~8小时(例1小时、4小时、8 小时),得到含铋纳米粒子的B液。 
③金属纳米铋粒子成核生长,将上述B液升温至75℃,反应4~6小时(例4小时、5小时、6小时),使金属纳米铋粒子成核生长,最后自组织成纳米片,再组装成纳米线。 
④产物的洗涤和干燥,将上述产物分别用乙醇和二次蒸馏水洗涤2~3次,60℃条件下干燥得铋纳米片或纳米线。测得的透射电子显微镜图片如图二所示。产物的选择微区的扫描透射电子显微镜图如图3所示,图3中的矩形区域的成份分析如图4所示,可以证实合成的是金属铋纳米片和纳米线。 
实施例2 
乙二醇溶液中铋纳米线的制备过程。 
铋纳米线配合物的合成路径如图1所示。分为以下几步: 
①氨基化POSS和金属铋粒子的相互作用,将取48.5mg的Bi(NO3)3和35.1mg的氨基化POSS放置在50mL的烧瓶中,加入50mL的乙二醇,加入200μL的浓盐酸调节pH值在1.5左右,在常温下剧烈搅拌1小时; 
②金属铋盐的还原,将上述溶液在20~30℃(例20℃、25℃、30℃)反应1~8小时(例1小时、4小时、8小时),得到含铋纳米粒子的溶液。 
③金属纳米铋粒子成核生长,将上述步骤中的溶液升温至75℃,反应4~6小时(例4小时、5小时、6小时),使金属纳米铋粒子成核生长,最后自组织成纳米片,再组装成纳米线。 
④产物的洗涤和干燥,将上述产物分别用乙醇和二次蒸馏水洗 涤2~3次,60℃条件下干燥得铋纳米片或纳米线。 

Claims (1)

1.一种氨基化倍半硅氧烷自组装制备铋金属纳米线的方法,其特征是:包括下列步骤:
①氨基化POSS和金属铋粒子的相互作用,将取2mL10mM的Bi(NO3)3和11.7mg的氨基化POSS放置在50mL的烧瓶中,加入38mL二次蒸馏水,加入200μL的浓盐酸调节pH值在1.5,在常温下搅拌1小时,得到A液;
②金属铋盐的还原,7.6mg的硼氢化钠溶于10mL的水中,配成还原剂溶液,用注射泵将还原剂缓慢滴加到上述A溶液中,在20~30℃反应1~8小时,得到含铋纳米粒子的B液;
③金属纳米铋粒子成核生长,将上述B液升温至75℃,反应4~6小时,使金属纳米铋粒子成核生长,最后自组织成纳米片,再组装成纳米线;
④产物的洗涤和干燥,将上述产物分别用乙醇和二次蒸馏水洗涤2~3次,60℃条件下干燥得铋纳米片或纳米线。
CN201210583481.4A 2012-12-28 2012-12-28 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法 Expired - Fee Related CN103056380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210583481.4A CN103056380B (zh) 2012-12-28 2012-12-28 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210583481.4A CN103056380B (zh) 2012-12-28 2012-12-28 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法

Publications (2)

Publication Number Publication Date
CN103056380A CN103056380A (zh) 2013-04-24
CN103056380B true CN103056380B (zh) 2015-01-21

Family

ID=48099430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210583481.4A Expired - Fee Related CN103056380B (zh) 2012-12-28 2012-12-28 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法

Country Status (1)

Country Link
CN (1) CN103056380B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104275494B (zh) * 2013-07-08 2016-08-24 江南大学 一种新型结构的纳米金胶体及其制备方法
CN104400002B (zh) * 2014-11-28 2016-09-28 孚派特环境科技(苏州)有限公司 一种铋量子点及其制备方法
CN104400004B (zh) * 2014-12-04 2016-10-12 孚派特环境科技(苏州)有限公司 一种铋金属纳米片及其制备方法
CN104525189A (zh) * 2014-12-29 2015-04-22 东南大学 多面体Pd-Pt合金纳米催化剂、其制备方法及应用
CN108465821B (zh) * 2018-06-22 2022-05-17 武汉工程大学 一种纳米铝片的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095276A1 (en) * 2001-06-29 2007-05-03 Sunkara Mahendra K Synthesis of fibers of inorganic materials using low-melting metals
CN101389792A (zh) * 2005-12-29 2009-03-18 巴斯夫欧洲公司 纳米热电材料
EP2241534A2 (en) * 2008-01-24 2010-10-20 Korea Advanced Institute of Science and Technology Method for manufacturing bismuth single crystal nonowires
US20110100409A1 (en) * 2009-11-05 2011-05-05 Samsung Electronics Co., Ltd. Thermoelectric nano-composite, and thermoelectric module and thermoelectric apparatus including the thermoelectric nano-composite
CN102220609A (zh) * 2010-04-16 2011-10-19 华东师范大学 一种制备束状铋纳米结构材料的方法
CN102557006A (zh) * 2011-12-31 2012-07-11 温州大学 一种无金属残留碳纳米管的连续制备方法
CN102637765A (zh) * 2011-02-12 2012-08-15 同济大学 一种多层纳米线的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095276A1 (en) * 2001-06-29 2007-05-03 Sunkara Mahendra K Synthesis of fibers of inorganic materials using low-melting metals
CN101389792A (zh) * 2005-12-29 2009-03-18 巴斯夫欧洲公司 纳米热电材料
EP2241534A2 (en) * 2008-01-24 2010-10-20 Korea Advanced Institute of Science and Technology Method for manufacturing bismuth single crystal nonowires
US20110100409A1 (en) * 2009-11-05 2011-05-05 Samsung Electronics Co., Ltd. Thermoelectric nano-composite, and thermoelectric module and thermoelectric apparatus including the thermoelectric nano-composite
CN102220609A (zh) * 2010-04-16 2011-10-19 华东师范大学 一种制备束状铋纳米结构材料的方法
CN102637765A (zh) * 2011-02-12 2012-08-15 同济大学 一种多层纳米线的制备方法
CN102557006A (zh) * 2011-12-31 2012-07-11 温州大学 一种无金属残留碳纳米管的连续制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铋纳米线和纳米片的制备;唐春娟 等;《材料研究学报》;20110531;第25卷(第3期);273-277 *

Also Published As

Publication number Publication date
CN103056380A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
He et al. Review on nanoscale Bi-based photocatalysts
Peng et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro-and photocatalysis
Kim et al. Thermoelectric properties of two-dimensional molybdenum-based MXenes
CN103056380B (zh) 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法
Ma et al. α-Fe2O3: hydrothermal synthesis, magnetic and electrochemical properties
Zou et al. Well-aligned arrays of CuO nanoplatelets
Wang et al. Effective octadecylamine system for nanocrystal synthesis
Sun et al. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate
CN106159228B (zh) 一种氮掺杂石墨烯-金属氧化物纳米复合材料及其制备方法和应用
Zeng et al. Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties
Gao et al. Synthesis of unique ultrathin lamellar mesostructured CoSe2− amine (protonated) nanobelts in a binary solution
Nguyen et al. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: simple and large scale synthesis using bulk Sm2O3 powders
Zhang et al. Confining iron carbide nanocrystals inside CN x@ CNT toward an efficient electrocatalyst for oxygen reduction reaction
Liu et al. Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction
Wang et al. Epitaxial growth of shape-controlled Bi2Te3− Te heterogeneous nanostructures
Zhang et al. Facile synthesis of mesoporous Cu2O microspheres with improved catalytic property for dimethyldichlorosilane synthesis
Roy et al. Synthesis of twinned CuS nanorods by a simple wet chemical method
Liang et al. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires
Shi et al. Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting
Zhai et al. One-dimensional nanostructures: principles and applications
Roy et al. Low-temperature synthesis of CuS nanorods by simple wet chemical method
Shi et al. Advanced development of metal oxide nanomaterials for H 2 gas sensing applications
EP2873457B1 (en) Catalyst for preparing chiral selective and conductive selective single-walled carbon nanotube, preparation method and application thereof
Guo et al. The enhanced ethanol sensing properties of CNT@ ZnSnO3 hollow boxes derived from Zn-MOF (ZIF-8)
CN107180974A (zh) 一种多孔碳/贵金属纳米杂化材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150121

Termination date: 20171228

CF01 Termination of patent right due to non-payment of annual fee