CN103052878A - 燃料性质检测装置 - Google Patents

燃料性质检测装置 Download PDF

Info

Publication number
CN103052878A
CN103052878A CN2010800684468A CN201080068446A CN103052878A CN 103052878 A CN103052878 A CN 103052878A CN 2010800684468 A CN2010800684468 A CN 2010800684468A CN 201080068446 A CN201080068446 A CN 201080068446A CN 103052878 A CN103052878 A CN 103052878A
Authority
CN
China
Prior art keywords
fuel
detected
concentration
transmissivity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800684468A
Other languages
English (en)
Inventor
青木圭一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN103052878A publication Critical patent/CN103052878A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本燃料性质检测装置对燃料的光学特性和电气特性进行检测。而且,根据光学特性,而对构成燃料的成分中的至少一种成分的浓度进行检测,并根据电气特性和光学特性的双方,而对燃料中所含有的金属杂质量进行检测。此处,光学特性为,例如向燃料照射了光时的光折射率或光透射率,电气特性为,例如在对夹着燃料的一对电极施加了电压时的导电率或静电电容或交流阻抗。

Description

燃料性质检测装置
技术领域
本发明涉及一种燃料性质检测装置。
背景技术
近年来,能够将酒精、生物燃料、合成燃料、以及这些燃料与碳氢化合物燃料的混合燃料作为内燃机燃料而进行利用的车载用内燃机的研究和开发正在不断推进。然而,这种混合燃料的性质主要根据基础的碳氢化合物燃料的种类、被混合而成的合成燃料和生物燃料的种类、该混合的比例、以及随着氧化劣化的品质的变化等而有所不同。因此,期望正确地测量并区分这些对燃料性质造成影响的主要因素。
例如,专利文献1公开了一种对生物燃料与碳氢化合物燃料的混合燃料的燃料性质进行检测的燃料性质检测装置。该燃料性质检测装置具有对混合燃料的光透射率、介电常数、以及光折射率进行检测的单元。燃料性质检测装置根据被检测出的混合燃料中的光透射率而对混合燃料中的生物燃料即RME(Rape Seed Methyl Ester)浓度进行计算,并根据介电常数的检测值和RME浓度的计算值而对混合燃料的氧化劣化度进行计算,再根据光折射率的检测值、和所计算出的RME浓度与氧化劣化度,而对轻油的种类(轻油密度)进行计算。
在先技术文献
专利文献
专利文献1:日本特开2009-281733号公报
专利文献2:日本特开2009-265079号公报
发明内容
发明所要解决的课题
在混合燃料中,在其生产工序等中,存在混入Fe或Ag等的金属杂质的情况。在混入了金属杂质的情况下,需要根据其混入量而实施对燃料喷射量、点火正时等的补正。因此,对于混合燃料,希望不仅对各个成分浓度和氧化劣化度进行检测,还对金属杂质量进行检测。关于这一点,上述专利文献1所涉及的发明并非有关金属杂质量的检测的发明。
本发明以解决上述课题为目的,提供了一种为能够对混合燃料中的金属杂质的混入量进行检测而进行了改良的燃料性质检测装置。
用于解决课题的方法
为了实现上述的目的,第一发明为一种燃料性质检测装置,其具备:光学特性检测单元,其对燃料的光学特性进行检测;电气特性检测单元,其对燃料的电气特性进行检测;成分浓度检测单元,其根据所述光学特性而对构成所述燃料的成分中的至少一种成分的浓度进行检测;金属杂质检测单元,其根据所述电气特性和所述光学特性,而对所述燃料中所含有的金属杂质量进行检测。
第二发明采用如下方式,即,在第一发明中,所述光学特性检测单元具备:第一透射率检测单元,其对第一透射率进行检测,所述第一透射率为,所述燃料对于第一波长区域的光的光透射率;第二透射率检测单元,其对第二透射率进行检测,所述第二透射率为,所述燃料对于与所述第一波长区域不同的第二波长区域的光的光透射率,所述成分浓度检测单元根据所述第一透射率而对所述至少一种成分的浓度进行检测,并且,根据所述第二透射率而对所述燃料中所含有的水分的浓度进行检测。
第三发明采用如下方式,即,在第二发明中,所述金属杂质检测单元根据所述第一透射率及/或第二透射率、和所述电气特性,而对金属杂质量进行检测。
第四发明采用如下方式,即,在第一发明中,所述光学特性为,向所述燃料照射了光时的光折射率或光透射率。
第五发明采用如下方式,即,在第一发明至第四发明中的任意一个发明中,所述电气特性为,在对以夹着燃料的方式而配置的一对电极之间施加了电压时的导电率或静电电容或交流阻抗。
发明的效果
根据第一发明,能够根据光学特性而对燃料中的任意一种成分的浓度进行检测,并根据电气特性和光学特性而对燃料中所含有的金属杂质量进行检测。由此,能够在金属杂质量的检测中,追加考虑可对电气特性造成影响的成分的浓度,从而能够更准确地对金属杂质量进行检测。
此处,燃料中的特定的成分和水分分别在不同的波长区域内使光透射率大幅度地变化。因此,根据第二发明,通过对燃料对于第一波长区域的光的光透射率进行检测,从而对燃料成分浓度进行检测,其中,所述第一波长区域为,特定的成分对光透射率造成较大影响的区域,另一方面,对燃料对于第二波长区域的光的光透射率进行检测,其中,所述第二波长区域为,水分对光透射率造成较大影响的区域。由此,能够对燃料中的某一特定的成分的浓度、和水分浓度进行检测,从而能够更详细地掌握燃料性质。
根据第三发明,根据电气特性和光学特性中的第一透射率及/或第二透射率而对金属杂质量进行检测。此处,第一透射率为根据任意一种燃料成分的浓度而发生变化的值,第二透射率为根据燃料中的水分浓度而发生变化的值。因此,能够在金属杂质量的检测中,追加考虑能够对电气特性造成影响的燃料成分的浓度或者水分浓度的影响,从而能够更准确地对金属杂质量进行检测。
附图说明
图1为用于对包括本发明的实施方式1中的燃料性质检测装置以及其外围设备在内的系统整体结构进行说明的模式图。
图2为用于对本发明的实施方式1中的光折射率与燃料密度之间的关系进行说明的图。
图3为用于对本发明的实施方式1中的导电率与金属离子浓度之间的关系进行说明的图。
图4为用于对本发明的实施方式1中系统所执行的控制的程序进行说明的流程图。
图5为用于对本发明的实施方式1的其他示例中的、光透射率与乙醇燃料浓度之间的关系进行说明的图。
图6为用于对光的波长与对于该光的透射率之间的关系进行说明的图。
图7为用于对本发明的实施方式2中的光透射率、导电率、金属杂质量之间的关系进行说明的图。
图8为用于对本发明的实施方式2中系统所执行的控制的程序进行说明的流程图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。另外,在各个图中,对相同或相当的部分标记相同符号并简化或省略其说明。
实施方式1.
图1为,用于对本发明的实施方式1的系统结构进行说明的图。如图1所示,实施方式1的系统具有被搭载于车辆上的内燃机2。在内燃机2中,作为内燃机燃料而使用了汽油或轻油、或GTL(Gas toLiquid:气体-液体)燃料等的合成燃料、或混合有这些燃料中的某种的混合燃料。
在用于向内燃机2的各个气缸喷射燃料的燃料喷射阀(未图示)上,经由燃料供给路径4而连接有燃料罐6。在燃料罐6中被供给并贮留有混合燃料。
在燃料供给路径4上,安装有电气特性检测器8以及光学特性检测器10。电气特性检测器8为,发出与在燃料供给路径4中流通的燃料的导电率相对应的输出信号的传感器。另一方面,光学特性检测器10为,发出与混合燃料的光折射率相对应的输出信号的传感器。
电气特性检测器8具有以暴露于燃料供给路径4的燃料中的方式空出空间而配置的一对电极。当对电极之间施加有预定的电压时,电气特性检测器8将输出根据电极之间的混合燃料而产生的电流值。
另一方面,光学特性检测器10具备发光元件和受光元件,所述发光元件以预定的波长而发射光,所述受光元件接受反射来的光。而且,光学特性检测器10具有为了使燃料供给路径4内的燃料流通而至少在一部分处被开放了的空间、和隔着该空间而配置的反射板。反射板使从发光元件发射并穿过了该空间内的燃料的光朝向受光元件侧反射。在光学特性检测器10中,从发光元件发射的光以预定的角度被引导,并向空间内的混合燃料照射。向混合燃料照射并被反射板反射的光通过受光元件而被接受。受光元件将接受了反射光的光的重心位置作为传感器信号而输出。
在实施方式1所涉及的内燃机2的控制系统中,具备ECU(ElectronicControl Unit:电子控制单元)12。ECU12为,对内燃机2的系统整体进行综合控制的控制装置。在ECU12的输出侧连接有各种作动器,而在ECU12的输入侧连接有电气特性检测器8和光学特性检测器10,并且将它们的输出作为输入信号而对混合燃料的导电率以及光折射率进行检测。此外,ECU12接收来自其他各种传感器的信号,从而对内燃机2的运转所需的各种信息进行检测,并依照预定的控制程序而对各个作动器进行操作。另外,虽然存在多个与ECU12相连接的作动器和传感器,但是在本说明书中省略其说明。
另外,由于从光学特性检测器10的发光元件发射出的光根据混合燃料的燃料密度而以不同的角度进行折射,因此会在受光元件的不同的位置处入射。即,在将混合燃料的光折射率最小的一侧作为基准位置的情况下,距该基准位置的距离与光折射率具有相关关系。因此,通过利用受光元件来对反射光的重心的受光位置进行检测,从而ECU12能够对混合燃料的光折射率进行检测。
图2为,用于对本发明的实施方式1中的混合燃料的燃料密度与光折射率之间的关系进行说明的图。如图2所示,混合燃料的燃料密度越大则光折射率越大,而混合燃料的燃料密度越小则光折射率越小。如此,混合燃料的燃料密度与光折射率具有固定的相关关系。因此,预先对图2所示的那种关系进行测定,并将该关系作为映射图或者相关函数而存储于ECU12中。基于检测值而得出光折射率,并根据该映射图或者相关函数而对燃料密度进行计算。
此处,如果根据检测出的燃料密度而为例如以汽油为基础的燃料,则可根据成为基础的汽油的密度,而检测出混入的轻油的混入比例等,此外,如果根据检测出的燃料密度而为例如轻油与GTL等的合成燃料的混合燃料,则可根据成为基础的轻油的密度而检测出混合比例等,从而检测出燃料成分的浓度。
另一方面,在根据来自ECU12的控制信号而对电极之间施加了预定的电压时,电气特性检测器8将对应于此而输出电流值。ECU12能够根据该电流值而对电极之间的混合燃料的导电率进行检测。
图3为,用于对本发明的实施方式1中的混合燃料中的金属离子浓度与导电率之间的关系进行说明的图。如图3所示,金属离子浓度具有如下的相关关系,即,混合燃料中的金属离子浓度越升高则导电率越增大,而金属离子浓度越降低则导电率越减小。金属离子浓度为根据金属杂质量而发生变化的值。
此外,导电率还根据混合燃料的燃料成分的浓度而发生变化。因此,如果光折射率为固定,则金属杂质量越增大导电率也越升高。但是,在光折射率不为固定的情况下,即在燃料成分浓度上存在波动的情况下,即使为相同的导电率,金属杂质量也有所不同。
此处,光折射率、导电率、金属杂质量具有固定的相关关系。在本实施方式1的系统中,预先通过实验等而对这种光折射率、导电率、金属杂质量之间的关系进行测定,并将该关系作为三维映射图和相关函数而存储于ECU12中。在实际的控制中的燃料性质检测时,基于该映射图等,并根据光折射率以及导电率而对金属杂质量进行检测。
图4为,用于对本发明的实施方式1中作为控制装置的ECU12所执行的控制的程序进行说明的流程图。在图4所示的程序中,首先,对内燃机2是否处于启动后运转中的状态进行辨别(S102)。在未被认定为内燃机2处于运转中的情况下,就此结束本次的处理。
另一方面,当在步骤S102中认定为内燃机2处于运转中时,接下来,对电气特性检测器8以及光学特性检测器10是否发生故障进行辨别(S104)。在认定为电气特性检测器8或光学特性检测器10发生故障的情况下,结束本次的处理。
另一方面,当在步骤S104中认定为电气特性检测器8以及光学特性检测器10正常时,接下来,对光折射率进行检测(S106)。此处,光学特性检测器10被设置为开启,并从光学特性检测器10的发光元件发射光,且通过受光元件而对反射光的检测位置进行检测,从而将表示检测位置的输出信号向ECU12输入。据此,在ECU12中对光折射率进行检测。
接下来,对导电率进行检测(S108)。此处,电气特性检测器8被设置为开启,并对一对电极之间施加预定的电压。其结果为,在包括一对电极在内的电路中流通的电流值被输出至ECU12。ECU12根据该输出而对导电率进行检测。
接下来,对燃料密度进行计算(S110)。具体而言,依据被存储于ECU12中的光折射率与燃料密度之间的关系,而对与在步骤S104中被检测出的光折射率相对应的燃料密度进行计算。接下来,根据所检测出的燃料密度,而对燃料成分浓度进行计算(S112)。
接下来,对金属杂质量进行运算(S114)。基于被存储于ECU12中的、对光折射率、导电率、金属杂质量之间的关系进行确定的映射图等,并根据在步骤S104中检测出的光折射率、和在步骤S106中检测出的导电率,而对金属杂质量进行计算。之后结束本次的处理。
如以上所说明的那样,根据本实施方式1,从而能够根据作为光学特性的折射率而求出燃料密度,从而对燃料成分浓度进行检测,并根据光折射率、和作为电气特性的导电率而对金属杂质量进行检测。由此,能够更准确地对内燃机2的运转中所需的燃料性质进行检测。
另外,在实施方式1中,对发动机燃料为碳氢化合物燃料时的、将例如汽油中的轻油混入浓度、轻油与合成燃料的比例等作为成分浓度而进行检测的情况进行了说明。但是,本发明并不限定于此。光折射率一般根据碳氢化合物燃料的密度而发生变化。因此,在例如汽油与醇燃料或生物燃料的混合燃料中,只要辨明成为基础的汽油的密度、所混合的醇燃料等的种类,就能够根据基于光折射率而计算出的燃料密度,来对构成混合燃料的燃料成分的浓度进行检测。
此外,在实施方式1中,作为光学特性检测器10,而对如下的传感器进行了说明,所述传感器具有发光元件、受光元件、反射板等,并具有通过对反射光的重心位置进行检测从而对光折射率进行检测的结构。但是,用于对光折射率进行检测的传感器并不限定于这种结构,也可以为通过其他方法而对光折射率进行检测的结构。
此外,作为电气特性检测器8,对如下的检测器进行了说明,该检测器对一对电极施加电压,并输出电流值。但是,在本发明中并不限定于此,只要为输出导电率等的电气特性的检测器,则也可以使用具有其他结构的检测器。
此外,在实施方式1中,对将光学特性检测器10以及电气特性检测器8的双方设置在燃料供给路径4上的情况进行了说明。但是,在本发明中并不限定于此,例如也可以设置在燃料罐6内,此外,也可以设置在需要检测燃料性质的燃料所流通的其他的位置上。
而且,在实施方式1中,对为了检测燃料成分浓度,而对作为光学特性的光折射率进行检测的情况进行了说明。但是,在本发明中,并不限定于对光折射率进行检测的情况,也可以对其他的光学特性进行检测,并根据检测出的光学特性来求出燃料成分浓度和金属杂质量。以下,对如下的情况进行说明,即,对作为光学特性的光透射率进行检测,从而求出燃料成分浓度的情况。
图5为,用于对光透射率与燃料成分浓度之间的关系进行说明的图。图5图示了作为混合燃料而使用乙醇与汽油的混合燃料的情况的示例。如图5所示,向混合燃料照射了某一波长区域的光时的光透射率,根据混合燃料中的醇浓度而发生变化。此外,光透射率与醇浓度存在相关关系。因此,在作为内燃机燃料而使用醇与碳氢化合物燃料的混合燃料的这种情况下,通过对光透射率进行检测,从而能够检测出醇浓度。
此外,在实施方式1中,对根据光折射率和导电率而对金属杂质量进行检测的情况进行了说明。但是,在本发明中,金属杂质量的检测法并不限定于此。金属杂质量会对混合燃料的电气特性(导电率、静电电容、交流阻抗等)造成影响,并且混合燃料的电气特性与金属杂质量具有固定的相关关系。此外,这些电气特性也会根据混合燃料的燃料浓度而发生变化。因此,如果预先对混合燃料的、预定的光学特性(光折射率、光透射率等)、预定的电气特性(导电率、静电电容、交流阻抗等)、金属杂质量之间的关系进行测定,并作为映射图等而预先存储在ECU12中,则能够通过对其光学特性和电气特性进行检测,从而检测出金属杂质量。
实施方式2.
实施方式2的系统具有与图1的系统相同的结构。在实施方式2中,在进行对金属杂质量的运算时,在考虑混合燃料中的水分浓度的这一点上实施与实施方式1不同的控制。另外,此处,对作为混合燃料而使用汽油与乙醇的混合燃料的情况进行说明。
图6为,用于对光的波长、与对于该光的透射率之间的关系进行说明的图。在图5中,横轴表示波长、纵轴表示透射率。此外,在图6中,曲线(a)表示水,曲线(b)表示乙醇,曲线(c)表示汽油。
如图6所示,可知混合燃料中的各个成分的光透射率根据被照射的光的波长而大幅度地发生变化。例如,在某一波长区域A(第一波长区域)内,水(a)和汽油(c)的光透射率的变化较小,但是乙醇的光透射率大幅度地发生变化。此外,在某一波长区域B(第二波长区域)内,汽油(c)和乙醇(b)的光透射率没有较大的差异,但是水(a)的光透射率大幅度下降。因此,通过分别照射波长区域A、波长区域B的光并对光透射率进行检测,从而能够检测出对各自的光透射率的变化造成较大影响的乙醇以及水分的浓度。
本实施方式2的燃料性质检测装置分别将预先测定出的、混合燃料对于波长区域A的光的光透射率(第一透射率)与乙醇浓度之间的关系、以及混合燃料对于波长区域B的光的光透射率(第二透射率)与水分浓度之间的关系,作为映射图而存储于ECU12中。在实际的控制中的燃料性质检测中,对混合燃料对于波长区域A的光的光透射率进行检测,据此,并根据映射图而对混合燃料中的乙醇浓度进行检测。或者,对相对于波长区域B的光的光透射率进行检测,据此,并根据映射图而对混合燃料中的水分浓度进行检测。
此外,在实施方式2中,燃料性质检测装置根据以上述方式求出的用于检测水分浓度的光透射率(对于波长区域B的光的光透射率)、和导电率,而对金属杂质量进行检测。图7为,确定了本发明的实施方式2中的对于波长区域B的光的光透射率、导电率、金属杂质量之间的关系的映射图。
由电气特性检测器8检测出的电气特性尤其会因燃料中所含有的水分和燃料成分的波动而发生变化。具体而言,如果光透射率固定,则导电率越大金属杂质量越增大,而另一方面,即使在导电率为固定的情况下,光透射率越大则金属杂质量也会越减小。即,对于波长区域B的光透射率、导电率、金属杂质量具有固定的相关关系。
在本实施方式2中,燃料性质检测装置将预先测定出的这种相关关系作为图7所示的那种三维映射图或相关函数而存储于ECU12中。在进行金属杂质量的检测时,根据该映射图等,而对与光透射率和导电率相对应的值进行检测。
图8为,用于对本发明的实施方式3中系统所执行的控制的程序进行说明的流程图。图8的程序除了在步骤S104之后具有S210、S212的处理的这一点,以及在步骤S214的导电率检测之后具有步骤S216~S220的处理的这一点以外,与图4的程序相同。
具体而言,在步骤S104中认定为各个检测器正常之后,接下来,对相对于波长区域A的光的透射率进行检测(S210)。此处,波长区域A如上所述,为对乙醇的光透射率造成影响的波长区域。接下来,对相对于波长区域B的光的透射率进行检测(S212)。此处,波长区域B为尤其会对水分的光透射率造成影响的波长区域。之后,对导电率进行检测(S214)。
接下来,对燃料成分浓度进行检测(S216)。具体而言,根据在步骤S210中检测出的光透射率,而对混合燃料中的乙醇浓度进行检测。接下来,对水分浓度进行检测(S218)。对于水分浓度,根据在步骤S212中检测出的对于波长区域B的光透射率,而对混合燃料中的水分浓度进行检测。
接下来,对金属杂质量进行检测(S220)。根据在步骤S212中检测出的对于波长区域B的光的光透射率、和在步骤S214中检测出的导电率,并通过被存储于ECU12中的映射图(参照图6),而对金属杂质量进行检测。之后,结束本次的处理。
如以上所说明的那样,在实施方式2中,根据受水分浓度影响的对于波长区域B的光透射率、和导电率而对金属杂质量进行检测。因此,在将包含醇等的易混合有水分的燃料在内的混合燃料作为内燃机燃料而使用的情况下,也能够更准确地对包含该水分浓度在内的成分浓度进行检测,并且能够在考虑到该成分的浓度的影响的基础上对金属杂质量进行检测。由此,能够更准确地检测出混合燃料的燃料性质。
另外,在实施方式2中,对根据用于检测水分浓度的对于波长区域B的光的光透射率、和导电率而对金属杂质量进行检测的情况进行了说明。但是,不仅水分浓度对电气特性造成影响,例如,醇等的燃料成分浓度也能够对电气特性造成影响。因此,在金属杂质量的检测中,不仅考虑水分浓度,也可以考虑燃料成分浓度。具体而言,例如,在实施方式2中,既可以根据对于波长区域A、波长区域B的各自的光的光透射率、和导电率而对金属杂质量进行检测,也可以在仅考虑燃料成分浓度的条件下,根据对于波长区域A的光的光透射率和导电率而对金属杂质量进行检测。在这种情况下,也能够预先将各自的光透射率、导电率、金属杂质量之间的关系确定为三维映射图和相关函数,并分别根据检测值而对金属杂质进行检测。
此外,在实施方式2中,对使用将乙醇和汽油作为燃料成分的混合燃料的情况进行了说明。但是,本发明并不限定于此,也能够应用于使用其他的醇或生物燃料与碳氢化合物燃料的混合燃料、以及合成燃料与轻油或汽油的混合燃料的情况。在这种情况下,也能够通过照射特定浓度的燃料成分的光透射率与其他的燃料成分大不相同的波长区域的光,并对光透射率进行检测,从而求出该燃料成分的浓度。此外,以此方式,能够通过对于特定的燃料成分所影响的波长区域的光的透射率、和导电率,而对金属杂质量进行检测。
此外,在实施方式2中,对通过光透射率和导电率而对金属杂质量进行检测的情况进行了说明。但是,本发明并不限定于此,例如,在像上述的实施方式1那样根据光折射率而对生物燃料和醇燃料的浓度进行计算的情况下,也能够预先对光折射率、导电率、金属杂质量之间的关系进行测定,从而对光折射率和金属杂质量进行计算。
另外,在以上的实施方式中,提及了各个要素的个数、数量、量、范围等的数量的情况,除了特别明示了的情况和原理上明确特定于该数量的情况以外,本发明并不限定于该提及的数量。此外,除了特别明示了的情况和原理上被明确特定于此的情况以外,在本实施方式中所说明的结构和步骤等在本发明中并非必需的内容。
符号说明
2…内燃机
4…燃料供给路径
6…燃料罐
8…电气特性检测器
10…光学特性检测器

Claims (5)

1.一种燃料性质检测装置,其特征在于,具备:
光学特性检测单元,其对燃料的光学特性进行检测;
电气特性检测单元,其对燃料的电气特性进行检测;
成分浓度检测单元,其根据所述光学特性而对构成所述燃料的成分中的至少一种成分的浓度进行检测;
金属杂质检测单元,其根据所述电气特性和所述光学特性,而对所述燃料中所含有的金属杂质量进行检测。
2.如权利要求1所述的燃料性质检测装置,其特征在于,
所述光学特性检测单元具备:
第一透射率检测单元,其对第一透射率进行检测,所述第一透射率为,所述燃料对于第一波长区域的光的光透射率;
第二透射率检测单元,其对第二透射率进行检测,所述第二透射率为,所述燃料对于与所述第一波长区域不同的第二波长区域的光的光透射率,
所述成分浓度检测单元根据所述第一透射率而对所述至少一种成分的浓度进行检测,并且,根据所述第二透射率而对所述燃料中所含有的水分的浓度进行检测。
3.如权利要求2所述的燃料性质检测装置,其特征在于,
所述金属杂质检测单元根据所述第一透射率及/或第二透射率、和所述电气特性,而对金属杂质量进行检测。
4.如权利要求1所述的燃料性质检测装置,其特征在于,
所述光学特性为,向所述燃料照射了光时的光折射率或光透射率。
5.如权利要求1至4中的任意一项所述的燃料性质检测装置,其特征在于,
所述电气特性为,在对以夹着燃料的方式而配置的一对电极之间施加了电压时的导电率或静电电容或交流阻抗。
CN2010800684468A 2010-08-04 2010-08-04 燃料性质检测装置 Pending CN103052878A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063171 WO2012017524A1 (ja) 2010-08-04 2010-08-04 燃料性状検出装置

Publications (1)

Publication Number Publication Date
CN103052878A true CN103052878A (zh) 2013-04-17

Family

ID=45559056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800684468A Pending CN103052878A (zh) 2010-08-04 2010-08-04 燃料性质检测装置

Country Status (6)

Country Link
US (1) US20130120742A1 (zh)
EP (1) EP2602614A4 (zh)
JP (1) JP5397548B2 (zh)
CN (1) CN103052878A (zh)
BR (1) BR112013002743A2 (zh)
WO (1) WO2012017524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645218A (zh) * 2013-11-26 2014-03-19 苏州贝克微电子有限公司 一种具有缓慢振荡器和高速开关的电容性燃料成分传感器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468916B2 (ja) * 2015-03-31 2019-02-13 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2019203799A (ja) * 2018-05-23 2019-11-28 国立大学法人鳥取大学 水中ポンプ及びその監視システム
TWI782577B (zh) * 2021-06-11 2022-11-01 簡芊羽 決定油箱內金屬雜質含量的油箱內部電性信號量測裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133886A (ja) * 1991-11-13 1993-05-28 Ngk Spark Plug Co Ltd 燃料性状検出装置
US5225783A (en) * 1991-02-18 1993-07-06 Mitsubishi Denki Kabushiki Kaisha Dielectric constant detection apparatus for fuel
US5270663A (en) * 1991-07-03 1993-12-14 Nippondenso Co., Ltd. Apparatus for detecting a liquid mixing ratio
JP2005257319A (ja) * 2004-03-09 2005-09-22 Mitsui Mining & Smelting Co Ltd 液性検知装置および液性検知方法
US20080246955A1 (en) * 2007-04-09 2008-10-09 Nippon Soken, Inc. Method of detecting alcohol concentration and alcohol concentration detecting apparatus
CN101680836A (zh) * 2007-05-15 2010-03-24 株式会社日本自动车部品综合研究所 燃料特性检测装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526992Y2 (zh) * 1986-09-22 1993-07-08
JPH055491Y2 (zh) * 1987-12-21 1993-02-12
FR2667153B1 (fr) * 1990-09-26 1994-02-11 Snecma Detecteur des impuretes contenues dans un fluide et circuit faisant application d'un tel detecteur.
JP2647563B2 (ja) * 1991-02-18 1997-08-27 三菱電機株式会社 燃料の誘電率検知装置
JP2929906B2 (ja) * 1993-09-07 1999-08-03 株式会社日本自動車部品総合研究所 アルコール濃度センサ
JP2008281486A (ja) * 2007-05-11 2008-11-20 Toyota Motor Corp 燃料劣化検出装置および燃料劣化検出方法
JP2009281733A (ja) * 2008-05-19 2009-12-03 Nippon Soken Inc 燃料性状検出装置
JP5201108B2 (ja) * 2008-10-31 2013-06-05 株式会社デンソー 液体性状検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225783A (en) * 1991-02-18 1993-07-06 Mitsubishi Denki Kabushiki Kaisha Dielectric constant detection apparatus for fuel
US5270663A (en) * 1991-07-03 1993-12-14 Nippondenso Co., Ltd. Apparatus for detecting a liquid mixing ratio
JPH05133886A (ja) * 1991-11-13 1993-05-28 Ngk Spark Plug Co Ltd 燃料性状検出装置
JP2005257319A (ja) * 2004-03-09 2005-09-22 Mitsui Mining & Smelting Co Ltd 液性検知装置および液性検知方法
US20080246955A1 (en) * 2007-04-09 2008-10-09 Nippon Soken, Inc. Method of detecting alcohol concentration and alcohol concentration detecting apparatus
CN101680836A (zh) * 2007-05-15 2010-03-24 株式会社日本自动车部品综合研究所 燃料特性检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WORLDWIDE FUEL CHARTER COMMITTEE: "ETHANOL GUIDELINES", 《WORLDWIDE FUEL CHARTER COMMITTEE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645218A (zh) * 2013-11-26 2014-03-19 苏州贝克微电子有限公司 一种具有缓慢振荡器和高速开关的电容性燃料成分传感器

Also Published As

Publication number Publication date
EP2602614A4 (en) 2013-07-03
BR112013002743A2 (pt) 2016-06-07
JPWO2012017524A1 (ja) 2013-09-19
WO2012017524A1 (ja) 2012-02-09
US20130120742A1 (en) 2013-05-16
JP5397548B2 (ja) 2014-01-22
EP2602614A1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN101146986B (zh) 内燃机运转参数的优化方法
JP4906583B2 (ja) 燃料性状検出装置
AU2008325002B2 (en) Bio-fuels vehicle fueling system
KR20140013118A (ko) 전자기파 전파를 사용하는 액체 레벨 및 품질 감지 장치, 시스템 및 방법
CN103052878A (zh) 燃料性质检测装置
US5124654A (en) Integrated devices for the determination of the alcohol content and/or the calorific value of fuels
JPH0627073A (ja) 燃料の性状判別装置
US7605361B2 (en) Fuel property detection device
CN103573448A (zh) 燃料质量监测系统
WO2009018638A1 (en) Optical sensing system for liquid fuels
US9194835B2 (en) Method and device for determining a fuel portion in a motor oil of a motor vehicle
JP2015127529A (ja) 燃料性状推定装置
JP2009281733A (ja) 燃料性状検出装置
US20230286797A1 (en) Refuelling system for motor vehicles
CN102656453B (zh) 用于测量燃料混合物组分的方法和装置
Munack et al. A fuel sensor for biodiesel, fossil diesel fuel, and their blends
Russell et al. Cellulosic ethanol fuel quality evaluation and its effects on PFI intake valve deposits and GDI fuel injector plugging performance
WO2011101962A1 (ja) 内燃機関の燃料性状判定装置
McKay et al. An onboard ethanol concentration sensor for the Brazilian market
WO2010050017A1 (ja) 燃料制御システム
RU47523U1 (ru) Емкостной датчик для определения октанового числа автомобильного бензина
KR100921291B1 (ko) 알콜센서가 구비된 알콜차량용 연료레일장치
US20200096466A1 (en) Rf sensor device for a vehicle and method of analyzing fuel component using the same
Skwarek et al. A low-cost capacitive fuel-level and quality sensor for automotive applications
RU47522U1 (ru) Емкостной датчик для определения октанового числа автомобильного бензина

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130417