具体实施方式
以下提出各种实施例进行详细说明,其利用两种以上抗污材料交错式设置,使得抗污薄膜不仅让液滴不容易残留,而且使液滴因接触角的差异而被推挤到某一区域上,进而凝结成较大的液滴。较大的液滴容易滑落或被擦拭,以达到良好的抗污效果。然而,实施例仅用以作为范例说明,并不应解释为限制本发明欲保护的范围。此外,实施例中的图示省略部份组件,以清楚显示本发明的技术特点。
第一实施例
请参照图1,其绘示一种电子装置1000。电子装置1000包括显示单元900及抗污薄膜100。显示单元900具有显示面900a。抗污薄膜100设置于显示面900a之外。显示单元900例如是不含保护板的液晶显示单元、有机发光体显示单元或电子纸显示单元。然而,除了显示单元900以外,抗污薄膜100亦可应用于不含保护板的触控单元、机壳、汽车玻璃、建筑物玻璃、建筑物外墙等等。以触控单元为例,抗污薄膜100可以设置于触控单元的触控面之外。
请参照图2,其图示第一实施例的抗污薄膜100的示意图。抗污薄膜100包括基材190(图示于图3)、第一抗污材料110及第二抗污材料120。基材190例如是玻璃基板或塑料基板。基材190可以是上述显示单元900的保护板或上述触控单元的保护板。第一抗污材料110及第二抗污材料120可以直接形成于上述显示单元900的保护板或上述触控单元的保护板上,或者可以先形成于暂时板,再转印至上述显示单元900的保护板或上述触控单元的保护板上。基材190具有数个第一区域191及数个第二区域192。第一抗污材料110设置于该第一区域191。第二抗污材料120设置于该第二区域192。第一抗污材料110与第二抗污材料120并没有混合,而是分别设置于不同的区域。本实施例的该第一区域191及第二区域192交错排列。该第一区域191及该第二区域192为长条状交错排列,且该第一区域191的宽度W191实质上等于该第二区域192的宽度W192。
请参照图3,其图示图2的抗污薄膜100的侧视图。通过第一抗污材料110的特性,可使位于其上的液滴800形成第一接触角θ1。同样的,通过第二抗污材料120的特性,可使位于其上的液滴800形成第二接触角θ2。
在本实施例中,第一接触角θ1与第二接触角θ2并不相同。在本实施例中,第一接触角θ1大于第二接触角θ2。当液滴800位于第一区域191及第二区域192的交界处C时,通过液滴800在第一区域191及第二区域192的第一接触角θ1第二接触角θ2的差异,将对液滴800产生一股推挤力量。液滴800受到推挤将会朝接触角较小的区域移动(例如是第二区域192)。
请参照图4,其图示液滴800的移动示意图。当大多数的液滴800朝向此区域集中时(例如是第二区域192),将聚集成较大的液滴800。较大的液滴800会受到较大的重力,而容易滑落。请参照图5,其图示指纹的油滴700的聚集示意图。由左至右图所示,油滴700受到推挤力量的推挤而容易聚集,聚集后的油滴700较容易观察与擦拭。
常见的液滴800例如是水滴及油滴。研究人员针对水滴进行多次试验,第一抗污材料110及第二抗污材料120的第一接触角θ1及第二接触角θ2范围在90~120度时,对水滴有较佳的效果。在另一实施例的环境因素下,第一接触角θ1及第二接触角θ2范围亦可以是100~120度。其中,研究人员还研究得到,第一接触角θ1与第二接触角θ2之差在5~30度时,对于位于交界处C的水滴将产生足够力量的推挤力量。在另一实施例的环境因素下,第一接触角θ1与第二接触角θ2之差亦可以是10~20度。
研究人员进一步针对油滴进行多次试验,第一抗污材料110及第二抗污材料120的第一接触角θ1及第二接触角θ2范围在50~80度时,对油滴有较佳的效果。在另一实施例的环境因素下,第一接触角θ1及第二接触角θ2范围亦可以是60~80度。其中,研究人员更研究得到第一接触角θ1与第二接触角θ2之差在5~30度时,对于位于交界处C的油滴将产生足够力量的推挤力量。在另一实施例的环境因素下,第一接触角θ1与第二接触角θ2之差亦可以是10~20度。
此外,基材190的粗糙度(Ra)也是影响接触角的因素。在本实施例中,基材190的粗糙度(Ra)小于50纳米(nm)。
一般而言,液滴800受到表面张力与内聚力的影响,液滴800将具有一定范围的大小。请参照图6,其图示液滴800与第一区域191及第二区域192的关系图,当第一区域191及第二区域192的宽度W191、W192接近于液滴800的直径W800时,液滴800很容易会位于第一区域191及第二区域192的交界处C,进而形成上述的推挤力量。
请参照图7,其图示液滴800与第一区域191及第二区域192的另一关系图,当第一区域191及第二区域192的宽度W191、W192远大于液滴800的直径W800时,大部份液滴800不会位于第一区域191及第二区域192的交界处C,所以大部分的液滴800不会形成上述的推挤力量。
请参照图8,其图示液滴800与第一区域191及第二区域192的另一关系图,当第一区域191及第二区域192的宽度W191、W192远小于液滴800的直径W800时,大部份液滴800跨越多个第一区域191及第二区域192的交界处C。由于每一交界处C所形成的推挤力量系朝向接触角较小的区域(例如是第二区域192),所以相邻的两个交界处C系形成方向相反的推挤力量,而相互抵销,故整体而言,图8的大部分的液滴800不会受到上述推挤力量的影响。
也就是说,研究人员研究发现当第一区域191及第二区域192的宽度W191、W192接近于液滴800的直径W800时(如图4所示),将使得液滴800被推挤的效果良好。此宽度设计将产生特殊的效果,并非只是单纯实施上的尺寸选择。
在一个实施例中,大部分液滴800的直径W800为50~5000微米(μm),故第一区域191及第二区域192的宽度W191、W192例如是为50~5000微米(μm)。在另一实施例的环境因素中,大部分液滴800的直径W800为500~5000微米(μm),故第一区域191及第二区域192的宽度W191、W192例如是为500~5000微米(μm)。在另一实施例的环境因素中,大部分液滴800的直径W800为1000~5000微米(μm),故第一区域191及第二区域192的宽度W191、W192例如是为1000~5000微米(μm)。
就第一抗污材料110及第二抗污材料120而言,第一抗污材料110及第二抗污材料120为氟化聚合物(Fluoride Polymer),例如是氟化有机硅烷聚合物(Fluoride Organosilane Polymer),其化学式为RnSiX4-n。其中R基为不水解的氟化有机基团,R基可为氟烷基(Fluoroalkyl)、氟化聚醚(Fluoropolyether)、全氟聚醚(Per-fluoropolyether)、含环氧基、芳香族基团或其它含氟有机基团。第一抗污材料110及第二抗污材料120例如是氟化聚醚改性的硅烷聚合物(Fluoropolyether-modified Silane Polymer)、全氟聚醚改性的硅烷聚合物(Perfluoropolyether-modified Silane Polymer)、氟化烷基改性的硅烷聚合物(Fluoralkyl-modified Silane Polymer)或全氟烷基改性的硅烷聚合物(Perfluoralkyl-modified Silane Polymer)。
其中第一抗污材料110与第二抗污材料120可通过碳链长度来作设计,例如是第一抗污材料110的碳链长度大于第二抗污材料120的碳链长度。一般来说,碳链越长,其表面能越低、疏水性越佳、接触角越大。
其中第一抗污材料110与第二抗污材料120可通过含氟原子数目的氟化程度来作设计,例如是第一抗污材料110的氟化程度高于第二抗污材料120的氟化程度。一般来说,氟化程度越高,其表面能越低、疏水性越佳、接触角越大。
请参照图9A~9D,其图示抗污薄膜100的制造方法的示意图。首先,如图9A所示,提供基材190,基材190具有预定的数个第一区域191及数个第二区域192。
接着,如图9B所示,于该第一区域191形成第一抗污材料110。此步骤可以通过丝网印刷(Screen Printing)将第一抗污材料110印刷于第一区域191,然后再进行摄氏60~100度1~3分钟的烘烤制程来完成。此步骤不限定制程种类,亦可使用任何图案化镀膜的方法,典型的如使用曝光显影的方式。
然后,如图9C所示,于基材190(标示于图9A)上整面形成第二抗污材料120。此步骤可以通过浸涂(Dipping)、喷涂(Spray)或丝网印刷将第二抗污材料120形成于基材190(标示于图9A)上,然后再进行摄氏80~200度0.5~1小时的烘烤制程来完成。
接着,如图9D所示,移除位于该第一区域191的第二抗污材料120,使得该第二抗污材料120仅设置于该第二区域192。此步骤可以通过水清洗制程(Water Scrubbing)来完成。
其中,将第二抗污材料120先整面形成后,再予以部份移除,可以确保第二抗污材料120与第一抗污材料110于交界线C有良好的连接,而避免空隙的形成。
综上所述,本实施例利用第一抗污材料110及第二抗污材料120交错式设置,使得抗污薄膜100不仅让液滴800不容易残留,更使液滴800容易因第一接触角θ1与第二接触角θ2的差异而被推挤到第二区域192上,进而凝结成较大的液滴800。较大的液滴800容易滑落或被擦拭,以达到良好的抗污效果。
第二实施例
请参照图10,其图示第二实施例的抗污薄膜200的示意图,本实施例的抗污薄膜200与第一实施例的抗污薄膜100不同之处在于第一区域291与第二区域292的设计,其余相同之处,不再重复叙述。
如图10所示,本实施例的该第一区域291及该第二区域292为矩阵状交错排列。经过实验了解,抗污薄膜200的第一区域291及第二区域292的设计并不局限于长条状交错排列,第一区域291及第二区域292为矩阵状交错排列时,仍可达到一定程度的抗污效果。
第三实施例
请参照图11,其图示第三实施例的抗污薄膜300的示意图,本实施例的抗污薄膜300与第一实施例的抗污薄膜100不同之处在于第一区域391与第二区域392的设计,其余相同之处,不再重复叙述。
如图11所示,本实施例的第一区域391的宽度W391大于第二区域392的宽度W392。经过实验了解,抗污薄膜300的第一区域391及第二区域392的设计并不局限于等宽度的设计,第一区域391的宽度W391大于第二区域392的宽度W392(或第二区域392的宽度W392大于第一区域391的宽度W391)时,仍可达到一定程度的抗污效果。
第四实施例
请参照图12,其图示第四实施例的抗污薄膜400的示意图,本实施例的抗污薄膜400与第一实施例的抗污薄膜100不同之处在于抗污材料的数量的设计,其余相同之处,不再重复叙述。
如图12所示,本实施例的抗污薄膜400包括第一抗污材料410、第二抗污材料420及第三抗污材料430等三种抗污材料。经过实验了解,抗污材料的数量并不局限于等两种的设计,抗污材料的数量大于或等于三时,仍可达到一定程度的抗污效果。
在本实施例中,基材490(图示于图13)包括交错排列的第一区域491、第二区域492及第三区域493。第一抗污材料410、第二抗污材料420及第三抗污材料430分别设置于该第一区域491、该第二区域492及该第三区域493。请参照图13,其图示图12的抗污薄膜400的侧视图。液滴800于第一抗污材料410、第二抗污材料420及第三抗污材料430上分别形成第一接触角θ1、第二接触角θ2及第三接触角θ3。第三接触角θ3与第一接触角θ1或第二接触角θ之差为5~30度。不论第一区域491、第二区域492及第三区域493如何排列,只要相邻两个抗污材料的接触角之差为5~30度即可达到一定的抗污效果。
综上所述,上述各种实施例利用各种抗污材料交错式设置,使得抗污薄膜不仅让液滴不容易残留,更使液滴因接触角的差异而被推挤到某一区域上,进而凝结成较大的液滴。较大的液滴容易滑落或被擦拭,以达到良好的抗污效果。
综上所述,虽然本发明已以各种实施例披露如上,然其并非用以限定本发明,任何本发明所属技术领域中的技术人员,在不脱离本发明的精神和范围内,应可作任意更改与润饰。因此,本发明的保护范围应以所附权利要求书限定的范围为准。