TW200844544A - Display apparatus and liquid crystal barrier panel thereof - Google Patents
Display apparatus and liquid crystal barrier panel thereof Download PDFInfo
- Publication number
- TW200844544A TW200844544A TW96117017A TW96117017A TW200844544A TW 200844544 A TW200844544 A TW 200844544A TW 96117017 A TW96117017 A TW 96117017A TW 96117017 A TW96117017 A TW 96117017A TW 200844544 A TW200844544 A TW 200844544A
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid crystal
- substrate
- layer
- strip
- alignment layer
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
200844544 P060208LOZ1TW 23509twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種顯示裝置及其液晶遮光面板,且 特別是有關於一種可顯示2D與3D影像的顯示裝置及其液 晶遮光面板。 【先前技術】 在顯示技術的發展方面,除了追求輕薄短小以外,更 希望能做到顯示立體影像的目標。目前,立體顯示技術可 大致分成使用者需戴特殊設計之眼鏡或直接裸眼觀看等兩 種方式。現在,戴眼鏡式立體顯示技術已經發展成熟,並 廣泛用到如軍事模擬或大型娛樂等某些特殊用途上,但戴 眼鏡的不方便與不舒適使得此類技術不易普及。因此,裸 眼式立體顯示技術已逐漸發展並成為新潮流。 在習知採用空間多工原理的3D影像顯示器中,是將 顯不晝面間隔地劃分為左右眼影像顯示區域,利用視差阻 障兀件(parallax barrier)同時將影像分別投向左右眼,以達 , 到立體效果。然而,這種3D顯示裝置僅能用以顯示3D影 像,而無法在顯示3D影像的模式與顯示2D影像的模式之 間作切換。 【發明内容】 f發明提供一種液晶遮光面板,以解決習知技術中無 法在70全透光與局部透光之間電致切換的問題。 本發明另提供一種顯示裝置,以解決習知3D顯示裝 置無法在_3£>影像的赋無影像賴式之間作 200844544 P060208LOZ1TW 23509twf.doc/n 切換的問題。 本發明的一種液晶遮光面板具有交錯配置的多個第 一條狀£與夕個第·一條狀區。此液晶遮光面板包括*一第一 基板、一第二基板、一液晶層、多個條狀絕緣件、一第一 偏振片以及一第二偏振片。第一基板之内表面上配置有一 第一電極層與覆蓋第一電極層的一第一配向層。第二基板 之内表面上配置有一第二電極層與覆蓋第二電極層的一第 二配向層。液晶層配置於第一基板的第一配向層與第二基 € 板的弟一配向層之間。第一配向層使液晶層之液晶分子垂 直配向並沿一第一方向預傾,而第二配向層使液晶層之液 晶分子垂直配向並沿一第二方向預傾,且第一方向實質上 垂直第二方向。條狀絕緣件配置於第一配向層及/或第二配 向層上,且位於第一條狀區。第一偏振片配置於第一基板 之外表面上,允許線偏振方向平行於第一方向的光線通 過。第二偏振片配置於第二基板之外表面上,允許線偏振 方向平行於第一方向的光線通過。 G 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子的預傾角為大於〇度且小於等於15度。 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子為負型液晶分子。 在上述液晶遮光面板的一實施例_,條狀絕緣件是由 多個反應基單體聚合而成。 上述之反應基單體的材質可以如式(1)所示: 式⑴·· 200844544 P060208LOZ1TW 23509twf.doc/n 其中, B、B ’包括芳香族(Aromatic)或飽和環烧烴(saturated ring core); X、Y包括終端基(terminal group)或反應基(reactive group); R、R’、R”為連結官能基(binding group);以及 Z、Z’為側鏈取代基。 上述之反應基可以是丙烯酸g旨(acrylate)、曱基丙烯酸 酯(methacrylate)或環氧樹酯(epoxy)。此外,R、R,與R”例 如各自包括亞烧基(alkylene)、酯基或_基等其他自由基 起始反應之單體。舉例而言,反應基單體可以為··。 。 。 。 。 。 。 。 。 LCD blackout panel. [Prior Art] In terms of development of display technology, in addition to pursuing lightness and thinness, it is more desirable to achieve the goal of displaying stereoscopic images. At present, stereoscopic display technology can be roughly divided into two ways: users need to wear specially designed glasses or direct naked eyes. Nowadays, glasses-type stereoscopic display technology has matured and is widely used in some special applications such as military simulation or large-scale entertainment, but the inconvenience and discomfort of wearing glasses make such technology difficult to popularize. Therefore, the naked-eye stereoscopic display technology has gradually developed and become a new trend. In the conventional 3D image display using the spatial multiplexing principle, the left and right eye image display areas are divided into left and right eye images, and the parallax barrier is used to simultaneously project the images to the left and right eyes. , to the stereo effect. However, such a 3D display device can only be used to display a 3D image, and cannot switch between a mode in which a 3D image is displayed and a mode in which a 2D image is displayed. SUMMARY OF THE INVENTION The invention provides a liquid crystal light-shielding panel to solve the problem that it is impossible to electrically switch between 70 full light transmission and partial light transmission in the prior art. The present invention further provides a display device for solving the problem that the conventional 3D display device cannot switch between the image and the video image of the _3£> image, and the 200844544 P060208LOZ1TW 23509 twf.doc/n switch. A liquid crystal light-shielding panel of the present invention has a plurality of first-shaped strips and a plurality of strip-shaped strips arranged in a staggered configuration. The liquid crystal light shielding panel comprises a first substrate, a second substrate, a liquid crystal layer, a plurality of strip insulating members, a first polarizing plate and a second polarizing plate. A first electrode layer and a first alignment layer covering the first electrode layer are disposed on the inner surface of the first substrate. A second electrode layer and a second alignment layer covering the second electrode layer are disposed on the inner surface of the second substrate. The liquid crystal layer is disposed between the first alignment layer of the first substrate and the alignment layer of the second base plate. The first alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilts in a first direction, and the second alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilds in a second direction, and the first direction is substantially vertical The second direction. The strip insulator is disposed on the first alignment layer and/or the second alignment layer and is located in the first strip region. The first polarizing plate is disposed on the outer surface of the first substrate to allow light having a linear polarization direction parallel to the first direction to pass. The second polarizing plate is disposed on the outer surface of the second substrate to allow light having a linear polarization direction parallel to the first direction to pass. G In an embodiment of the above liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer have a pretilt angle greater than a twist and less than or equal to 15 degrees. In an embodiment of the above liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules. In an embodiment of the above liquid crystal light-shielding panel, the strip-shaped insulating member is formed by polymerizing a plurality of reactive group monomers. The material of the above reactive group monomer can be as shown in the formula (1): Formula (1) · 200844544 P060208LOZ1TW 23509twf.doc/n wherein B, B 'includes aromatic (Aromatic) or saturated ring core (saturated ring core) X, Y includes a terminal group or a reactive group; R, R', R" are a binding group; and Z, Z' are side chain substituents. It may be an acrylic acid, a methacrylate or an epoxy. Further, R, R, and R" each include, for example, an alkylene group, an ester group, or an alkyl group. Other monomers that initiate the reaction of free radicals. For example, the reactive monomer can be
本發明的另一種液晶遮光面板具有交錯配置的多個 第一條狀區與多個第二條狀區。此液晶遮光面板包括一第 一基板、一第二基板、一液晶層、多個條狀絕緣件、一第 一偏振片以及一第二偏振片。第一基板之内表面上配置有 一第一電極層與覆蓋第一電極層的一第一配向層。第二基 板之内表面上配置有一第二電極層與覆蓋第二電極層的一 第二配向層。液晶層配置於第一基板的第一配向層與第二 基板的弟二配向層之間’且液晶層之液晶分子為負型液晶 200844544 P060208LOZ1TW 23509twf.doc/n 分子。第一配向層使液晶層之液晶分子垂直配向並沿一第 一方向預傾,而第二配向層使液晶層之液晶分子垂直配向 並沿一第二方向預傾’且第一方向實質上垂直第二方向。 條狀絕緣件配置於第一電極層與第一配向層之間,及/或配 置於第二電極層與第二配向層之間,且位於第一條狀區。 第一偏振片配置於第一基板之外表面上,允許線偏振方向 平行於第一方向的光線通過。第二偏振片配置於第二基板 之外表面上,允許線偏振方向平行於第一方向的光線通過。 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子的預傾角為大於〇度且小於等於15度。 在上述液晶遮光面板的一實施例中,條狀絕緣件之材 質為聚合物。 在上述液晶遮光面板的一實施例中,條狀絕緣件之頂 面為平坦面。 在上述液晶遮光面板的一實施例中,條狀絕緣件的折 射率實質上相同於液晶層之液晶分子的尋常(ordinary)折 射率。 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子為負型液晶分子。 » 本發月的再—種液晶遮光面板具有交錯配置的多個 第一條狀區與多個第二條狀區。此液晶遮光面板包括一第 土板 弟—基板、一液晶層、一第一偏振片以及一第 二。第一基板之内表面上配置有多個第一條狀電極 與覆盍第-條狀電極的—第—配向詹,而第_條狀電極位 200844544 P060208LOZ1TW 23509twf.doc/n 於第一條狀區。第二基板之内表面上配置有多個第二條狀 電極與覆蓋第二條狀電極的一第二配向層,而第二條狀電 極位於第一條狀區。液晶層配置於第一基板的第一配向層 與第二基板的第二配向層之間,且液晶層之液晶分子為負 型液晶分子。第一配向層使液晶層之液晶分子垂直配向並 沿一第一方向預傾,而第二配向層使液晶層之液晶分子垂 直配向並沿一第二方向預傾,且第一方向實質上垂直第二 方向。第一偏振片配置於第一基板之外表面上,允許線偏 f ; 振方向平行於第一方向的光線通過。第二偏振片配置於第 二基板之外表面上,允許線偏振方向平行於第一方向的光 線通過。 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子的預傾角為大於0度且小於等於15度。 在上述液晶遮光面板的一實施例中,第一條狀電極與 第二條狀電極之材質為銦錫氧化物(Indium Tin Oxide,ITO) 或銦辞氧化物(Indium Zinc Oxide,IZ0)。 ( 在上述液晶遮光面板的一實施例中,液晶層之液晶分 子為負型液晶分子。 本發明的顯示裝置包括一顯示模組與前述三種液晶 遮光面板中的任一種,而液晶遮光面板配置於顯示模組上 或顯示模組中。 在上述三種顯示裝置的一實施例中,顯示模組包括一 背光模組與一液晶顯示面板’液晶遮光面板位於背光模組 與液晶顯示面板之間。 200844544 P060208LOZ1TW 23509twf.doc/n 在上述三種顯示裝置的一實施例中,顯示模組包括一 背光模組與一液晶顯示面板,液晶顯示面板位於液晶遮光 面板與背光模組之間。 在上述三種顯示裝置的一實施例中,顯示模組為一有 機發光二極體(organic light emitting diode, OLED)顯示面 板或一電漿顯示面板(plasma display panel, PDP),液晶遮 光面板是位於顯示模組上。 ρ 綜上所述,本發明之液晶遮光面板可在完全透光與局 部透光之間電致切換。本發明之顯示裝置因使用上述液晶 遮光面板,故可在顯示3D影像的模式與顯示2D影像的模 式之間作切換。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖1為本發明一實施例之液晶遮光面板的上視示意 1/ 圖,而圖2A與圖2B分別為圖1之液晶遮光面板的區域 A10在施加電壓前後的立體示意圖。 請參照圖1,本實施例之液晶遮光面板200具有交錯 配置的多個第一條狀區202與多個第二條狀區204。亦即, 每個第一條狀區202的兩侧都是第二條狀區204,且每個 弟一條狀區204的兩側都是第一條狀區202。 請參照圖2A與圖2B,液晶遮光面板200包括一第一 基板210、一苐二基板220、一液晶層230、多個條狀絕緣 11 200844544 P060208LOZ1TW 23509twf.doc/n 件240 (圖2A中僅繪示一個)、一第一偏振片250以及一 第二偏振片260。第一基板210之内表面上配置有一第一 電極層212與覆蓋第一電極層212的一第一配向層214。 第二基板220之内表面上配置有一第二電極層222與覆蓋 第二電極層222的一第二配向層224。液晶層230配置於 第一基板210的第一配向層214與第二基板220的第二配 向層224之間。本實施例中,液晶層230之液晶分子232 f、 採用負型液晶分子’但並非用以限定本發明。負型液晶分 子232的平行介電常數小於垂直介電常數,因此在受到電 場作用時負型液晶分子232的長轴將垂直電場方向。 第一配向層214與第二配向層224都使液晶層230之 液晶分子232垂直配向,但第一配向層214使液晶分子232 沿一第一方向D10預傾,而第二配向層224使液晶分子232 沿一第二方向D20預傾。其中,第一方向D10實質上垂直 第二方向D20。本實施例中,條狀絕緣件240配置於第一 配向層214及第二配向層224上,且位於第一條狀區202。 〇 具體而言,各條狀絕緣件240是以長條狀的外觀分佈於一 個第一條狀區202内。此外,雖然本實施例之條狀絕緣件 240同時配置於第一配向層214及第二配向層224上,但 在其他實施例中條狀絕緣件240也可僅配置於第一配向層 214或第二配向層224上。第一偏振片250配置於第一基 板210之外表面上,而第二偏振片260配置於第二基板220 之外表面上,且兩者皆允許線偏振方向平行於第一方向 D10的光線通過。 12 200844544 P060208LOZ1TW 23509twf.doc/n 圖3A與圖3B分別為圖1之液晶遮光面板在施加電壓 前後的局部剖示圖。請參照圖2A與圖3A,光源通過第二 偏振片260後將成為線偏振光,且其線偏振方向平行於第 一方向D10。由於液晶分子232受到第一配向層214與第 二配向層224的垂直配向,因此在施加電壓前,第一電極 層212與第二電極層222之間沒有電場存在時,液晶分子 232主要是受第一配向層214與第二配向層224的作用而 垂直排列。此時,線偏振光在通過液晶層230後其線偏振 方向並不會被改變,所以線偏振光依舊可通過第一偏振片 250而向外射出。換言之,液晶遮光面板20〇的第一條狀 區202與第二條狀區204都處於允許光線通過的狀態。 請參照圖2B與圖3B,當第一電極層212與第二電極 層222之間具有電壓差而產生電場時,負型的液晶分子232 的長軸將朝向垂直於電場方向的方向旋轉。此外,由於靠 近第一配向層214與靠近第二配向層224之液晶分子232 的預傾方向互相垂直,因此被驅動後的液晶分子232將以 I, 扭轉向列(twisted nematic,TN)的方式作動,並使線偏振光 的偏振方向產生90度的旋轉。然而,第一條狀區2〇2中存 在條狀絕緣件240,而第二條狀區204中沒有條狀絕緣件 240,故要驅動第一條狀區2〇2中的液晶分子232所需的電 場強度會大於要驅動第二條狀區204中的液晶分子232所 需的電場強度。換言之,若控制第一電極層212與第二電 極層222之間的電場在適當強度,則可僅驅動第二條狀^ 204中的液晶分子232以扭轉向列的方式作動,而讓第一 13 200844544 P060208LOZ1TW 23509twf.doc/n 條狀區202中的液晶分子232絕大部分保持在垂直排列的 狀態。 Γ 換έ之,通過第二偏振片260的線偏振光在通過第二 條狀區204之液晶層230後,其線偏振方向會被旋轉9〇 度而無法通過第-偏振片25〇。但是,通過第二偏振片· 的線偏振光在通過第-條狀區搬之液晶層23G後,其線 偏振方向仍保持不變而可通過第—偏振片25G。亦即是, 此時液晶遮光面板200可發揮如習知技術中所述之視差阻 障兀件的作用。由此可知,本實施例之液晶遮光面板200 可在元全透光與局部透光之間電致切換。 在本實施例巾,條狀絕緣件·可由多個反應基單體 聚合而成。具體^言;反應基單體的分子結構可以是:Another liquid crystal light-shielding panel of the present invention has a plurality of first strip regions and a plurality of second strip regions arranged in a staggered configuration. The liquid crystal light shielding panel comprises a first substrate, a second substrate, a liquid crystal layer, a plurality of strip insulating members, a first polarizing plate and a second polarizing plate. A first electrode layer and a first alignment layer covering the first electrode layer are disposed on the inner surface of the first substrate. A second electrode layer and a second alignment layer covering the second electrode layer are disposed on the inner surface of the second substrate. The liquid crystal layer is disposed between the first alignment layer of the first substrate and the second alignment layer of the second substrate and the liquid crystal molecules of the liquid crystal layer are negative liquid crystals 200844544 P060208LOZ1TW 23509twf.doc/n molecules. The first alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilds in a first direction, and the second alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilts in a second direction and the first direction is substantially vertical The second direction. The strip insulator is disposed between the first electrode layer and the first alignment layer, and/or disposed between the second electrode layer and the second alignment layer, and is located in the first strip region. The first polarizing plate is disposed on the outer surface of the first substrate to allow light having a linear polarization direction parallel to the first direction to pass. The second polarizing plate is disposed on the outer surface of the second substrate to allow light having a linear polarization direction parallel to the first direction to pass. In an embodiment of the above liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer have a pretilt angle greater than a twist and less than or equal to 15 degrees. In an embodiment of the above liquid crystal light-shielding panel, the material of the strip-shaped insulating member is a polymer. In an embodiment of the above liquid crystal light-shielding panel, the top surface of the strip-shaped insulating member is a flat surface. In an embodiment of the above liquid crystal light-shielding panel, the refractive index of the strip-shaped insulating member is substantially the same as the ordinary refractive index of the liquid crystal molecules of the liquid crystal layer. In an embodiment of the above liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules. » The re-type liquid crystal shading panel of this month has a plurality of first strip regions and a plurality of second strip regions arranged in a staggered configuration. The liquid crystal light-shielding panel comprises a first earth plate-substrate, a liquid crystal layer, a first polarizing plate and a second. The inner surface of the first substrate is provided with a plurality of first strip electrodes and a first alignment strip of the strip-shaped strip electrodes, and the first strip electrode position 200844544 P060208LOZ1TW 23509twf.doc/n is in the first strip shape Area. A plurality of second strip electrodes and a second alignment layer covering the second strip electrodes are disposed on the inner surface of the second substrate, and the second strip electrodes are located in the first strip region. The liquid crystal layer is disposed between the first alignment layer of the first substrate and the second alignment layer of the second substrate, and the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules. The first alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilts in a first direction, and the second alignment layer vertically aligns the liquid crystal molecules of the liquid crystal layer and pretilds in a second direction, and the first direction is substantially vertical The second direction. The first polarizing plate is disposed on the outer surface of the first substrate to allow the line to be deflected by the light having a direction parallel to the first direction. The second polarizing plate is disposed on the outer surface of the second substrate to allow the linear polarization direction to pass through the light in the first direction. In an embodiment of the above liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer have a pretilt angle of more than 0 degrees and less than or equal to 15 degrees. In an embodiment of the liquid crystal light-shielding panel, the first strip electrode and the second strip electrode are made of Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZ0). In an embodiment of the liquid crystal light-shielding panel, the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules. The display device of the present invention comprises a display module and any one of the three liquid crystal light-shielding panels, and the liquid crystal light-shielding panel is disposed on In an embodiment of the above three display devices, the display module includes a backlight module and a liquid crystal display panel, and the liquid crystal shutter panel is located between the backlight module and the liquid crystal display panel. In an embodiment of the above three types of display devices, the display module includes a backlight module and a liquid crystal display panel, and the liquid crystal display panel is located between the liquid crystal shutter panel and the backlight module. In one embodiment, the display module is an organic light emitting diode (OLED) display panel or a plasma display panel (PDP), and the liquid crystal light shielding panel is located on the display module. In summary, the liquid crystal light-shielding panel of the present invention can be electrically switched between full light transmission and partial light transmission. Since the display device of the present invention uses the liquid crystal light-shielding panel described above, it is possible to switch between a mode for displaying a 3D image and a mode for displaying a 2D image. To make the above and other objects, features and advantages of the present invention more apparent, the following DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a top view of a liquid crystal light-shielding panel according to an embodiment of the present invention, and FIG. 2A and FIG. 2B respectively. 1 is a perspective view of the area A10 of the liquid crystal light-shielding panel of FIG. 1 before and after voltage application. Referring to FIG. 1, the liquid crystal light-shielding panel 200 of the present embodiment has a plurality of first strip regions 202 and a plurality of second strips arranged in a staggered configuration. The region 204. That is, each of the first strip regions 202 has a second strip region 204 on both sides, and each of the strip strip regions 204 has a first strip region 202 on both sides. Please refer to FIG. 2A. 2B, the liquid crystal light-shielding panel 200 includes a first substrate 210, a second substrate 220, a liquid crystal layer 230, and a plurality of strip insulations 11 200844544 P060208LOZ1TW 23509twf.doc/n 240 (only one is shown in FIG. 2A) a first polarizing plate 250 and a a second polarizing plate 260. A first electrode layer 212 and a first alignment layer 214 covering the first electrode layer 212 are disposed on the inner surface of the first substrate 210. A second electrode layer is disposed on the inner surface of the second substrate 220. 222 and a second alignment layer 224 covering the second electrode layer 222. The liquid crystal layer 230 is disposed between the first alignment layer 214 of the first substrate 210 and the second alignment layer 224 of the second substrate 220. In this embodiment, The liquid crystal molecules 232 f of the liquid crystal layer 230, using negative liquid crystal molecules 'but are not intended to limit the invention. The parallel dielectric constant of the negative liquid crystal molecule 232 is smaller than the vertical dielectric constant, so that the long axis of the negative liquid crystal molecule 232 will be perpendicular to the electric field direction when subjected to an electric field. The first alignment layer 214 and the second alignment layer 224 both vertically align the liquid crystal molecules 232 of the liquid crystal layer 230, but the first alignment layer 214 pre-tilts the liquid crystal molecules 232 in a first direction D10, and the second alignment layer 224 makes the liquid crystal The molecules 232 are pretilted in a second direction D20. The first direction D10 is substantially perpendicular to the second direction D20. In this embodiment, the strip insulators 240 are disposed on the first alignment layer 214 and the second alignment layer 224 and are located in the first strip region 202. Specifically, each of the strip-shaped insulating members 240 is distributed in a first strip-like region 202 in an elongated appearance. In addition, although the strip insulator 240 of the present embodiment is disposed on the first alignment layer 214 and the second alignment layer 224 at the same time, in other embodiments, the strip insulator 240 may be disposed only on the first alignment layer 214 or the first On the second alignment layer 224. The first polarizing plate 250 is disposed on the outer surface of the first substrate 210, and the second polarizing plate 260 is disposed on the outer surface of the second substrate 220, and both allow light having a linear polarization direction parallel to the first direction D10 to pass. . 12 200844544 P060208LOZ1TW 23509twf.doc/n FIGS. 3A and 3B are partial cross-sectional views of the liquid crystal light-shielding panel of FIG. 1 before and after voltage application, respectively. Referring to FIG. 2A and FIG. 3A, the light source passes through the second polarizing plate 260 and becomes linearly polarized light, and its linear polarization direction is parallel to the first direction D10. Since the liquid crystal molecules 232 are vertically aligned by the first alignment layer 214 and the second alignment layer 224, when no electric field exists between the first electrode layer 212 and the second electrode layer 222 before the voltage is applied, the liquid crystal molecules 232 are mainly subjected to The first alignment layer 214 and the second alignment layer 224 are arranged vertically. At this time, the linearly polarized light does not change its linear polarization direction after passing through the liquid crystal layer 230, so the linearly polarized light can still be emitted outward through the first polarizing plate 250. In other words, both the first strip region 202 and the second strip region 204 of the liquid crystal light-shielding panel 20 are in a state of allowing light to pass therethrough. Referring to FIG. 2B and FIG. 3B, when a voltage difference is generated between the first electrode layer 212 and the second electrode layer 222 to generate an electric field, the long axis of the negative liquid crystal molecules 232 will rotate in a direction perpendicular to the direction of the electric field. In addition, since the pretilt directions of the liquid crystal molecules 232 adjacent to the first alignment layer 214 and the second alignment layer 224 are perpendicular to each other, the liquid crystal molecules 232 after being driven will be in a twisted nematic (TN) manner. Actuate and cause the polarization of the linearly polarized light to produce a 90 degree rotation. However, the strip insulating member 240 is present in the first strip region 2〇2, and the strip insulating member 240 is absent in the second strip region 204, so that the liquid crystal molecules 232 in the first strip region 2〇2 are driven. The required electric field strength will be greater than the electric field strength required to drive the liquid crystal molecules 232 in the second strip region 204. In other words, if the electric field between the first electrode layer 212 and the second electrode layer 222 is controlled to be at an appropriate intensity, only the liquid crystal molecules 232 in the second strip 204 can be driven to act in a twisted nematic manner, and let the first 13 200844544 P060208LOZ1TW 23509twf.doc/n Most of the liquid crystal molecules 232 in the strip region 202 are maintained in a vertically aligned state. In other words, after the linearly polarized light passing through the second polarizing plate 260 passes through the liquid crystal layer 230 of the second strip region 204, its linear polarization direction is rotated by 9 degrees and cannot pass through the first polarizing plate 25A. However, the linearly polarized light passing through the second polarizing plate can pass through the first polarizing plate 25G after the liquid crystal layer 23G which has passed through the first strip-like region and whose linear polarization direction remains unchanged. That is, at this time, the liquid crystal light-shielding panel 200 can function as a parallax barrier member as described in the prior art. It can be seen that the liquid crystal light shielding panel 200 of the embodiment can be electrically switched between the full light transmission and the partial light transmission. In the towel of this embodiment, the strip-shaped insulating member may be formed by polymerizing a plurality of reactive group monomers. Specifically, the molecular structure of the reactive monomer can be:
7 Z X——R丨 其中,B、B'7 Z X——R丨 where B, B'
B 〜H ~ B1-R,,-γ 曰 例如疋务香族或飽和環烧烴 ,X、γ例如 或反應基,R、R,、R,,例如是連結官能基,而z、 ’其中反應基x、γ可為丙烯酸酯、曱基 其1^%氧樹|旨,連結官能基&、&,與[,可分別為亞 其他自由基起始反應之單體。更具體 而吕,反應基單體例如是: CH〇 CH2=CH—〇 或是 (CH2)ns〇B ~ H ~ B1 - R,, - γ 曰 曰 疋 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或The reactive groups x and γ may be an acrylate, a fluorenyl group, a 1% oxygen group, a linking functional group &, &, and [, respectively, a monomer which initiates a reaction with other other radicals. More specifically, the reactive monomer is, for example: CH〇 CH2=CH-〇 or (CH2)ns〇
:cif-c—〇-(CH2)ir:cif-c—〇-(CH2)ir
CH2-〇—(CH2)iTC-Ctt=CH2 200844544 P060208LOZ1TW 23509twf.doc/n 圖4疋说明目!之液晶遮光面板的製造方法。請參照 二/、,2B,在製造液晶遮光面板時,是先將液晶層 名封於第一基板21〇與一第二基板22〇之間。其中,液晶 層现内散佈有多個反應基單體(未標示)。接著,透過 ^罩50而照射紫外光Uv於液晶層230的局部區域。此 日二反應基單體會在照射到紫外光uv的區域聚合形成條 狀絕緣件240。在圖2A、圖2B、圖3A與圖3B中所繪示 ( 的條狀絕緣件24G都僅為示意之用,並不用於表達條狀絕 緣件240的實際形狀。此外,依據不同反應基單體的材料 特性,使反應基單體聚合的方法也可以是照射其他類型的 光線、加熱或是其他適當方式。另外,在液晶層23〇中還 可摻雜有對掌性摻質(chirald〇pant),其具有幫助液晶分子 232規則排列的作用。 請參照圖2A,第一配向層214及第二配向層224之 材質例如是聚醯亞胺(polyimide)或其他適當材質,而第一 配向層214及第二配向層224可採用接觸式配向或非接觸 I’ 式配向。非接觸式配向例如是摩擦(rubbing),而非接觸式 配向例如是光配向技術、離子束配向技術、電漿束配向技 術、斜向蒸鍍配向技術或利用雷射干涉技術形成微溝槽。 經配向後,第一配向層214及第二配向層224可對液晶分 子232進行垂直配向並使其預傾。其中,液晶分子232的 預傾角例如是大於〇度且小於等於15度。另外,第一電極 層212與第二電極層222之材質可以是銦錫氧化物、銦鋅 氧化物或其他透明導電材質。 15 200844544 P060208LOZ1TW 23509twf.doc/n 圖5A與圖5B分別為本發明另一實施例之液晶遮光面 板在施加電壓前後的局部剖示圖。請參照圖5A,本實施例 之液晶遮光面板300與圖2A之液晶遮光面板2〇〇相似, 其差異主要在於條狀絕緣件340的位置與條狀絕緣件240 的位置不同。以下僅就兩種實施例之差異處進行說明,並 省略相似處之介紹。本實施例中,條狀絕緣件34()配置於 弟一電極層322與第二配向層324之間。但在其他實施例 中’條狀纟巴緣件3 40也可配置於第一電極層312與第一配 向層314之間’或是同時配置於第一電極層312與第一配 向層314之間以及第二電極層322與第二配向層324之 間。條狀絕緣件340位於第一條狀區302。 請參照圖5A,光源通過第一偏振片350後將成為線 偏振光’且其線偏振方向平行於第一方向D10。於施加驅 動電壓前,由於液晶分子332受到第一配向層314與第二 配向層324的垂直配向,因此在第一電極層312與第二電 極層322之間沒有電場存在時,液晶分子332主要是受第 一配向層314與第二配向層324的作用而垂直排列。此時, 線偏振光在通過液晶層330後其線偏振方向並不會被改 變’所以線偏振光依舊可通過第二偏振片360而向外射 出。換言之,液晶遮光面板300的第一條狀區302與第二 條狀區304都處於允許光線通過的狀態。 請參照圖5B,當第一電極層312與第二電極層322 之間具有電壓差而產生電場時,負型的液晶分子332的長 軸將朝向垂直於電場方向的方向旋轉。此外,由於靠近第 16 200844544 P060208LOZ1TW 23509twf.doc/nCH2-〇—(CH2)iTC-Ctt=CH2 200844544 P060208LOZ1TW 23509twf.doc/n Figure 4疋Illustration! A method of manufacturing a liquid crystal light shielding panel. Referring to 2/, 2B, when manufacturing the liquid crystal light-shielding panel, the liquid crystal layer is first sealed between the first substrate 21A and the second substrate 22A. Among them, the liquid crystal layer is internally dispersed with a plurality of reactive group monomers (not shown). Next, the ultraviolet light Uv is irradiated to a partial region of the liquid crystal layer 230 through the mask 50. This day, the reactive monomer is polymerized to form a strip-shaped insulating member 240 in a region irradiated with ultraviolet light uv. The strip-shaped insulating members 24G shown in FIGS. 2A, 2B, 3A, and 3B are for illustrative purposes only and are not intended to express the actual shape of the strip-shaped insulating member 240. Further, depending on the different reaction substrates The material properties of the body, the method of polymerizing the reactive monomer may also be irradiating other types of light, heating or other suitable means. In addition, the liquid crystal layer 23 may be doped with a palmitic dopant (chirald〇). Pant), which has the function of helping the liquid crystal molecules 232 to be regularly arranged. Referring to FIG. 2A, the material of the first alignment layer 214 and the second alignment layer 224 is, for example, polyimide or other suitable material, and the first alignment The layer 214 and the second alignment layer 224 may adopt a contact alignment or a non-contact I' type alignment. The non-contact alignment is, for example, rubbing, and the non-contact alignment is, for example, a photo-alignment technique, an ion beam alignment technique, and a plasma. The beam alignment technique, the oblique vapor deposition alignment technique, or the laser interference technique is used to form the micro trench. After the alignment, the first alignment layer 214 and the second alignment layer 224 can vertically align the liquid crystal molecules 232 and pretilt them. among them, The pretilt angle of the crystal molecules 232 is, for example, greater than 15 degrees and less than or equal to 15. Further, the material of the first electrode layer 212 and the second electrode layer 222 may be indium tin oxide, indium zinc oxide or other transparent conductive material. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The liquid crystal light-shielding panel 2 is similar in that the position of the strip-shaped insulating member 340 is different from the position of the strip-shaped insulating member 240. Only the differences between the two embodiments will be described below, and the description of the similar parts will be omitted. In this embodiment, the strip-shaped insulating member 34 is disposed between the first electrode layer 322 and the second alignment layer 324. However, in other embodiments, the strip-shaped strip member 3 40 may be disposed on the first electrode. Between layer 312 and first alignment layer 314 is disposed between first electrode layer 312 and first alignment layer 314 and between second electrode layer 322 and second alignment layer 324. Strip insulator 340 is located First strip zone 30 2. Referring to FIG. 5A, the light source will become linearly polarized light after passing through the first polarizing plate 350 and its linear polarization direction is parallel to the first direction D10. Before the driving voltage is applied, the liquid crystal molecules 332 are subjected to the first alignment layer 314 and The vertical alignment of the second alignment layer 324, so that when no electric field exists between the first electrode layer 312 and the second electrode layer 322, the liquid crystal molecules 332 are mainly vertically affected by the first alignment layer 314 and the second alignment layer 324. At this time, the linearly polarized light does not change its linear polarization direction after passing through the liquid crystal layer 330. Therefore, the linearly polarized light can still be emitted outward through the second polarizing plate 360. In other words, both the first stripe region 302 and the second stripe region 304 of the liquid crystal light-shielding panel 300 are in a state of allowing light to pass therethrough. Referring to FIG. 5B, when a voltage difference is generated between the first electrode layer 312 and the second electrode layer 322 to generate an electric field, the long axis of the negative liquid crystal molecules 332 will rotate in a direction perpendicular to the direction of the electric field. In addition, due to proximity to the 16th 200844544 P060208LOZ1TW 23509twf.doc/n
一配向層314與靠近第二配向層324之液晶分子332的預 傾方向互相垂直’因此被驅動後的液晶分子332將以扭轉 向列的方式作動,並使線偏振光的偏振方向產生9〇度的旋 轉。然而,第一條狀區302中存在條狀絕緣件34〇,而第 二條狀區304中沒有條狀絕緣件340,故要驅動第一條狀 區302中的液晶分子332所需的電場強度會大於要驅動第 二條狀區304中的液晶分子332所需的電場強度。換言之, 右控制弟笔極層與第二電極層322之間的電場在適 當強度,則可僅驅動第二條狀區3〇4中的液晶分子332以 扭轉向列的方式作動,而讓第一條狀區3〇2中的液晶分子 332絕大部分保持在垂直排列的狀態。 換吕之,通過第 一〜十‘偏振片350的線偏振光在通過第二 條狀區304之液晶層33〇後’其線偏振方向會被旋轉卯 度而無法通過第二偏振片編。但是,通過第一偏振片35〇 的線偏振光在通過第—條狀區302之液晶層33〇後,其線 偏振方向仍保持不變而可通過第二偏振片·。亦即 ί時板300可發揮如習知技術中所述之視差阻 此可知,本實施例之液晶遮光面板300 在70王透光與局部透光之間電致切換。 實質上相f 折射率n例如是但並不限定於 η ίΓΓΓ層伽之液晶分子332的尋常折射率 ^面,藉面例如是但並不限定於平 木H緣件34G之頂面上方的液晶分子332 17 200844544 P060208LOZ1TW 23509twf.doc/n 能更規則地排列。The alignment direction 314 and the pretilt direction of the liquid crystal molecules 332 near the second alignment layer 324 are perpendicular to each other'. Therefore, the liquid crystal molecules 332 after being driven will be operated in a twisted nematic manner, and the polarization direction of the linearly polarized light is generated 9 turns. Degree of rotation. However, the strip insulating member 34 is present in the first strip region 302, and the strip insulating member 340 is absent in the second strip region 304, so that the electric field required to drive the liquid crystal molecules 332 in the first strip region 302 is driven. The intensity will be greater than the electric field strength required to drive the liquid crystal molecules 332 in the second strip region 304. In other words, when the electric field between the right control gate electrode layer and the second electrode layer 322 is at an appropriate intensity, only the liquid crystal molecules 332 in the second strip region 3〇4 can be driven to act in a twisted nematic manner, and Most of the liquid crystal molecules 332 in the strip region 3〇2 are maintained in a vertically aligned state. In other words, the linearly polarized light passing through the first to tenth 'polarizing plate 350 after passing through the liquid crystal layer 33 of the second strip region 304' will be rotated by the twisted direction and cannot pass through the second polarizing sheet. However, the linearly polarized light passing through the first polarizing plate 35 在 passes through the liquid crystal layer 33 of the first strip region 302, and its linear polarization direction remains unchanged to pass through the second polarizing plate. That is, the slab 300 can exhibit the parallax resistance as described in the prior art. It can be seen that the liquid crystal glazing panel 300 of the present embodiment is electrically switched between the 70-light transmission and the partial light transmission. The refractive index n of the phase f is, for example, but not limited to, the ordinary refractive index of the liquid crystal molecules 332 of the η ΓΓΓ layer, and the surface is, for example, but not limited to the liquid crystal molecules above the top surface of the flat H-edge 34G. 332 17 200844544 P060208LOZ1TW 23509twf.doc/n can be arranged more regularly.
c 圖6A與圖6B是說明圖5A之液晶遮光面板的 緣件之製造方法。請參照圖6A與圖犯,在製造肖ς 件340的-實施例中,是先提供具有第—電極層3ΐ4、= -基板310,但此時第一基板31〇上尚未形成配向層 著,在第-基板310的第一電極層314上全面形成二 材料層342,此絕緣材料層342爿如是具有感光性的2 材料,更詳細的說,此感光性光阻材料較佳地是一透光 料,並具有相近於液晶分子折射係數化的折射 後,使用一光罩50對絕緣材料層342進行曝光製程。然後, 對於曝光後的絕緣材料層342進行顯影製程,即可在第一 基板310的第一電極層314上形成如圖6B所示之條狀絕 緣件340。以上所述之曝光與顯影製程為本技術領域中具 有通常知識者所熟知,在此不對其具體實施方式多做介 紹。當然,條狀絕緣件340的製造方法並不侷限於參考圖 6A與圖6B所介紹之實施例,尚有許多本技術領域中具有 通常知識者所熟知可用於製造條狀絕緣件34〇,在此^不 一一贅述0 圖7A與圖7B分別為本發明再一實施例之液晶遮光面 板在施加電壓前後的局部剖示圖。請參照圖7A,本實施例 之液晶遮光面板400與圖2A之液晶遮光面板2〇〇相似, 其差異主要在於本實施例之液晶遮光面板400沒有條狀絕 緣件’但第一電極412與第二電極422都呈條狀且位於第 一條狀區402。 18 200844544 P060208LOZ1TW 23509twf.doc/n 請參照圖7A,光源通過第一偏振片45〇後將成為線 偏振光’且其線偏振方向平行於第一方向Dl〇。由於液晶 分子432受到第一配向層414與第二配向層424的垂直配 向,因此在第一條狀電極412與第二條狀電極422之間沒 有電場存在時’液晶分子432主要是受第一配向層414與 第二配向層424的作用而垂直排列。此時,線偏振光在通 過液晶層430後其線偏振方向並不會被改變,所以線偏振 光依售可通過第二偏振片460而向外射出。換言之,液晶 遮光面板400的第一條狀區402與第二條狀區4〇4都處於 允許光線通過的狀態。 清參知、圖7B,當第一條狀電極412與第二條狀電極 422之間具有電壓差而產生電場時,負型的液晶分子432 的長轴將朝向垂直於電場方向的方向旋轉。此外,由於靠 近第一配向層414與靠近第二配向層424之液晶分子432 的預傾方向互相垂直,因此被驅動後的液晶分子432將以 扭轉向列的方式作動,並使線偏振光的偏振方向產生9〇 t 度的旋轉。然而,只有第一條狀區402中的液晶分子432 會叉到第一條狀電極412與第二條狀電極422之間的電場 驅動而以扭轉向列的方式作動,但第二條狀區4〇4中的液 晶分子432上下並沒有任何電極而不會被驅動且絕大部分 保持在垂直排列的狀態。 換言之,通過第一偏振片45〇的線偏振光在通過第一 條狀區402之液晶層430後,其線偏振方向會被旋轉9〇 度而無法通過第一偏振片460。但是,通過第一偏振片450 19 200844544 P060208LOZ1TW 23509twf.doc/n 的線偏振光在通過第二條狀區4〇4之液晶層43〇後,其線 偏振方向仍保持不變而可通過第二偏振片46〇。亦即是, ^時液晶遮光面板4GG可發揮如f知技射所述之視差阻 PIitg件的作用。由此可知,本實施例之液晶遮光面板· 可在元全透光與局部透光之間電致切換。 此外,第一條狀電極412與第二條狀電極422之材質 可以是銦錫氧化物、銦鋅氧化物或其他透明導電材質。、 〇 圖8為本發明一實施例之顯示裝置的示意圖。請參照 圖8,本實施例之顯示裝置5〇〇包括一顯示模組51〇與一 液晶遮光面板520。其中,液晶遮光面板52〇可以是前述 二種實施例之液晶遮光面板中的任一種或其變形,在此並 不贅述。液晶遮光面板520是配置於顯示模組51〇上。顯 示模組510具有交錯排列的多個第一區域512與多個第^ 區域514。當顯示模組510處於3D顯示模式時,第一區域 512適合顯示供使用者之右眼觀看的影像,而第二區域Η# 則適合顯示供使用者之左眼觀看的影像。當顯示模組51〇 I 處於2D顯示模式時,第一區域512與第二區域514都僅 顯示2D影像。液晶遮光面板520是位於使用者顯示模組 510之間。 當液晶遮光面板520被電致驅動而成為局部透光時, 第一區域512顯示的影像會通過液晶遮光面板52〇的透光 區域而到達使用者之右眼,第二區域514顯示的影像則會 通過液晶遮光面板520的透光區域而到達使用者之左眼。 藉此,使用者的右眼與左眼將分別觀看到右眼影像與左眼 20 200844544 P060208LOZ1TW 23509twf.doc/n 影像,進而讓使用者有觀看到3D影像的感受。 當液晶遮光面板520沒被電致驅動而全面透光時,第 一區域512與第二區域514顯示的2D影像都可通過液晶 遮光面板520而被使用者所接收。此時,使用者可觀看^ 2D影像。 ^ 由此可知,由於液晶遮光面板520可被電致切換,故 顯示裝置500可在顯示3D影像的模式與顯示2〇影像的模 式之間電致切換。 ' 〇 一 此外,顯示模組510可以是一有機發光二極體顯示面 板、一電漿顯示面板或其他適當顯示模組。 圖9A與圖9B為本發明另外兩種實施例之顯示裝置的 示意圖。請參照圖9A,本實施例之顯示裝置6〇〇包括一顯 示模組610與一液晶遮光面板620。液晶遮光面板620與 圖8之液晶遮光面板520相似,而液晶遮光面板620在顯 示模組610上。顯示模組610包括一背光模組612與一液 晶顯示面板614 ’而液晶顯示面板614位於液晶遮光面板 Ci 620與为光核組612之間。由於液晶遮光面板620可被電 致切換而完全透光或局部透光,故顯示裝置600同樣可在 顯示3D影像的模式與顯示2D影像的模式之間電致切換。 請參照圖9B,本實施例之顯示裝置602與圖9A之顯 示裝置600相似’差異在於液晶遮光面板620位於液晶顯 示面板614與背光模組612之間。雖然構件之間的相對位 置有所不同,但是顯示裝置602同樣可在顯示3D影像的 模式與顯示2D影像的模式之間電致切換。 21 200844544 P060208LOZ1TW 23509tw£doc/n 綜上所述,在本發明之液晶遮光面板中,其中一種停 狀ίΐί透光與不透光之間電致切換,㈣另-種條狀區 保持透光。目此’本發明讀晶私錄可在完全 局部透光之間電致浦。本發明之顯示裝置因使用上述液 S曰遮光面;故可在液晶遮光面板局部透光時顯示犯影 像而在液曰曰遮光面板完全透光時顯示2D影像。 —雖然本發明已雜佳實施例揭露如上,然其並非用以Figure 6A and Figure 6B are diagrams showing a method of manufacturing the edge of the liquid crystal light-shielding panel of Figure 5A. Referring to FIG. 6A and FIG. 6A, in the embodiment for fabricating the mirror member 340, the first electrode layer 3ΐ4 and the —substrate 310 are provided first, but at this time, the alignment layer is not formed on the first substrate 31. A two-material layer 342 is formed on the first electrode layer 314 of the first substrate 310. The insulating material layer 342 is, for example, a photosensitive material. In more detail, the photosensitive photoresist material is preferably transparent. After the light material has refraction similar to the refractive index of the liquid crystal molecules, the insulating material layer 342 is exposed to light using a mask 50. Then, a developing process of the exposed insulating material layer 342 is performed to form a strip-shaped insulating member 340 as shown in Fig. 6B on the first electrode layer 314 of the first substrate 310. The exposure and development processes described above are well known to those of ordinary skill in the art and will not be described in detail herein. Of course, the method of manufacturing the strip insulator 340 is not limited to the embodiment described with reference to Figures 6A and 6B, and many of those skilled in the art are well known for making strip insulators 34 FIG. 7A and FIG. 7B are partial cross-sectional views of the liquid crystal light-shielding panel according to still another embodiment of the present invention before and after voltage application. Referring to FIG. 7A, the liquid crystal light-shielding panel 400 of the present embodiment is similar to the liquid crystal light-shielding panel 2A of FIG. 2A, and the difference is mainly that the liquid crystal light-shielding panel 400 of the present embodiment has no strip-shaped insulating member' but the first electrode 412 and the first The two electrodes 422 are strip-shaped and located in the first strip region 402. 18 200844544 P060208LOZ1TW 23509twf.doc/n Referring to FIG. 7A, the light source will become linearly polarized light after passing through the first polarizing plate 45 and its linear polarization direction is parallel to the first direction D1. Since the liquid crystal molecules 432 are vertically aligned by the first alignment layer 414 and the second alignment layer 424, the liquid crystal molecules 432 are mainly subjected to the first when no electric field exists between the first strip electrodes 412 and the second strip electrodes 422. The alignment layer 414 and the second alignment layer 424 are arranged vertically. At this time, the linearly polarized light is not changed in the direction of linear polarization after passing through the liquid crystal layer 430, so the linearly polarized light can be emitted outward through the second polarizing plate 460. In other words, the first strip region 402 and the second strip region 4〇4 of the liquid crystal light-shielding panel 400 are in a state of allowing light to pass therethrough. As is clear, in Fig. 7B, when an electric field is generated with a voltage difference between the first strip electrode 412 and the second strip electrode 422, the long axis of the negative liquid crystal molecules 432 will rotate in a direction perpendicular to the direction of the electric field. In addition, since the pretilt directions of the liquid crystal molecules 432 close to the first alignment layer 414 and the second alignment layer 424 are perpendicular to each other, the driven liquid crystal molecules 432 will be operated in a twisted nematic manner and linearly polarized. The polarization direction produces a rotation of 9 〇t degrees. However, only the liquid crystal molecules 432 in the first strip 402 are forked to the electric field between the first strip electrode 412 and the second strip electrode 422 to act in a twisted nematic manner, but the second strip region The liquid crystal molecules 432 in 4〇4 do not have any electrodes up and down and are not driven and remain mostly in a vertically aligned state. In other words, after the linearly polarized light passing through the first polarizing plate 45 turns through the liquid crystal layer 430 of the first strip region 402, its linear polarization direction is rotated by 9 degrees to pass the first polarizing plate 460. However, after the linearly polarized light passing through the first polarizing plate 450 19 200844544 P060208LOZ1TW 23509twf.doc/n passes through the liquid crystal layer 43 of the second strip region 4〇4, the linear polarization direction remains unchanged and can pass through the second The polarizing plate 46 is 〇. That is, the liquid crystal light-shielding panel 4GG can function as a parallax resistance PIitg piece as described in the art. It can be seen that the liquid crystal light shielding panel of the embodiment can be electrically switched between the full light transmission and the partial light transmission. In addition, the material of the first strip electrode 412 and the second strip electrode 422 may be indium tin oxide, indium zinc oxide or other transparent conductive material. 。 Figure 8 is a schematic view of a display device in accordance with an embodiment of the present invention. Referring to FIG. 8, the display device 5 of the embodiment includes a display module 51 and a liquid crystal shutter 520. The liquid crystal light-shielding panel 52A may be any one of the liquid crystal light-shielding panels of the foregoing two embodiments or variations thereof, and will not be described herein. The liquid crystal light shielding panel 520 is disposed on the display module 51A. The display module 510 has a plurality of first regions 512 and a plurality of second regions 514 arranged in a staggered manner. When the display module 510 is in the 3D display mode, the first area 512 is adapted to display an image for viewing by the user's right eye, and the second area Η# is adapted to display an image for viewing by the user's left eye. When the display module 51〇I is in the 2D display mode, both the first area 512 and the second area 514 display only 2D images. The liquid crystal shutter panel 520 is located between the user display modules 510. When the liquid crystal light-shielding panel 520 is electrically driven to be partially transparent, the image displayed by the first region 512 passes through the light-transmitting region of the liquid crystal light-shielding panel 52 to reach the right eye of the user, and the image displayed by the second region 514 is The left eye of the user is reached through the light transmitting area of the liquid crystal light shielding panel 520. Thereby, the right eye and the left eye of the user respectively view the right eye image and the left eye 20 200844544 P060208LOZ1TW 23509twf.doc/n image, thereby allowing the user to have a feeling of viewing the 3D image. When the liquid crystal light-shielding panel 520 is not electrically driven to transmit light, the 2D images displayed by the first area 512 and the second area 514 can be received by the user through the liquid crystal light-shielding panel 520. At this point, the user can view the 2D image. ^ It can be seen that since the liquid crystal light shielding panel 520 can be electrically switched, the display device 500 can be electrically switched between the mode of displaying the 3D image and the mode of displaying the 2nd image. In addition, the display module 510 can be an organic light emitting diode display panel, a plasma display panel or other suitable display module. 9A and 9B are schematic views of a display device according to still another embodiment of the present invention. Referring to FIG. 9A, the display device 6 of the embodiment includes a display module 610 and a liquid crystal shutter 620. The liquid crystal light shielding panel 620 is similar to the liquid crystal light shielding panel 520 of FIG. 8, and the liquid crystal light shielding panel 620 is on the display module 610. The display module 610 includes a backlight module 612 and a liquid crystal display panel 614', and the liquid crystal display panel 614 is located between the liquid crystal shutter panel Ci 620 and the photon group 612. Since the liquid crystal light shielding panel 620 can be electrically switched to be completely transparent or partially transparent, the display device 600 can also be electrically switched between the mode in which the 3D image is displayed and the mode in which the 2D image is displayed. Referring to FIG. 9B, the display device 602 of the present embodiment is similar to the display device 600 of FIG. 9A. The difference is that the liquid crystal light shielding panel 620 is located between the liquid crystal display panel 614 and the backlight module 612. Although the relative positions between the components are different, the display device 602 can also be electrically switched between the mode in which the 3D image is displayed and the mode in which the 2D image is displayed. 21 200844544 P060208LOZ1TW 23509tw£doc/n In summary, in the liquid crystal light-shielding panel of the present invention, one of the stops is electrically switched between light and opaque, and (4) the other strips remain transparent. Thus, the crystallographic recording of the present invention can be electro-optic between completely partial light transmission. Since the display device of the present invention uses the liquid-shielding surface of the above liquid, it is possible to display an image when the liquid crystal light-shielding panel partially transmits light, and display a 2D image when the liquid-shielding light-shielding panel is completely transparent. - although the present invention has been disclosed as a preferred embodiment, it is not intended to be used
限定本發明,任何所屬技術領域t具有通常知識者,在不 脫離本發明之精神和範_,#可作些許之更動與潤飾, 因此本發明之賴範圍#視伽之t請專利範圍所界定者 為準。 【圖式簡單說明】 圖1為本發明一實施例之液晶遮光面板的上視示意 圖。 圖2A與圖2B分別為圖1之液晶遮光面板的區域A1〇 在施加電壓前後的立體示意圖。 圖3A與圖3B分別為圖1之液晶遮光面板在施加電壓 前後的局部剖示圖。 圖4是說明圖丨之液晶遮光面板的製造方法。 圖5A與圖5B分別為本發明另一實施例之液晶遮光面 板在施加電壓前後的局部剖示圖。 圖6A與圖6B是說明圖5A之液晶遮光面板的條狀絕 緣件之製造方法。 圖7A與圖7B分別為本發明再一實施例之液晶遮光面 22 200844544 P060208LOZ1TW 23509twf.doc/n 板在施加電壓前後的局部剖不圖。 圖8為本發明一實施例之顯示裝置的示意圖。 圖9A與圖9B為本發明另外兩種實施例之顯示裝置的 示意圖。 【主要元件符號說明】 200、300、400、520、620 :液晶遮光面板 202、302、402 :第一條狀區 204、304、404 ··第二條狀區 210、310 :第一基板 212、312 :第一電極層 214、314、414 :第一配向層 220 :第二基板 222、322、422 :第二電極層 224、624、424 ··第二配向層 230、330、430 :液晶層 232、332、432 :液晶分子 240、340 :條狀絕緣件 250、350、450 ··第一偏振片 260、360、460 :第二偏振片 A10 :區域 D10 :第一方向 D20 :第二方向 50 :光罩 UV :紫外光 23 200844544 P060208LOZ1TW 23509twf.doc/n 342 :絕緣材料層 412 :第一條狀電極 422 :第二條狀電極 500、600、602 ··顯示裝置 510、610 :顯示模組 512 :第一區域 514 :第二區域 612 ·•背光模組 614 ·液晶顯不面板 24The invention is defined by those skilled in the art, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention is defined by the scope of the patent. Prevail. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view of a liquid crystal light-shielding panel according to an embodiment of the present invention. 2A and 2B are respectively perspective views of the area A1 of the liquid crystal light-shielding panel of Fig. 1 before and after voltage application. 3A and 3B are partial cross-sectional views of the liquid crystal light-shielding panel of Fig. 1 before and after voltage application, respectively. 4 is a view showing a method of manufacturing the liquid crystal light-shielding panel of the drawing. 5A and 5B are respectively partial cross-sectional views of the liquid crystal light-shielding panel before and after voltage application according to another embodiment of the present invention. 6A and 6B are views showing a method of manufacturing the strip-shaped insulating member of the liquid crystal light-shielding panel of Fig. 5A. 7A and FIG. 7B are respectively partial cross-sectional views of the liquid crystal light-shielding surface of the embodiment of the present invention before and after voltage application. FIG. 8 is a schematic diagram of a display device according to an embodiment of the present invention. 9A and 9B are schematic views of a display device according to still another embodiment of the present invention. [Main component symbol description] 200, 300, 400, 520, 620: liquid crystal light shielding panels 202, 302, 402: first strip regions 204, 304, 404 · second strip regions 210, 310: first substrate 212 312: first electrode layer 214, 314, 414: first alignment layer 220: second substrate 222, 322, 422: second electrode layer 224, 624, 424 · second alignment layer 230, 330, 430: liquid crystal Layers 232, 332, 432: liquid crystal molecules 240, 340: strip insulators 250, 350, 450 · first polarizing plates 260, 360, 460: second polarizing plate A10: region D10: first direction D20: second Direction 50: reticle UV: ultraviolet light 23 200844544 P060208LOZ1TW 23509twf.doc/n 342: insulating material layer 412: first strip electrode 422: second strip electrode 500, 600, 602 · display device 510, 610: display Module 512: first area 514: second area 612 · backlight module 614 · liquid crystal display panel 24
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96117017A TW200844544A (en) | 2007-05-14 | 2007-05-14 | Display apparatus and liquid crystal barrier panel thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96117017A TW200844544A (en) | 2007-05-14 | 2007-05-14 | Display apparatus and liquid crystal barrier panel thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200844544A true TW200844544A (en) | 2008-11-16 |
Family
ID=44822644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96117017A TW200844544A (en) | 2007-05-14 | 2007-05-14 | Display apparatus and liquid crystal barrier panel thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200844544A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103042778A (en) * | 2011-10-11 | 2013-04-17 | 群康科技(深圳)有限公司 | Anti-pollution film and manufacturing method thereof and electronic device using same |
TWI485501B (en) * | 2012-04-19 | 2015-05-21 | Innocom Tech Shenzhen Co Ltd | Display device and manufacturing method of the same |
TWI504700B (en) * | 2011-10-11 | 2015-10-21 | Innolux Corp | Anti-smudge film, manufacturing method thereof and electric device using the same |
-
2007
- 2007-05-14 TW TW96117017A patent/TW200844544A/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103042778A (en) * | 2011-10-11 | 2013-04-17 | 群康科技(深圳)有限公司 | Anti-pollution film and manufacturing method thereof and electronic device using same |
CN103042778B (en) * | 2011-10-11 | 2015-09-09 | 群康科技(深圳)有限公司 | Filth-resisting thin film and manufacture method thereof and its electronic installation of use |
TWI504700B (en) * | 2011-10-11 | 2015-10-21 | Innolux Corp | Anti-smudge film, manufacturing method thereof and electric device using the same |
TWI485501B (en) * | 2012-04-19 | 2015-05-21 | Innocom Tech Shenzhen Co Ltd | Display device and manufacturing method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101419590B1 (en) | Display device | |
JP5545664B2 (en) | Beam shaping device | |
JP4944234B2 (en) | Active birefringent lens array device and display device having the same | |
KR101530619B1 (en) | 3D display panel and method of manufacturing phase difference plate | |
TWI551930B (en) | Liquid crystal display with interleaved pixels | |
US9971166B2 (en) | Liquid crystal lens panel and display device including the same | |
CN101482665A (en) | Display equipment and its liquid crystal shading panel | |
KR102017203B1 (en) | Liquid crystal lens and display device including the same | |
WO2013018560A1 (en) | Illumination device and display device | |
KR101812511B1 (en) | Lens panel, method for manufacturing the same and display apparatus having the same | |
JP2013003588A (en) | Liquid crystal lens and display | |
TW201030378A (en) | Lens array device and image display | |
US20120300141A1 (en) | Lens panel, method for manufacturing the lens panel, display apparatus having the lens panel, display panel, a method for manufacturing the display panel and a display apparatus having the display panel | |
KR20120047534A (en) | Optical unit and display device having the same | |
JP2010540983A (en) | Beam forming equipment | |
KR20130117295A (en) | Liquid crytal lens panel, display device having the same | |
US20140152924A1 (en) | Stereoscopic image display device | |
CN104081233B (en) | Liquid crystal lens | |
US9091816B2 (en) | Method of fabricating patterned retarder | |
KR101324398B1 (en) | Lenticular lens and Method of Aligning Liquid Crystal Therein | |
US20120206666A1 (en) | Display device using switching panel and method for manufacturing switching panel | |
US20150293410A1 (en) | Liquid crystal display device and method for manufacturing same | |
KR20130140960A (en) | Panel acting as active retarder and method of fabricating the same, and 3 dimensional stereography image displayable system including the panel | |
TW200844544A (en) | Display apparatus and liquid crystal barrier panel thereof | |
CN105334564B (en) | Optical filter |