CN103025910A - 缓冲层形成 - Google Patents

缓冲层形成 Download PDF

Info

Publication number
CN103025910A
CN103025910A CN2011800360798A CN201180036079A CN103025910A CN 103025910 A CN103025910 A CN 103025910A CN 2011800360798 A CN2011800360798 A CN 2011800360798A CN 201180036079 A CN201180036079 A CN 201180036079A CN 103025910 A CN103025910 A CN 103025910A
Authority
CN
China
Prior art keywords
deposition material
described method
steam
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800360798A
Other languages
English (en)
Inventor
马库斯·E·比克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Solar Inc
Original Assignee
First Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Solar Inc filed Critical First Solar Inc
Publication of CN103025910A publication Critical patent/CN103025910A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02477Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

制造光伏器件可以包括气相传输沉积工艺。

Description

缓冲层形成
要求优先权
本申请要求于2010年7月23日提交的序列号为61/367,121的临时美国专利申请的优先权,因此通过引用将上述申请并入本文。
技术领域
本发明涉及利用气相传输沉积工艺来制造光伏器件。
背景技术
制造光伏器件可以包括沉积半导体层。一些可用的沉积技术(例如,溅射、蒸发)是视线沉积。因此,这些沉积技术对于粗糙表面的保形涂层可能有问题。
附图说明
图1是沉积系统的示意图。
图2是沿图1中的线2-2的方向穿过系统的分配器截取的局部断开剖视图。
图3是沿图2中的线3-3的方向截取的穿过分配器的剖视图。
图4是沿图2的线4-4的方向截取的底平面图,以示出系统的罩的尺寸变化的狭缝开口。
图5是材料供给的示图。
图6是材料供给的示图。
图7是二级沉积系统的示意图。
图8是示出形成缓冲层的工艺中的步骤的流程图。
图9是具有多个半导体层的光伏器件的示意图。
具体实施方式
光伏器件可以包括形成在基底(或超基底)上的多个层。例如,光伏器件可以包括以堆叠方式形成在基底上的导电层、半导体吸收层、缓冲层、半导体窗口层和透明导电氧化物(TCO)层。每个层可以继而包括多于一个的层或膜。例如,半导体窗口层和半导体吸收层一起可以视为半导体层。半导体吸收层可以包括铜-铟-镓-(二)硒化物(CIGS)。半导体层可以包括在TCO层上创建(例如,形成或沉积)的第一膜和在第一膜上创建的第二膜。另外,每个层可以覆盖器件的全部或一部分,和/或可以覆盖层下方的层或基底的全部或一部分。例如,“层”可以指与表面的全部或一部分接触的任何量的材料。
制造光伏器件可以包括沉积半导体层。例如,在制造基于CIGS的光伏(PV)器件中,可以通过化学浴沉积(CBD)来沉积缓冲层。可以通过各种手段来沉积In2S3、ZnS或ZnSe的层。然而,一些可用的沉积技术(例如,溅射、蒸发)是视线沉积。因此,这些沉积技术对于粗糙表面的保形涂层可能有问题。开发出气相传输沉积工艺和相关的沉积系统来实现较好的结果。
本发明致力于沉积诸如In2S3的半导体层的新颖构思以及可制造性的多个方面,以用于可包括但不限于CIGS器件的多种应用。不是通过其组成元素In和S的蒸发或直接从化合物蒸发到基底上来沉积化合物层,而是开发出气相传输辅助生长工艺。
In2S3在1050℃下熔化,并在更低的温度下升华到In2S和S2的蒸气。此时,所得到的蒸发的纯In2S3膜产生大约2.0-2.2eV的光学带隙。对于在PV器件中使用,较大的带隙是优选的,以提高器件产生的光电流。控制氧的添加可以将直接光学带隙拓宽到In2O3的潜在光学带隙(3.6eV)。
在气相传输沉积(VTD)工艺中使用氧稀释的传输气体可以允许升华的In2S3蒸气部分氧化并传输到加热的基底以进行随后的膜生长。通过在In-硫属化物材料系统中实施组合物和相关的带隙改变并将它们作为缓冲层在CIGS器件中应用,可以在从In2Se3到In2O3-即In2(O,S,Se)3的完全带隙范围内制造膜。然而,由于硫属化物置换的趋势/相应的硫属化物的稳定性,所以优选的是以In2Se3开始,并促进生长膜在反应模式下而不是在传输气体中与S蒸气和O2反应。
在一些实施例中,用于CIGS器件中的缓冲层的VTD的其它实施是形成ZnS、ZnSe、ZnO和Zn(O,S,Se)。ZnS的升华温度是大约1180℃,而ZnSe升华已经被报道在850-1200℃的范围内。可以采用上面在基于In的硫属化物缓冲膜的情况下已描述的相同方法,通过VTD来制备Zn(O,S,Se)层,从而产生2.67eV至3.7eV的可调带隙范围。
在一些实施例中,在两步VTD工艺中,可以结合In2(O,S,Se)3和Zn(O,S,Se)的VTD,从而通过金属和硫属化物含量在组成和带隙方面分级缓冲层。
在一方面,一种制造光伏器件的方法可以包括相邻于基底形成半导体吸收层。半导体吸收层可以包括铜铟镓二硒化物,所述方法可以包括加热沉积材料以形成沉积材料蒸气。沉积材料可以包括金属硫属化物。所述方法可以包括利用传输气体通过输送管将沉积材料蒸气传输到沉积室。所述方法可以包括相邻于半导体吸收层形成包括沉积材料的缓冲层。
所述方法可以包括在相邻于基底形成半导体吸收层之前相邻于基底形成导电层。所述方法可以包括相邻于缓冲层形成透明导电氧化物层。所述方法可以包括在相邻于缓冲层形成透明导电氧化物层之前相邻于缓冲层形成半导体窗口层。沉积材料可以包括硫化铟。沉积材料可以包括铟硫属化物。沉积材料可以包括硒化铟。沉积材料可以包括硫化锌。沉积材料可以包括锌硫属化物。沉积材料可以包括硒化锌。加热沉积材料的步骤可以在包括氧的环境中发生。
缓冲层还可以包括氧。加热沉积材料的步骤可以包括将沉积材料加热到大于大约800℃的温度。加热沉积材料的步骤可以包括将沉积材料加热到大于大约1000℃的温度。所述方法可以包括在基底的宽度上均匀地分配沉积材料蒸气。所述方法可以包括:混合沉积材料蒸气和传输气体,从而在蒸气离开分配器之前促进蒸气和传输气体之间的反应。所述方法可以包括:混合沉积材料蒸气和传输气体,从而在蒸气离开分配器之后促进蒸气和传输气体之间的反应。所述方法可以包括加热输送管。传输气体可以包括氦。
在另一方面,一种用于制造光伏器件的气相传输沉积系统可以包括沉积材料源,沉积材料源包括沉积材料。沉积材料可以包括包含铟或锌的材料。所述系统可以包括将沉积材料加热成沉积材料蒸气的加热器。所述系统可以包括包含基底、导电层和半导体吸收层的结构。半导体吸收层可以包括铜铟镓二硒化物。所述系统可以包括传输气体源,传输气体源可以传输沉积材料蒸气。所述系统可以包括输送管,输送管可以将传输气体和沉积材料蒸气输送到与所述结构相邻的位置,从而使得沉积材料蒸气相邻于半导体吸收层沉积以形成缓冲层。
输送管可以被配置为混合蒸气和传输气体,并进一步促进蒸气和传输气体之间的反应。所述系统可以包括位于沉积室中的分配器,以在基底的宽度上均匀地分配蒸气。分配器可以被配置为混合蒸气和传输气体,并进一步促进蒸气和传输气体之间的反应。所述系统可以包括:传送带(或传送器),用于相邻于分配器传送基底,以将蒸气在基底上沉积为层。
沉积材料可以包括硫化铟。沉积材料可以包括铟硫属化物。沉积材料可以包括硒化铟。沉积材料可以包括硫化锌。沉积材料可以包括锌硫属化物。沉积材料可以包括硒化锌。传输气体可以包括氦。传输气体可以包括氧。传输气体可以包括氦和氧的混合物。
在另一方面,一种在基底沉积材料的方法可以包括加热沉积材料以形成沉积材料蒸气。沉积材料可以包括铟或锌。所述方法可以包括利用传输气体通过输送管将沉积材料蒸气传输到沉积室。所述方法可以包括相邻于基底形成包括沉积材料的层。沉积材料可以包括硫化铟。沉积材料可以包括铟硫属化物。沉积材料可以包括硒化铟。沉积材料可以包括硫化锌。沉积材料可以包括锌硫属化物。沉积材料可以包括硒化锌。所述方法可以包括使沉积材料蒸气与存在于沉积室环境中的氧反应。
在另一方面,一种光伏器件可以包括:基底;与基底相邻的半导体吸收层,包括铜铟镓二硒化物;以及与半导体吸收层相邻的缓冲层,包括金属硫属化物。光伏器件可以包括位于基底和半导体吸收层之间的导电层。光伏器件可以包括与缓冲层相邻的透明导电氧化物层。光伏器件可以包括位于缓冲层和透明导电氧化物层之间的半导体窗口层。缓冲层可以包括铟硫属化物。缓冲层可以包括锌硫属化物。缓冲层可以包括氧。
参照图1,沉积系统10可以包括装置12。沉积系统10处理用于沉积半导体材料(例如,In2S3)的玻璃基底100。在其它实施例中,也可以利用其它基底和沉积材料。例如,其它材料可以包括In2Se3、ZnS或ZnSe。沉积可以发生在诸如箔的金属基底上。另外,可以在适中的温度下利用高蒸气压力沉积诸如Zn或Pb的材料或者任何其它合适的材料。
如图1所示,沉积系统10可以包括限定沉积室16的壳体14,半导体材料在沉积室16中沉积在玻璃基底100上。壳体14包括进入站18和出离站20。这些进入站18和出离站20可以被构造为装载锁或间隙式密封件,玻璃基底100通过它们进入并离开沉积室16。可以以任何合适的方式加热壳体14。沉积室16可以保持在200℃至700℃、500℃至800℃、500℃至1100℃或任何合适的值的温度下,玻璃基底100可以在处理过程中被加热到大约100℃至650℃、300℃至750℃或300℃至850℃或任何合适的值的略低的温度。
参照图1至图3,装置12可以包括具有导电可透入构件24的分配器22。可透入构件24可以是具有延长构造的管状形状。管状可透入构件24可以被加热,可以在管状可透入构件24的相对端部28处通过电连接件26并沿构件的长度施加电压来执行加热。此电压引起电流沿着管状可透入构件24的长度流动,从而在处理过程中对其提供电加热。可以加热管状可透入构件24,以保持大约800℃至1200℃的温度。可以提供装置12的至少一个材料供应部30,以将载气和半导体材料引入到用于加热的管状可透入构件24中,从而在处理过程中提供向外穿过管状可透入构件的蒸气。装置的传送带32相邻于分配器22传送玻璃基底100,以将蒸气在基底上沉积为半导体层。
在一些实施例中,管状可透入构件24可以由碳化硅制成,但是它还可以由可透入的碳或优选地导电的任何其它可透入材料制成,从而以所公开的方式提供加热。此外,分配器22可以包括大体上管状形状的罩34,罩34容纳可透入构件24,如在图3中所示。罩34可以引导蒸气围绕管状可透入构件24的外部,并具有开口36,蒸气穿过开口36以在玻璃基底100上沉积半导体层。更具体地讲,罩34可以包括被构造为沿罩的管状形状延伸的狭缝的开口36。
参照图4,罩34可以具有相对的端部37,在相对的端部37之间,狭缝形状的开口36可以具有变化的尺寸,以有助于蒸气的分配和半导体层的均匀沉积。更具体地讲,狭缝形状的开口36可以相邻于端部37具有较小的尺寸,在端部37处,引入载气和半导体材料。此外,狭缝形状的开口36可以在距离该引入处较远的中央区域具有较大的尺寸,从而提供均匀的沉积。为了提供半导体材料的良好分配,可期望的是向管状可透入构件24的内部提供合适的分流器,分流器提供沿管状可透入构件的长度向外且随后沿罩的狭缝形状的开口36的长度的均匀通路。此外,罩34可以由陶瓷材料制成,陶瓷材料最优选地是富铝红柱石。
罩34还可以有利地减少从热的管状可透入构件24到玻璃基底100的辐射热传递。可以在处理过程中将基底100加热到大约100℃至650℃、300℃至750℃或300℃至850℃或者任何合适的值的温度。更具体地讲,因为罩34的外部表面温度低于热的管状可透入构件24的温度,所以罩34辐射到玻璃基底100的能量的量会减少。富铝红柱石具有充分低的辐射能力,并且相对坚固且易于制造。另外,可以提供诸如Al2O3或Y2O3的涂层,以降低罩34的外表面的辐射能力。
在一些实施例中,可以选择罩34的狭缝形状的开口36的长度,以控制玻璃基底100上的沉积层的宽度的范围。因此,可以选择狭缝形状的开口36的长度小于玻璃片基底的宽度,以提供带形的沉积层。这种控制还可以使蒸气的浪费最少化。当基底的整个宽度将被覆盖时,人们可以理想地使狭缝形状的开口36的宽度等于或者略小于或大于基底的宽度,从而在沉积过程中使基本上全部的蒸气沉积到基底上。
为了提供高效的沉积,已经将罩34与传送的玻璃片基底隔开在0.5厘米至3.0厘米的范围内的距离。可以利用更大的间隔,这将需要更低的系统压力,并将由于过度分散而导致蒸气浪费。此外,较小的间隔会导致在传送过程中因玻璃片基底的热翘曲而产生的问题。较小的间隔还会导致超过用于处理的期望的基底温度。
参照图2,材料供应部30将来自源38的载气和来自料斗42的作为粉末40的半导体材料引入到管状可透入构件24的一个端部28,还存在另一个材料供应部30,其同样将载气和作为粉末的半导体材料引入到管状可透入构件24的另一端部28。因此,载气和夹带的半导体粉末可以沿管状可透入构件24的整个长度良好地分布。
每个材料供应部30可以包括旋转螺杆44,旋转螺杆44接收来自料斗42的半导体粉末40,并可以由致动器46旋转地驱动。输送管48可以以与旋转螺杆44连通的方式从载气源38延伸到多孔管状构件24的相邻端部28。螺杆44在受控速率下的旋转将半导体粉末40引入到输送管48中,从而被夹带在其中,以流入到提供蒸气的用于加热的管状可透入构件24中。
图2、图5和图6分别披露了材料供应部30、30′和30″的不同实施例。更具体地讲,在图2中示出的材料供应部30具有绕水平轴旋转的螺杆44,以将半导体粉末40引入到输送管48中,而图5的材料供应部30′的实施例可以包括绕垂直轴旋转的螺杆44,以将半导体粉末40从料斗42引入到输送管48中。利用材料供给部的这些螺杆实施例中的每个,可以通过螺杆旋转的速率精确地控制作为粉末引入的半导体材料的量。此外,图6的实施例的材料供应部30″可以包括具有从料斗42到输送管48向上延伸的倾斜通路52的振动给料器50。振动给料器50的操作使半导体粉末40振动,从而使半导体粉末40沿着倾斜通路52向上移动到输送管48,以便作为夹带粉末流到管状可透入构件24中。
在一些实施例中,光伏器件的半导体层(例如,CIGS模块的缓冲层)的沉积可以是两步VTD工艺。参照图7,沉积系统可以包括两个或更多个装置12。对于CIGS模块的缓冲层的沉积,可以结合铟硫属化物或锌硫属化物的VTD,从而通过金属和硫属化物含量在组成和带隙方面分级缓冲层。铟硫属化物或锌硫属化物的VTD可以在一个装置12中结合,或者可以通过不同的装置执行,从而在基底100上沉积分级的带隙缓冲层140。铟硫属化物可以是任何合适的铟硫属化物,包括例如氧化铟(例如,In2O3)、硫化铟(例如,In2S3)或硒化铟(例如,In2Se3)或者它们的组合。锌硫属化物可以是任何合适的锌硫属化物,包括例如氧化锌(例如,ZnO)、硫化锌(例如,ZnS)或硒化锌(ZnSe)或它们的组合。
此外,在其它实施例中,如果将从分配器24仅流出In2S3(ZnS、In2Se3、ZnSe),则可以将氧加入到传输气体中,或者在蒸气离开VTD源之后加入氧。In2S3可以被蒸发或者在部分氧环境中以其它方式蒸发,从而在不使用VTD源的情况下将蒸气引导到基底。在一些实施例中,可以利用诸如反应蒸发方法的如下工艺来执行CIGS模块的缓冲层的沉积:在部分氧环境中从元素In(Zn)和S进行蒸发,从而在不使用VTD源的情况下将蒸气引导到基底。
图8是形成缓冲层的工艺中的步骤的图示。步骤1可以包括通过加热沉积材料来形成沉积材料蒸气。沉积材料可以包括从由铟和锌组成的组中选择的材料。步骤2可以包括利用传输气体传输沉积材料蒸气。沉积材料蒸气可以通过加热的输送管传输到沉积室。步骤3可以包括相邻于基底的半导体吸收层形成缓冲层。蒸气沉积的缓冲层可以包括从由铟和锌组成的组中选择的沉积材料。
参照图9,作为利用上面讨论的气相传输沉积工艺的制造工艺的产物,CIGS光伏器件200可以包括玻璃基底210、导电层220、铜铟镓二硒化物吸收层230、缓冲层240和半导体窗口层250以及透明导电氧化物层260。玻璃基底310可以包括含钠玻璃。透明导电氧化物层320可以包括氧化锡、氧化锌或任何其它合适的透明导电氧化物材料。半导体窗口层350可以包括硫化镉。缓冲层240可以包括金属硫属化物,例如铟硫属化物或锌硫属化物。缓冲层240可以包括氧。
已经描述了本发明的许多实施例。然而,应当理解的是,在不脱离本发明的精神和范围的情况下,可以做出各种修改。还应当理解的是,附图未必是按比例绘出的,以便呈现对本发明的基本原理进行举例说明的各种优选特征的略微简化的表示。

Claims (41)

1.一种制造光伏器件的方法,所述方法包括:
相邻于基底形成半导体吸收层,其中,半导体吸收层包括铜铟镓二硒化物;
加热沉积材料,以形成沉积材料蒸气,其中,沉积材料包括金属硫属化物;
利用传输气体通过输送管将沉积材料蒸气传输到沉积室;以及
相邻于半导体吸收层形成包括沉积材料的缓冲层。
2.根据权利要求1所述的方法,所述方法还包括:在相邻于基底形成半导体吸收层之前,相邻于基底形成导电层。
3.根据前述权利要求中的任一项所述的方法,所述方法还包括:相邻于缓冲层形成透明导电氧化物层。
4.根据权利要求3所述的方法,所述方法还包括:在相邻于缓冲层形成透明导电氧化物层之前,相邻于缓冲层形成半导体窗口层。
5.根据权利要求1-3中的任一项所述的方法,其中,沉积材料包括硫化铟。
6.根据权利要求1-3中的任一项所述的方法,其中,沉积材料包括铟硫属化物。
7.根据权利要求6所述的方法,其中,沉积材料包括硒化铟。
8.根据权利要求1-3中的任一项所述的方法,其中,沉积材料包括硫化锌。
9.根据权利要求1-3中的任一项所述的方法,其中,沉积材料包括锌硫属化物。
10.根据权利要求9所述的方法,其中,沉积材料包括硒化锌。
11.根据前述权利要求中的任一项所述的方法,其中,加热沉积材料的步骤发生在包括氧的环境中。
12.根据前述权利要求中的任一项所述的方法,其中,缓冲层还包括氧。
13.根据前述权利要求中的任一项所述的方法,其中,加热沉积材料的步骤包括将沉积材料加热到大于大约800℃的温度。
14.根据权利要求13所述的方法,其中,加热沉积材料的步骤包括将沉积材料加热到大于大约1000℃的温度。
15.根据前述权利要求中的任一项所述的方法,所述方法还包括:在基底的宽度上均匀地分配沉积材料蒸气。
16.根据前述权利要求中的任一项所述的方法,所述方法还包括:混合沉积材料蒸气和传输气体,从而在蒸气离开分配器之前促进蒸气和传输气体之间的反应。
17.根据前述权利要求中的任一项所述的方法,所述方法还包括:混合沉积材料蒸气和传输气体,从而在蒸气离开分配器之后促进蒸气和传输气体之间的反应。
18.根据前述权利要求中的任一项所述的方法,所述方法还包括:加热输送管。
19.根据前述权利要求中的任一项所述的方法,其中,传输气体包括氦。
20.一种用于制造光伏器件的气相传输沉积系统,所述系统包括:
沉积材料源,包括沉积材料,沉积材料包括从由铟和锌组成的组中选择的材料;
加热器,将沉积材料加热成沉积材料蒸气;
包括基底、导电层和半导体吸收层的结构,半导体吸收层包括铜铟镓二硒化物;
传输气体源,传输沉积材料蒸气;以及
输送管,将传输气体和沉积材料蒸气输送到与所述结构相邻的位置,从而使沉积材料蒸气相邻于半导体吸收层沉积,以形成缓冲层。
21.根据权利要求20所述的系统,其中,输送管被构造为混合蒸气和传输气体,并进一步促进蒸气和传输气体之间的反应。
22.根据权利要求20-21中的任一项所述的系统,所述系统还包括:位于沉积室中的分配器,用于在基底的宽度上均匀地分配蒸气。
23.根据权利要求22所述的系统,其中,分配器被构造为混合蒸气和传输气体,并进一步促进蒸气和传输气体之间的反应。
24.根据权利要求22所述的系统,所述系统还包括:传送带,用于相邻于分配器传送基底,以将蒸气在基底上沉积为层。
25.根据权利要求20-24中的任一项所述的系统,其中,传输气体包括氧。
26.根据权利要求20-24中的任一项所述的系统,其中,传输气体包括氦和氧的混合物。
27.一种在基底上沉积材料的方法,所述方法包括:
加热沉积材料,以形成沉积材料蒸气,其中,沉积材料包括从由铟和锌组成的组中选择的材料;
利用传输气体通过输送管将沉积材料蒸气传输到沉积室;以及
相邻于基底形成包括沉积材料的层。
28.根据权利要求27所述的方法,其中,沉积材料包括硫化铟。
29.根据权利要求27-28中的任一项所述的方法,其中,沉积材料包括铟硫属化物。
30.根据权利要求29所述的方法,其中,沉积材料硒化铟。
31.根据权利要求27-30中的任一项所述的方法,其中,沉积材料包括硫化锌。
32.根据权利要求27-30中的任一项所述的方法,其中,沉积材料包括锌硫属化物。
33.根据权利要求32所述的方法,其中,沉积材料包括硒化锌。
34.根据权利要求27-32中的任一项所述的方法,所述方法还包括:使沉积材料蒸气与存在于沉积室环境中的氧反应。
35.一种光伏器件,所述光伏器件包括:
基底;
与基底相邻的半导体吸收层,包括铜铟镓二硒化物;以及
与半导体吸收层相邻的缓冲层,包括金属硫属化物。
36.根据权利要求35所述的光伏器件,所述光伏器件还包括:导电层,位于基底和半导体吸收层之间。
37.根据权利要求35-36中的任一项所述的光伏器件,所述光伏器件还包括:
透明导电氧化物层,与缓冲层相邻。
38.根据权利要求37所述的光伏器件,所述光伏器件还包括:半导体窗口层,位于缓冲层和透明导电氧化物层之间。
39.根据权利要求35-38中的任一项所述的光伏器件,其中,缓冲层包括铟硫属化物。
40.根据权利要求35-38中的任一项所述的光伏器件,其中,缓冲层包括锌硫属化物。
41.根据权利要求35-40中的任一项所述的光伏器件,其中,缓冲层还包括氧。
CN2011800360798A 2010-07-23 2011-07-22 缓冲层形成 Pending CN103025910A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36712110P 2010-07-23 2010-07-23
US61/367,121 2010-07-23
PCT/US2011/044984 WO2012012700A1 (en) 2010-07-23 2011-07-22 Buffer layer formation

Publications (1)

Publication Number Publication Date
CN103025910A true CN103025910A (zh) 2013-04-03

Family

ID=44504209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800360798A Pending CN103025910A (zh) 2010-07-23 2011-07-22 缓冲层形成

Country Status (3)

Country Link
US (1) US20120017983A1 (zh)
CN (1) CN103025910A (zh)
WO (1) WO2012012700A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388419B1 (ko) * 2012-06-14 2014-05-12 에스엔유 프리시젼 주식회사 글래스 기판 증착장치 및 이를 이용하는 글래스 기판 증착방법
US20150325722A1 (en) * 2012-06-20 2015-11-12 Saint-Gobain Glass France Layer system for thin-film solar cells
ES2480865B1 (es) * 2012-12-28 2015-05-20 Abengoa Solar New Technologies, S.A. Fuente de evaporación para el transporte de precursores químicos, y método de evaporación para el transporte de los mismos que utiliza dicha fuente.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619383A1 (en) * 1993-04-05 1994-10-12 Cvd Incorporated Process and apparatus for supplying metal vapor continuously to a chemical vapor deposition
US6323417B1 (en) * 1998-09-29 2001-11-27 Lockheed Martin Corporation Method of making I-III-VI semiconductor materials for use in photovoltaic cells
US20060236937A1 (en) * 2005-04-26 2006-10-26 Powell Ricky C System and method for depositing a material on a substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259016B1 (en) * 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
JP2006013028A (ja) * 2004-06-24 2006-01-12 National Institute Of Advanced Industrial & Technology 化合物太陽電池及びその製造方法
US8389852B2 (en) * 2006-02-22 2013-03-05 Guardian Industries Corp. Electrode structure for use in electronic device and method of making same
US20100159132A1 (en) * 2008-12-18 2010-06-24 Veeco Instruments, Inc. Linear Deposition Source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619383A1 (en) * 1993-04-05 1994-10-12 Cvd Incorporated Process and apparatus for supplying metal vapor continuously to a chemical vapor deposition
US6323417B1 (en) * 1998-09-29 2001-11-27 Lockheed Martin Corporation Method of making I-III-VI semiconductor materials for use in photovoltaic cells
US20060236937A1 (en) * 2005-04-26 2006-10-26 Powell Ricky C System and method for depositing a material on a substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUTOSHI OHTAKE,ET AL.: "Cu(InGa)Se2 Thin Film Solar Cells with Continuously Evaporated Cd-Free Buffer Layers", 《THE 25TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE》 *

Also Published As

Publication number Publication date
US20120017983A1 (en) 2012-01-26
WO2012012700A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US9614118B2 (en) Method and apparatus for depositing copper-indium-gallium selenide (CuInGaSe2-cigs) thin films and other materials on a substrate
KR102248704B1 (ko) 칼륨이 첨가되는 박막 광전자 소자의 제조
CN100546051C (zh) 用于cis类薄膜太阳能电池的连续高电阻缓冲层和窗口层的形成方法和用于实施该连续膜形成方法的连续膜形成设备
CN101459200B (zh) 柔性铜铟镓硒薄膜太阳电池吸收层的制备方法
US5728231A (en) Precursor for semiconductor thin films and method for producing semiconductor thin films
CN102051599B (zh) 用于在衬底上沉积多种材料的方法和系统
TWI687369B (zh) 用於光伏打吸收膜之核殼奈米顆粒
US8163090B2 (en) Methods structures and apparatus to provide group VIA and IA materials for solar cell absorber formation
US20110067757A1 (en) Copper indium gallium selenide (cigs) thin films with composition controlled by co-sputtering
KR20070015604A (ko) 박막 황동광 화합물 제조 방법
CN102763230A (zh) 制造半导体层的方法和装置
CN104053811B (zh) 用于材料共沉积的气相传输沉积方法及系统
CN103025910A (zh) 缓冲层形成
US8703527B2 (en) Photovoltaic devices including copper indium gallium selenide
ESSAS et al. SnS thin films grown by close-spaced vapor transport
JP6005766B2 (ja) CuInSe2及びCu(In,Ga)Se2被膜を用いて太陽電池を形成する為のシステム及び方法
Nadukkandy et al. Monoclinic AgSbS2 thin films for photovoltaic applications: Computation, growth and characterization approaches
CN102769047A (zh) 铜锌锡硫硒薄膜及其制备方法、铜锌锡硫硒薄膜太阳能电池
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
Gossla et al. Five-source PVD for the deposition of Cu (In1− xGax)(Se1− ySy) 2 absorber layers
CN106409659A (zh) 化合物半导体薄膜及其制备方法
CN106784316A (zh) 一种钙钛矿单晶材料与微晶硅复合材料结合的薄膜太阳电池及其制备方法
US9136423B1 (en) Method and apparatus for depositing copper—indiumgalliumselenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
KR101403479B1 (ko) 화합물 반도체의 제조장치 및 이를 이용한 화합물 반도체의 제조방법
KR101384293B1 (ko) Cigs 태양전지 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130403