CN103022897A - 超辐射发光二极管及其制作方法 - Google Patents

超辐射发光二极管及其制作方法 Download PDF

Info

Publication number
CN103022897A
CN103022897A CN201210581934XA CN201210581934A CN103022897A CN 103022897 A CN103022897 A CN 103022897A CN 201210581934X A CN201210581934X A CN 201210581934XA CN 201210581934 A CN201210581934 A CN 201210581934A CN 103022897 A CN103022897 A CN 103022897A
Authority
CN
China
Prior art keywords
layer
super
emitting diode
nanometers
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210581934XA
Other languages
English (en)
Other versions
CN103022897B (zh
Inventor
周志强
刘建军
唐琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Huagong Genuine Optics Tech Co Ltd
Original Assignee
Wuhan Huagong Genuine Optics Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Huagong Genuine Optics Tech Co Ltd filed Critical Wuhan Huagong Genuine Optics Tech Co Ltd
Priority to CN201210581934.XA priority Critical patent/CN103022897B/zh
Publication of CN103022897A publication Critical patent/CN103022897A/zh
Application granted granted Critical
Publication of CN103022897B publication Critical patent/CN103022897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种超辐射发光二极管及其制作方法,包括有衬底,采用外延生长技术,在衬底上依次形成缓冲层、下限制层、有源区、上限制层和第一p型包覆层,构成一次外延片;继续采用外延生长技术,在一次外延片表面依次生长出第二p型包覆层和n型包覆层,构成二次外延片;继续采用外延生长技术,在二次外延片表面继续生成覆盖层和接触层,构成三次外延片;依次采用光刻、刻蚀、磨片和溅射工艺将三次外延片制作成超辐射发光二极管芯片,并对所述芯片的出光端面镀增透膜。本发明具有偏振灵敏度低、纹波系数小、高功率及宽光谱等优点。

Description

超辐射发光二极管及其制作方法
技术领域
本发明属于有源半导体发光器件技术领域,尤其涉及一种超辐射发光二极管。
背景技术
超辐射发光二极管是一种自发将辐射光放大的器件,其光电特性介于激光器与发光二极管之间,兼具激光器的高输出功率及发光二极管的宽光谱特性等优点,在光纤陀螺、光学相干层析成像技术以及光纤通信等领域有着广泛的应用。
传统的超辐射发光二极管的有源区一般为体材料或压应变多量子阱,其TE模式(te mode)的输出功率一般远大于TM模式(tm mode),为了保证光的线偏振方向不变,需要在光纤传感等应用中使用保偏光纤或其它偏振控制器件来调节,增加了使用成本。
此外,由于大的光谱纹波会产生二次相干峰,影响光纤陀螺仪的精度,因此一般要求超辐射发光二级管具有较小的纹波系数。
获得较低光谱纹波的方法一般有在背光面制作吸收区、增益区采用倾斜条形结构、在出光端面镀增透膜等方式,但这些方法均对端面镀膜工艺要求较高,工艺实现难度较大,且不易获得较高的光输出功率。
而在超辐射发光管的波导结构设计上,通常采用脊型波导结构,其优点是工艺简单,可靠性好,但是在材料生长方向上较大的远场发散角使得光纤耦合功率损耗较大,出纤功率较低。
发明内容
本发明要解决的技术问题是提供一种偏振灵敏度低、纹波系数小、高功率及宽光谱的超辐射发光二极管结构。
为了解决上述技术问题,本发明提供了一种超辐射发光二极管的制作方法,包括:
步骤一,采用外延生长技术,在衬底上依次形成缓冲层、下限制层、有源区、上限制层和第一p型包覆层,构成一次外延片;
步骤二,继续采用外延生长技术,在一次外延片表面依次生长出第二p型包覆层和n型包覆层,构成二次外延片;
步骤三,继续采用外延生长技术,在二次外延片表面继续生成覆盖层和接触层,构成三次外延片;
步骤四,依次采用光刻、刻蚀、磨片和溅射工艺将三次外延片制作成超辐射发光二极管芯片,并对所述芯片的出光端面镀增透膜。
进一步地,在步骤一和步骤二之间,采用等离子体增强化学气相沉积法,在所述第一p型包覆层表面生长出掩膜层;
采用光刻及刻蚀技术,在所述掩膜层上制作掩膜图形,形成吸收区,隔离区、直波导区和倾斜条形波导区并采用反应离子刻蚀技术及化学腐蚀方法对一次外延片进行蚀刻,蚀刻深度为1500纳米。
进一步地,在步骤二完成后,去除掩膜层。
本发明还提供一种超辐射发光二极管,包括有衬底,在衬底上依次设置有缓冲层、下限制层、有源区、上限制层、包覆层、覆盖层和接触层,所述超辐射发光二极管的两端分别为背光端和出光端,所述背光端设置有吸收区, 所述出光面设置有弯曲波导结构。
进一步地,所述有源区为应变多量子阱层,所述应变多量子阱层包含五层量子阱和六层垒层,所述量子阱为张应变量子阱,应变范围为-0.1%至-0.6%,每层厚度为10纳米,所述垒层无应变,每层厚度为10纳米。
进一步地,所述衬底为N型磷化铟InP衬底;
所述缓冲层为铟磷InP缓冲层,厚度为500纳米;
所述下限制层为铟镓砷磷InGaAsP下限制层,厚度为100纳米;
所述上限制层为InGaAsP上限制层,厚度为100纳米;
所述覆盖层为p型InP覆盖层,厚度为1500纳米;
所述接触层为InGaAs欧姆接触层,厚度为200纳米;
所述吸收区为矩形,长度为50至300微米,所述宽度为1.2至250微米。
进一步地,所述包覆层包括有依次设置的第一p型包覆层、第二p型包覆层、n型包覆层。
进一步地,所述第一p型包覆层为p型磷化铟InP层,厚度为250纳米;
所述第二p型包覆层也为p型InP层,厚度为700纳米;
所述n型包覆层为n型InP层,厚度为800纳米。
进一步地,弯曲波导结构由直波导区、弯曲波导区和倾斜条形波导区依次组成。
进一步地,所述直波导区长度为50~500微米,弯曲波导区长度为50~200微米,倾斜条形波导区与出光端面的夹角为80~85度。
本发明的显著特点在于:
1、采用均匀多量子阱作为超辐射发光二极管的有源区,以获得近高斯线形的光谱形状,其中使用张应变材料为量子阱层,以实现较低的偏振灵敏度;
2、采用吸收区与弯曲波导结构相结合的方法来抑制光反馈,降低了对出光端面的镀膜要求,从而降低了工艺实现难度,有利于获得低的纹波系数及宽的光谱;
3、采用隐埋异质结构对超辐射发光二极管的侧向进行电流及光场限制,从而获得更高的光输出功率及光纤耦合效率。
附图说明
图1是本发明的一次外延结构示意图,
图2 是本发明的二次外延结构示意图,
图3 是本发明的三次外延结构示意图。
图中,1. N型InP衬底,2. InP缓冲层,3. InGaAsP下限制层,4. 张应变多量子阱层,5. InGaAsP上限制层,6. p型InP层,7. 掩膜层,8. 吸收区,9. 隔离区10、直波导区,11.弯曲波导区,12.倾斜条形波导区,13.p型InP层,14.n型InP层,15.p型InP覆盖层,16.InGaAs欧姆接触层,17.出光端,18.背光端。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图3所示,为本发明一种超辐射发光二极管的一实施例,包括有衬底,在衬底上依次设置有缓冲层、下限制层、有源区、上限制层、包覆层、覆盖层和接触层。
所述超辐射发光二极管两端分别为背光端18和出光端17,所述背光端18设置有吸收区8, 用于吸收出光端17反射的光线,所述出光端17设置弯曲波导结构,所述弯曲波导结构由直波导区10、弯曲波导区11和倾斜条形波导区12依次组成,所述直波导区10长度为50~500微米,弯曲波导区11长度为50~200微米,倾斜条形波导区12与出光端面的夹角为80~85度。
因为倾斜条形波导区12与出光端面的夹角为80~85度,所以出射光的反射路径会沿着与出光面夹角的切线方向进行反射,不会沿着出射光路返回,所以吸收区8与弯曲波导结构相结合的方法成功抑制了光反馈,有利于获得较低的纹波系数及较宽的光谱,降低了对出光端面的镀膜要求。
本实施例中,所述有源区为应变多量子阱层,并采用隐埋异质结构,所述应变多量子阱层由五层量子阱和六层垒层组成,所述量子阱为张应变量子阱,因此,所述应变多量子阱层为张应变多量子阱层4。
所述衬底为N型磷化铟InP衬底1;
所述缓冲层为铟磷InP缓冲层2,厚度为500纳米;
所述下限制层为铟镓砷磷InGaAsP下限制层3,厚度为100纳米;
所述上限制层为InGaAsP上限制层5,厚度为100纳米;
所述覆盖层为P型InP覆盖层15,厚度为1500纳米;
所述接触层为InGaAs欧姆接触层16,厚度为200纳米;
所述吸收区8为矩形,长度为50至300微米,所述宽度为1.2至250微米。
所述包覆层包括有依次设置的第一p型包覆层、第二p型包覆层、n型包覆层。
所述第一p型包覆层为p型磷化铟InP层6,厚度为250纳米;
所述第二p型包覆层也为p型InP层13,厚度为700纳米;
所述n型包覆层为n型InP层14,厚度为800纳米。
本发明超辐射发光二极管的制作方法,如图1所示,为本发明的一次外延结构示意图,步骤一,采用外延成长技术,在衬底上依次形成缓冲层、下限制层、有源区、上限制层和第一p型包覆层,构成一次外延片。
在本实施例中,采用的外延生长技术为金属有机物化学气相淀积法(MOCVD,Metal-organic Chemical Vapor Deposition ),在N型InP衬底1上,采用MOCVD依次生长InP缓冲层2、晶格匹配的InGaAsP下限制层3、张应变多量子阱层4、晶格匹配的InGaAsP上限制层5和p型InP层6,从而完成一次外延生长,形成一次外延片。
其中InP缓冲层2厚度为500nm;
InGaAsP下限制层3和InGaAsP上限制层5的厚度均为100nm;
张应变多量子阱层4厚度为110nm,包含了5层量子阱和6层垒层,每一层量子阱和垒层的厚度均为10nm,量子阱的应变范围为-0.1%至-0.6%,本实施例中,量子阱的应变范围为-0.3%张应变,垒层无应变;
第一p型InP层6的厚度为250nm。
然后采用等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition ),在一次外延片表面的第一p型InP层6上生长200nm厚的掩膜层7,所述掩膜层7为二氧化硅掩膜层。
然后利用光刻及刻蚀技术,在掩膜层7上制作掩膜图形,形成吸收区8、隔离区9、直波导区10、弯曲波导区11和倾斜条形波导区12,接着采用反应离子刻蚀技术及化学腐蚀方法蚀刻一次外延片,蚀刻深度为1500nm。
步骤二,继续采用外延生长技术,在一次外延片表面依次生长出第二p型包覆层和n型包覆层,构成二次外延片;
本实施例中,如图2所示,为本发明的二次外延结构示意图,利用MOCVD技术,在一次外延片表面生长出第二p型InP层13及n型InP层14,其中第二p型InP层13厚度为700nm,n型InP层14厚度为800nm。
二次外延生长后,去除掩膜层7。
步骤三,继续采用外延生长技术,在二次外延片表面继续生成覆盖层和接触层,构成三次外延片;
本实施例中,如图3所示,为本发明三次外延结构示意图,将去除掩膜层7的二次外延片置入MOCVD设备中进行第三次外延,即生长p型InP覆盖层15及InGaAs欧姆接触层16,其中p型InP层15厚度为1500nm,InGaAs欧姆接触层16厚度为200nm。
最后依次采用光刻、刻蚀、磨片和溅射等工艺制作成超辐射发光二极管芯片,并利用真空介质镀膜机对芯片出光端面镀上增透膜,增透膜反射率为0.5%。
本发明的有源区采用了张应变多量子阱,实现了近高斯线形的光谱形状及低偏振灵敏度;而且有源区侧向采用隐埋异质结构对电流和光场起到了限制作用,获得了更高的芯片出光功率及光纤耦合效率;并通过吸收区与弯曲波导结构相结合的方法以抑制光反馈,从而降低了出光端面镀膜工艺要求,实现低的光谱纹波。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种超辐射发光二极管的制作方法,其特征在于,包括:
步骤一,采用外延生长技术,在衬底上依次形成缓冲层、下限制层、有源区、上限制层和第一p型包覆层,构成一次外延片;
步骤二,继续采用外延生长技术,在一次外延片表面依次生长出第二p型包覆层和n型包覆层,构成二次外延片;
步骤三,继续采用外延生长技术,在二次外延片表面继续生成覆盖层和接触层,构成三次外延片;
步骤四,依次采用光刻、刻蚀、磨片和溅射工艺将三次外延片制作成超辐射发光二极管芯片,并对所述芯片的出光端面镀增透膜。
2.根据权利要求1所述的一种超辐射发光二极管的制作方法,其特征在于,在步骤一和步骤二之间,采用等离子体增强化学气相沉积法,在所述第一p型包覆层表面生长出掩膜层;
采用光刻及刻蚀技术,在所述掩膜层上制作掩膜图形,形成吸收区,隔离区、直波导区和倾斜条形波导区并采用反应离子刻蚀技术及化学腐蚀方法对一次外延片进行蚀刻,蚀刻深度为1500纳米。
3.根据权利要求2所述的一种超辐射发光二极管的制作方法,其特征在于,在步骤二完成后,去除掩膜层。
4.一种超辐射发光二极管,包括有衬底,其特征在于,在衬底上依次设置有缓冲层、下限制层、有源区、上限制层、包覆层、覆盖层和接触层,所述超辐射发光二极管的两端分别为背光端和出光端,所述背光端设置有吸收区, 所述出光面设置有弯曲波导结构。
5.根据权利要求4所述的一种超辐射发光二极管,其特征在于,所述有源区为应变多量子阱层,所述应变多量子阱层包含五层量子阱和六层垒层,所述量子阱为张应变量子阱,应变范围为-0.1%至-0.6%,每层厚度为10纳米,所述垒层无应变,每层厚度为10纳米。
6.根据权利要求4所述的一种超辐射发光二极管,其特征在于,
所述衬底为N型磷化铟InP衬底;
所述缓冲层为铟磷InP缓冲层,厚度为500纳米;
所述下限制层为铟镓砷磷InGaAsP下限制层,厚度为100纳米;
所述上限制层为InGaAsP上限制层,厚度为100纳米;
所述覆盖层为p型InP覆盖层,厚度为1500纳米;
所述接触层为InGaAs欧姆接触层,厚度为200纳米;
所述吸收区为矩形,长度为50至300微米,所述宽度为1.2至250微米。
7.根据权利要求4所述的一种超辐射发光二极管,其特征在于,所述包覆层包括有依次设置的第一p型包覆层、第二p型包覆层、n型包覆层。
8.根据权利要求7所述的一种超辐射发光二极管,其特征在于,
所述第一p型包覆层为p型磷化铟InP层,厚度为250纳米;
所述第二p型包覆层也为p型InP层,厚度为700纳米;
所述n型包覆层为n型InP层,厚度为800纳米。
9.根据权利要求4所述的一种超辐射发光二极管,其特征在于,弯曲波导结构由直波导区、弯曲波导区和倾斜条形波导区依次组成。
10.根据权利要求9所述的一种超辐射发光二极管,其特征在于,所述直波导区长度为50~500微米,弯曲波导区长度为50~200微米,倾斜条形波导区与出光端面的夹角为80~85度。
CN201210581934.XA 2012-12-28 2012-12-28 超辐射发光二极管及其制作方法 Active CN103022897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210581934.XA CN103022897B (zh) 2012-12-28 2012-12-28 超辐射发光二极管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210581934.XA CN103022897B (zh) 2012-12-28 2012-12-28 超辐射发光二极管及其制作方法

Publications (2)

Publication Number Publication Date
CN103022897A true CN103022897A (zh) 2013-04-03
CN103022897B CN103022897B (zh) 2015-07-08

Family

ID=47971170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210581934.XA Active CN103022897B (zh) 2012-12-28 2012-12-28 超辐射发光二极管及其制作方法

Country Status (1)

Country Link
CN (1) CN103022897B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824920A (zh) * 2014-03-07 2014-05-28 中国科学院半导体研究所 输出功率和光谱形状独立可调的发光二极管的制作方法
CN104158086A (zh) * 2014-08-27 2014-11-19 武汉光迅科技股份有限公司 一种半导体发光器件
CN104485403A (zh) * 2014-12-31 2015-04-01 中国科学院半导体研究所 曲率渐变的弯曲波导量子点超辐射发光管及其制备方法
CN105762236A (zh) * 2014-12-15 2016-07-13 中国科学院苏州纳米技术与纳米仿生研究所 氮化物超辐射发光二极管及其制备方法
CN106300011A (zh) * 2016-10-31 2017-01-04 中国科学院福建物质结构研究所 一种含侧边吸收区的超辐射发光管
CN109037403A (zh) * 2018-07-27 2018-12-18 中国科学院半导体研究所 带透明窗口的超辐射发光二极管结构
CN109449258A (zh) * 2018-09-28 2019-03-08 武汉光迅科技股份有限公司 超辐射发光二极管及光电器件
CN112259649A (zh) * 2020-11-05 2021-01-22 武汉敏芯半导体股份有限公司 一种超辐射发光二极管及其制作方法
CN113224643A (zh) * 2021-05-08 2021-08-06 中国电子科技集团公司第四十四研究所 一种集成背光探测器的超辐射发光二极管芯片及制备方法
CN114388666A (zh) * 2021-12-31 2022-04-22 武汉敏芯半导体股份有限公司 超辐射发光二极管芯片及其制作方法
CN116138744A (zh) * 2023-04-21 2023-05-23 北京航空航天大学 用于在体检测甲状旁腺组织的自发荧光检测探头及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247346A (en) * 1990-08-24 1992-02-26 Gen Electric Co Plc A method of forming a semiconductor device
US6548319B2 (en) * 2000-08-12 2003-04-15 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing semiconductor laser diode
CN101197407A (zh) * 2007-12-28 2008-06-11 武汉光迅科技股份有限公司 超辐射发光二极管
US20090066965A1 (en) * 2006-10-31 2009-03-12 Vijaysekhar Jayaraman High power broadband superluminescent diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247346A (en) * 1990-08-24 1992-02-26 Gen Electric Co Plc A method of forming a semiconductor device
US6548319B2 (en) * 2000-08-12 2003-04-15 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing semiconductor laser diode
US20090066965A1 (en) * 2006-10-31 2009-03-12 Vijaysekhar Jayaraman High power broadband superluminescent diode
CN101197407A (zh) * 2007-12-28 2008-06-11 武汉光迅科技股份有限公司 超辐射发光二极管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHING-FUH LIN, CHAUR-SHIUANN JUANG: "Superluminescent Didoes with bent waveguide", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 *
王佐才,吕雪芹,金鹏,王占国: "超辐射发光二极管的应用", 《红外技术》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824920B (zh) * 2014-03-07 2016-04-20 中国科学院半导体研究所 输出功率和光谱形状独立可调的发光二极管的制作方法
CN103824920A (zh) * 2014-03-07 2014-05-28 中国科学院半导体研究所 输出功率和光谱形状独立可调的发光二极管的制作方法
CN104158086B (zh) * 2014-08-27 2017-07-28 武汉光迅科技股份有限公司 一种半导体发光器件
CN104158086A (zh) * 2014-08-27 2014-11-19 武汉光迅科技股份有限公司 一种半导体发光器件
CN105762236A (zh) * 2014-12-15 2016-07-13 中国科学院苏州纳米技术与纳米仿生研究所 氮化物超辐射发光二极管及其制备方法
CN105762236B (zh) * 2014-12-15 2018-05-29 中国科学院苏州纳米技术与纳米仿生研究所 氮化物超辐射发光二极管及其制备方法
CN104485403A (zh) * 2014-12-31 2015-04-01 中国科学院半导体研究所 曲率渐变的弯曲波导量子点超辐射发光管及其制备方法
CN106300011A (zh) * 2016-10-31 2017-01-04 中国科学院福建物质结构研究所 一种含侧边吸收区的超辐射发光管
CN109037403A (zh) * 2018-07-27 2018-12-18 中国科学院半导体研究所 带透明窗口的超辐射发光二极管结构
CN109449258A (zh) * 2018-09-28 2019-03-08 武汉光迅科技股份有限公司 超辐射发光二极管及光电器件
CN112259649A (zh) * 2020-11-05 2021-01-22 武汉敏芯半导体股份有限公司 一种超辐射发光二极管及其制作方法
CN113224643A (zh) * 2021-05-08 2021-08-06 中国电子科技集团公司第四十四研究所 一种集成背光探测器的超辐射发光二极管芯片及制备方法
CN113224643B (zh) * 2021-05-08 2022-07-19 中国电子科技集团公司第四十四研究所 一种集成背光探测器的超辐射发光二极管芯片及制备方法
CN114388666A (zh) * 2021-12-31 2022-04-22 武汉敏芯半导体股份有限公司 超辐射发光二极管芯片及其制作方法
CN116138744A (zh) * 2023-04-21 2023-05-23 北京航空航天大学 用于在体检测甲状旁腺组织的自发荧光检测探头及系统

Also Published As

Publication number Publication date
CN103022897B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
CN103022897B (zh) 超辐射发光二极管及其制作方法
CN205881934U (zh) 一种偏振无关超辐射发光二极管芯片
CN112290382B (zh) 一种半导体激光器及其制作方法
CN105098006B (zh) 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片
CN106129809B (zh) 电吸收调制器和侧向耦合光栅激光器单片集成方法及装置
CN106711761A (zh) 一种dfb半导体激光器制备方法及制得的激光器
CN106711274B (zh) 一种雪崩光电二极管及其制造方法
CN113707748B (zh) 外延片及光电探测器芯片
CN109728120A (zh) 一种高可靠nip结构台面型光电二极管及其制作方法
CN116053336A (zh) 铟镓砷雪崩探测器表面陷光结构制备方法
CN102545047B (zh) 一种多量子阱波导对接耦合方法
CN106684198B (zh) 基于亚波长光栅的谐振增强型紫外光探测器及制备方法
CN112259649B (zh) 一种超辐射发光二极管及其制作方法
KR100464333B1 (ko) 수광소자 및 그 제조방법
CN108075354A (zh) 窄线宽激光器
CN111261756B (zh) 一种半导体发光器件
CN111129945B (zh) 整片制作省隔离器边发射激光器芯片的方法
CN219086444U (zh) 一种半导体激光器
JPH09283786A (ja) 導波路型半導体受光素子とその製造方法
CN105280763B (zh) 一种超辐射发光二极管的制作方法及制得的发光二极管
CN108400523B (zh) 一种高速集成dfb半导体激光器芯片及制备方法
US20190199064A1 (en) Substrate including photonic crystal and method for manufacturing the same, and surface emitting quantum cascade laser
CN109037403B (zh) 带透明窗口的超辐射发光二极管结构
CN206412634U (zh) 一种dfb半导体激光器
CN208078380U (zh) 一种高速集成dfb半导体激光器芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant