CN103017937A - 多组分焊接电弧等离子体的温度和浓度测量装置与方法 - Google Patents

多组分焊接电弧等离子体的温度和浓度测量装置与方法 Download PDF

Info

Publication number
CN103017937A
CN103017937A CN2012104846000A CN201210484600A CN103017937A CN 103017937 A CN103017937 A CN 103017937A CN 2012104846000 A CN2012104846000 A CN 2012104846000A CN 201210484600 A CN201210484600 A CN 201210484600A CN 103017937 A CN103017937 A CN 103017937A
Authority
CN
China
Prior art keywords
temperature
arc plasma
welding arc
polycomponent
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104846000A
Other languages
English (en)
Other versions
CN103017937B (zh
Inventor
华学明
肖笑
汪琳
斯红
吴毅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201210484600.0A priority Critical patent/CN103017937B/zh
Publication of CN103017937A publication Critical patent/CN103017937A/zh
Application granted granted Critical
Publication of CN103017937B publication Critical patent/CN103017937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种多组分焊接电弧等离子体的温度和浓度测量装置,包括中性滤光片、窄带滤光片、微距镜头、CMOS高速相机、以及固定所述CMOS高速相机的三脚架,其中,所述微距镜头安装在所述CMOS高速相机上,在所述微距镜头向外的方向上依次设置有所述窄带滤光片和中性滤光片。还提供了相应的方法。本发明选取某一元素的原子谱线和一次电离的离子谱线,克服了传统方法对组分物理特性的要求,应用于焊接电弧光谱诊断领域,可以广泛应用于不同组分的焊接电弧等离子体温度和浓度的测量。

Description

多组分焊接电弧等离子体的温度和浓度测量装置与方法
技术领域
本发明涉及温度测量与控制领域,特别涉及焊接电弧等离子体温度和浓度测量的方法与基于高速摄影的等离子体采集装置。
背景技术
电弧等离子体的温度和浓度是描述焊接过程中的两个重要而基本的参数,也是焊接电弧区各种物理化学反应和冶金反应的基本表征,它直接影响到焊缝成型和焊接质量。定量的分析这些反应参数并用于监控焊接过程,对于控制焊缝成型、提高焊接质量具有重要意义。目前对焊接电弧等离子体研究的前提是假设电弧中只有一种成分,并对温度进行测量,主要采用光谱法。光谱法是针对等离子体辐射的一种测量分析方法,其原理是借助光谱仪器将电弧辐射信号分解为光谱信号,再根据光谱强度与电弧等离子体内部温度、粒子浓度、成分的关系等规律来反映电弧内部的物理状态及其过程。
目前用于等离子体光谱诊断的装置主要是计算机控制的光电直读式光谱仪(可参见文献:“Murphy,A.B.,Modified Fowler–Milne method for the spectroscopic measurement oftemperature and composition of multielement thermal plasmas.Review of ScientificInstruments,1994.65(11):p.3423.”,以及“Hiraoka,K.,T.Shiwaku,and T.Ohji,Determining temperature distributions of gas tungsten arc(TIG)plasma by spectroscopicmethods.Welding International,1997.11(9):p.688-696.”),它使用光栅作为分光系统,通过光栅的转动实现波长的扫描,同时采用CCD作为探测器,其特点是可对很大波长范围内的光谱进行扫描,仪器光谱分辨率较高;但这种设备扫描速度慢/灵活性差,不能同时获得等离子体光谱强度的二维空间分布,而且价格昂贵,因而其使用范围受到了极大的限制,也不利于其应用普及。公开文献“赵家瑞,et al.,图象处理法快速诊断电弧等离子体的研究.计量学报,1988.4:p.004.”用红外摄象法摄取电弧图象,将图象信息经A/D转换接口送入微计算机进行图象处理,获得电弧温度场。实验系统由电弧发生、红外摄象、微机图象处理及伪着色显示4个系统组成。其中红外摄像系统包括窄带滤光片,中性滤光片、光阑、透镜、延伸器和红外摄像机。实验使用辐射能量标准灯进行辐射强度标定,并用绝对强度法计算电弧的温度。公开文献“Ma,S.,et al.,Spectroscopicmeasurement of temperatures in pulsed TIG welding arcs.Journal of Physics D:AppliedPhysics,2011.44(40):p.405202.”发明了焊接电弧温度测量用成像装置,目标焊接电弧所发出的光依次经准直透镜、带通滤光片、多级分光装置、滤光器后获得多束不同波长的单色平行光束,此多束单色平行光束经过成像物镜后在CCD探测器上成像。并用单组分标准温度法测量电弧的温度。此装置中的成像系统由多级光路组成,需要很高的精度,在应用中也受到了一定的限制。
目前,对双组分焊接电弧等离子体温度和成分的测量不多,公开文献“Murphy,A.B.,Modified Fowler–Milne method for the spectroscopic measurement of temperature andcomposition of multielement thermal plasmas.Review of Scientific Instruments,1994.65(11):p.3423.”利用光谱仪根据双组分标准温度法,研究氩氮混合电弧的分布不均匀情况,并得出定量温度分布和气体成分分布。
在科研分析过程中,我们在测量电弧基本参量时,不仅需要得到电弧的空间分布,而且需要得到电弧的实时变化特点,同时为了降低整个测量过程的系统误差,我们期望能够有一种方法具有较强的适用性,针对各种的双组分等离子体都能应用,同时又较好的时间和空间分辨率。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种多组分焊接电弧等离子体的温度和浓度测量装置与方法。
根据本发明的一个方面,提供一种多组分焊接电弧等离子体的温度和浓度测量装置,包括中性滤光片、窄带滤光片、微距镜头、CMOS高速相机、以及固定所述CMOS高速相机的三脚架,其中,所述微距镜头安装在所述CMOS高速相机上,在所述微距镜头向外的方向上依次设置有所述窄带滤光片和中性滤光片。
优选地,所述窄带滤光片为ArI794.8nm的窄带滤光片。
优选地,所述窄带滤光片为ArII487.98nm的窄带滤光片。
优选地,还包括采集板卡、以及计算机,其中,所述采集板卡连接在所述计算机与CMOS高速相机之间,所述采集板卡用于将所述CMOS高速相机获取的图像数据采集传输至所述计算机,所述计算机用于根据来自所述采集板卡的数据显示出电弧图像。
根据本发明的另一个方面,提供一种多组分焊接电弧等离子体的温度和浓度测量方法,包括如下步骤:
步骤1:搭建权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置;
步骤2:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,然后根据纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,计算出ArI794.8nm发射系数的最大值
Figure BDA00002458938100031
同时计算出整个电弧的温度分布;
步骤3:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,根据纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,根据所述整个电弧的温度分布计算得到ArII487.98nm发射系数的最大值
Figure BDA00002458938100032
步骤4:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArI794.8nm谱线的条件相同,根据氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArI794.8nm发射系数值,以纯Ar保护焊接时ArI794.8nm发射系数的最大值
Figure BDA00002458938100033
进行归一化;
步骤5:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArII487.98nm谱线的条件相同,根据氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,以纯Ar保护焊接时ArII487.98nm发射系数的最大值
Figure BDA00002458938100034
进行归一化;
步骤6:根据计算出的氩氦混合气体保护焊接时的ArI794.8nm,ArII487.98nm归一化后的发射系数值曲线的交点,得到电弧的温度和浓度分布。
优选地,利用所述步骤2中单组分标准温度法计算出整个电弧的温度分布,计算得到所述步骤3中ArII487.98nm发射系数的最大值
Figure BDA00002458938100035
与现有技术相比,本发明选取某一元素的原子谱线和一次电离的离子谱线,克服了传统方法对组分物理特性的要求,应用于焊接电弧光谱诊断领域,可以广泛应用于不同组分的焊接电弧等离子体温度和浓度的测量。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为根据本发明提供的多组分焊接电弧等离子体的温度和浓度测量装置的结构示意图;
图2为根据本发明提供的多组分焊接电弧等离子体的温度和浓度测量方法的原理图。
图中:
1为焊接电源,
2为中性滤光片,
3为窄带滤光片,
4为微距镜头,
5为CMOS高速相机,
6为三脚架,
7为计算机,
8为采集板卡,
9为焊接工作平台。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
图1为根据本发明提供的多组分焊接电弧等离子体的温度和浓度测量装置的结构示意图,具体地,在本实施例中,所述多组分焊接电弧等离子体的温度和浓度测量装置,包括中性滤光片2、窄带滤光片3、微距镜头4、CMOS高速相机5、固定所述CMOS高速相机5的三脚架6、采集板卡8、以及计算机7。
其中,所述微距镜头4安装在所述CMOS高速相机5上,在所述微距镜头4向外的方向上依次设置有所述窄带滤光片3和中性滤光片2。所述采集板卡8连接在所述计算机7与CMOS高速相机5之间,所述采集板卡8用于将所述CMOS高速相机5获取的图像数据采集传输至所述计算机7,所述计算机7用于根据来自所述采集板卡8的数据显示出电弧图像。
更为具体地,所述窄带滤光片3为ArI794.8nm的窄带滤光片或者ArII487.98nm的窄带滤光片,分别用于拍摄ArI794.8nm和ArII487.98nm两条谱线的电弧等离子体图像。电弧输出电源产生电弧等离子体,电弧等离子体发出的光经过所述中性滤光片2和ArI794.8nm的窄带滤光片3后,得到ArI794.8nm谱线的电弧图像,经所述微距镜头4将图像呈现在所述CMOS高速相机5的平面,经过数据传输和板卡采集,在所述计算机7中显示出电弧图像,用同样的方法能够得到ArII487.98nm谱线的电弧图像分布。
本发明还提供一种多组分焊接电弧等离子体的温度和浓度测量方法。根据量子跃迁理论,可以推导出ArI794.8nm和ArII487.98nm归一化的等发射系数曲线,如图2所示。图中实线为ArI794.8nm的等发射系数分布,虚线为ArII487.98nm的等发射系数分布。
所述多组分焊接电弧等离子体的温度和浓度测量方法包括如下步骤:
步骤1:搭建权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置。
步骤2:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,然后根据纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,计算出ArI794.8nm发射系数的最大值
Figure BDA00002458938100051
同时利用单组分标准温度法计算出整个电弧的温度分布。
步骤3:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,根据纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,根据所述整个电弧的温度分布得到ArII487.98nm发射系数的最大值
Figure BDA00002458938100052
其中,纯Ar的焊接电弧中,根据ArI谱线已经测量了温度分布,从而根据发射系数和温度之间的理论关系可以计得到在所述实验装置的条件下ArII487.98nm发射系数的最大值
Figure BDA00002458938100053
步骤4:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArI794.8nm谱线的条件相同,根据氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArI794.8nm发射系数值,以纯Ar保护焊接时ArI794.8nm发射系数的最大值
Figure BDA00002458938100054
进行归一化。
步骤5:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArII487.98nm谱线的条件相同,根据氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,以纯Ar保护焊接时ArII487.98nm发射系数的最大值进行归一化。
步骤6:根据计算出的氩氦混合气体保护焊接时的ArI794.8nm,ArII487.98nm归一化后的发射系数值曲线的交点(如图2所示),即得到电弧的温度和浓度分布。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (6)

1.一种多组分焊接电弧等离子体的温度和浓度测量装置,其特征在于,包括中性滤光片(2)、窄带滤光片(3)、微距镜头(4)、CMOS高速相机(5)、以及固定所述CMOS高速相机(5)的三脚架(6),其中,所述微距镜头(4)安装在所述CMOS高速相机(5)上,在所述微距镜头(4)向外的方向上依次设置有所述窄带滤光片(3)和中性滤光片(2)。
2.根据权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置,其特征在于,所述窄带滤光片(3)为ArI794.8nm的窄带滤光片。
3.根据权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置,其特征在于,所述窄带滤光片(3)为ArII487.98nm的窄带滤光片。
4.根据权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置,其特征在于,还包括采集板卡(8)、以及计算机(7),其中,所述采集板卡(8)连接在所述计算机(7)与CMOS高速相机(5)之间,所述采集板卡(8)用于将所述CMOS高速相机(5)获取的图像数据采集传输至所述计算机(7),所述计算机(7)用于根据来自所述采集板卡(8)的数据显示出电弧图像。
5.一种多组分焊接电弧等离子体的温度和浓度测量方法,其特征在于,包括如下步骤:
步骤1:搭建权利要求1所述的多组分焊接电弧等离子体的温度和浓度测量装置;
步骤2:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,然后根据纯Ar保护ArI794.8nm谱线的焊接电弧等离子体图像,计算出ArI794.8nm发射系数的最大值
Figure FDA00002458938000011
同时计算出整个电弧的温度分布;
步骤3:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,根据纯Ar保护ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,根据所述整个电弧的温度分布计算得到ArII487.98nm发射系数的最大值
Figure FDA00002458938000012
步骤4:将ArI794.8nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArI794.8nm谱线的条件相同,根据氩氦混合气体保护的ArI794.8nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArI794.8nm发射系数值,以纯Ar保护焊接时ArI794.8nm发射系数的最大值
Figure FDA00002458938000021
进行归一化;
步骤5:将ArII487.98nm的窄带滤光片作为所述多组分焊接电弧等离子体的温度和浓度测量装置的窄带滤光片,利用多组分焊接电弧等离子体的温度和浓度测量装置,拍摄氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,拍摄条件与纯Ar保护焊接时ArII487.98nm谱线的条件相同,根据氩氦混合气体保护的ArII487.98nm谱线的焊接电弧等离子体图像,计算出整个电弧中的ArII487.98nm发射系数值,以纯Ar保护焊接时ArII487.98nm发射系数的最大值
Figure FDA00002458938000022
进行归一化;
步骤6:根据计算出的氩氦混合气体保护焊接时的ArI794.8nm,ArII487.98nm归一化后的发射系数值曲线的交点,得到电弧的温度和浓度分布。
6.根据权利要求5所述的多组分焊接电弧等离子体的温度和浓度测量方法,其特征在于,利用所述步骤2中单组分标准温度法计算出整个电弧的温度分布,计算得到所述步骤3中ArII487.98nm发射系数的最大值
CN201210484600.0A 2012-11-23 2012-11-23 多组分焊接电弧等离子体的温度和浓度测量方法 Active CN103017937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210484600.0A CN103017937B (zh) 2012-11-23 2012-11-23 多组分焊接电弧等离子体的温度和浓度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210484600.0A CN103017937B (zh) 2012-11-23 2012-11-23 多组分焊接电弧等离子体的温度和浓度测量方法

Publications (2)

Publication Number Publication Date
CN103017937A true CN103017937A (zh) 2013-04-03
CN103017937B CN103017937B (zh) 2014-08-27

Family

ID=47966797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210484600.0A Active CN103017937B (zh) 2012-11-23 2012-11-23 多组分焊接电弧等离子体的温度和浓度测量方法

Country Status (1)

Country Link
CN (1) CN103017937B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776533A (zh) * 2014-01-26 2014-05-07 上海交通大学 多组分焊接电弧温度浓度测量的多摄影同步光谱采集系统
CN103868859A (zh) * 2014-03-04 2014-06-18 中国空间技术研究院 一种基于ccd成像的电弧金属蒸汽浓度测量系统
CN103884646A (zh) * 2014-03-04 2014-06-25 中国空间技术研究院 一种基于光纤传感的喷口电弧烧蚀金属蒸汽浓度测量系统
CN107931784A (zh) * 2017-11-07 2018-04-20 上海交通大学 一种平面电弧成像与光谱同步采集装置
CN108225569A (zh) * 2017-12-31 2018-06-29 北京工业大学 一种基于双谱线特征的标准温度法
CN109374152A (zh) * 2018-09-25 2019-02-22 北京航空航天大学 一种计算脉冲tig焊接轴对称等离子体电弧温度的方法
CN110530802A (zh) * 2019-08-02 2019-12-03 西安交通大学 一种用于研究高压环境激光焊接的无增压泵焊接实验装置
CN110779637A (zh) * 2019-10-29 2020-02-11 广州供电局有限公司 基于金属薄膜热效应的等离子体辐射能量测量薄膜量热计
CN112729555A (zh) * 2020-12-18 2021-04-30 中国科学院合肥物质科学研究院 标准温度法和相对谱线法同步诊断等离子体温度场的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157596A (ja) * 1982-03-11 1983-09-19 Mitsubishi Electric Corp 溶接部監視装置
US4649426A (en) * 1984-06-12 1987-03-10 The United States Of America As Represented By The United States Department Of Energy Electronic imaging system and technique
JPH11179578A (ja) * 1997-12-19 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd レーザ溶接における溶融部可視化装置
JP2005334957A (ja) * 2004-05-28 2005-12-08 Ishikawajima Harima Heavy Ind Co Ltd 溶接部可視化装置
CN1844891A (zh) * 2006-04-30 2006-10-11 哈尔滨工业大学 焊接电弧温度与成分分布测量用成像装置
KR20090109717A (ko) * 2008-04-16 2009-10-21 대우조선해양 주식회사 아르곤 가스를 이용한 Fe-36%Ni 합금 랩이음부의플라즈마 아크 용융용접방법 및 그 장치
CN101782429A (zh) * 2010-01-20 2010-07-21 哈尔滨工业大学 非对称电弧光谱强度多角度测量装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157596A (ja) * 1982-03-11 1983-09-19 Mitsubishi Electric Corp 溶接部監視装置
US4649426A (en) * 1984-06-12 1987-03-10 The United States Of America As Represented By The United States Department Of Energy Electronic imaging system and technique
JPH11179578A (ja) * 1997-12-19 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd レーザ溶接における溶融部可視化装置
JP2005334957A (ja) * 2004-05-28 2005-12-08 Ishikawajima Harima Heavy Ind Co Ltd 溶接部可視化装置
CN1844891A (zh) * 2006-04-30 2006-10-11 哈尔滨工业大学 焊接电弧温度与成分分布测量用成像装置
KR20090109717A (ko) * 2008-04-16 2009-10-21 대우조선해양 주식회사 아르곤 가스를 이용한 Fe-36%Ni 합금 랩이음부의플라즈마 아크 용융용접방법 및 그 장치
CN101782429A (zh) * 2010-01-20 2010-07-21 哈尔滨工业大学 非对称电弧光谱强度多角度测量装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
将文波等: "光谱层析技术诊断等离子体电弧温度场", 《西华大学学报(自然科学版)》 *
李倩等: "用发射光谱法测量电弧的等离子体的激发温度", 《沈阳理工大学学报》 *
肖笑等: "基于标准温度法的脉冲TIG焊电弧温度场计算与分析", 《光谱学与光谱分析》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776533A (zh) * 2014-01-26 2014-05-07 上海交通大学 多组分焊接电弧温度浓度测量的多摄影同步光谱采集系统
CN103868859A (zh) * 2014-03-04 2014-06-18 中国空间技术研究院 一种基于ccd成像的电弧金属蒸汽浓度测量系统
CN103884646A (zh) * 2014-03-04 2014-06-25 中国空间技术研究院 一种基于光纤传感的喷口电弧烧蚀金属蒸汽浓度测量系统
CN103868859B (zh) * 2014-03-04 2015-12-30 中国空间技术研究院 一种基于ccd成像的电弧金属蒸汽浓度测量系统
CN103884646B (zh) * 2014-03-04 2016-03-30 中国空间技术研究院 一种基于光纤传感的喷口电弧烧蚀金属蒸汽浓度测量系统
CN107931784B (zh) * 2017-11-07 2019-09-10 上海交通大学 一种平面电弧成像与光谱同步采集装置
CN107931784A (zh) * 2017-11-07 2018-04-20 上海交通大学 一种平面电弧成像与光谱同步采集装置
CN108225569A (zh) * 2017-12-31 2018-06-29 北京工业大学 一种基于双谱线特征的标准温度法
CN108225569B (zh) * 2017-12-31 2019-10-29 北京工业大学 一种基于双谱线特征的标准温度法
CN109374152A (zh) * 2018-09-25 2019-02-22 北京航空航天大学 一种计算脉冲tig焊接轴对称等离子体电弧温度的方法
CN110530802A (zh) * 2019-08-02 2019-12-03 西安交通大学 一种用于研究高压环境激光焊接的无增压泵焊接实验装置
CN110530802B (zh) * 2019-08-02 2020-06-19 西安交通大学 一种用于研究高压环境激光焊接的无增压泵焊接实验装置
CN110779637A (zh) * 2019-10-29 2020-02-11 广州供电局有限公司 基于金属薄膜热效应的等离子体辐射能量测量薄膜量热计
CN112729555A (zh) * 2020-12-18 2021-04-30 中国科学院合肥物质科学研究院 标准温度法和相对谱线法同步诊断等离子体温度场的方法
CN112729555B (zh) * 2020-12-18 2022-03-25 中国科学院合肥物质科学研究院 标准温度法和相对谱线法同步诊断等离子体温度场的方法

Also Published As

Publication number Publication date
CN103017937B (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
CN103017937B (zh) 多组分焊接电弧等离子体的温度和浓度测量方法
US8674306B2 (en) Gas sensing system employing raman scattering
WO2018175570A8 (en) Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
Klyuchnikov et al. Charge exchange recombination spectroscopy on the T-10 tokamak
CN105784682A (zh) 一种激光诱导击穿光谱检测装置及检测方法
CN104458696A (zh) 基于数字微镜元件的微型固化拉曼光谱仪
CN111289496A (zh) 一种远距离变焦距激光诱导击穿光谱的检测方法及装置
Patel et al. Z eff profile measurements from bremsstrahlung imaging in the MAST spherical tokamak
Milder et al. Statistical analysis of non-Maxwellian electron distribution functions measured with angularly resolved Thomson scattering
Guerra et al. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis
Marcelli et al. Infrared synchrotron radiation beamlines: high brilliance tools for IR spectromicroscopy
Kaloyan et al. Raster Thomson scattering in large-scale laser plasmas produced at high repetition rate
CN103776533A (zh) 多组分焊接电弧温度浓度测量的多摄影同步光谱采集系统
Banasek et al. Probing local electron temperature and density inside a sheared flow stabilized Z-pinch using portable optical Thomson scattering
Goto et al. Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny-Turner-type spectrometer in the Large Helical Device
Lizunov et al. Note: Multi-point measurement of| B| in the gas-dynamic trap with a spectral motional Stark effect diagnostic
Fukui et al. A compact system for generating extreme pressures and temperatures: An application of laser-heated diamond anvil cell to inelastic X-ray scattering
Gong et al. Development of Thomson scattering system on Shenguang-III prototype laser facility
Zhao et al. An angular-resolved scattered-light diagnostic for laser-plasma instability studies
Malvestuto et al. The MagneDyn beamline at the FERMI free electron laser
Tamura et al. Spectroscopic diagnostics for ablation cloud of tracer-encapsulated solid pellet in LHD
JP3160622B2 (ja) プラズマ温度分布測定方法および装置
Han et al. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak
Afanasiev et al. Universal focal reducer for small telescopes
Wang et al. High resolution laser Thomson scattering system with automatic data analysis software platform for diagnosis of the low-temperature plasmas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant