CN103000576B - 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺 - Google Patents

一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺 Download PDF

Info

Publication number
CN103000576B
CN103000576B CN201210439672.3A CN201210439672A CN103000576B CN 103000576 B CN103000576 B CN 103000576B CN 201210439672 A CN201210439672 A CN 201210439672A CN 103000576 B CN103000576 B CN 103000576B
Authority
CN
China
Prior art keywords
target
alloy
magnetic control
sputtering
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210439672.3A
Other languages
English (en)
Other versions
CN103000576A (zh
Inventor
刘波
张彦坡
陈顺礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201210439672.3A priority Critical patent/CN103000576B/zh
Publication of CN103000576A publication Critical patent/CN103000576A/zh
Application granted granted Critical
Publication of CN103000576B publication Critical patent/CN103000576B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种在超深亚微米集成电路铜互连技术中应用的可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺。本工艺采用气相物理共溅射技术,包括镀前处理、偏压反溅清洗和沉积Cu(Ge,Zr)合金层等步骤。本发明沉积的Cu(Ge,Zr)合金层特点是能在高温退火(>500℃)过程中自发在Cu/Cu(Ge,Zr)/Si界面形成ZrGe2/Cu3Ge和ZrOx(ZrSiyOx)/Cu3Ge复合层,其在高温(>650℃)条件下仍能有效阻挡Cu与Si基体的相互扩散。采用该Cu(Ge,Zr)合金自发形成的阻挡层能有效降低互连膜系电阻率,降低互连电路的阻容耦合(RC)延迟效应,提高半导体器件的运行速度和稳定性。

Description

一种可控自形成阻挡层用 Cu ( Ge , Zr )合金的制备工艺
技术领域
本发明属于半导体集成电路制造工艺技术领域,涉及一种适用于深亚微米Cu互连用的可控自形成阻挡层用Cu(Ge,Zr)合金制备工艺。
背景技术
铜(Cu)具有低阻、高抗电迁移性能,已取代铝(Al)成为当今高性能超大规模硅(Si)集成电路主流互连材料,见文献[Delsol R, Jacquemin J P, Gregoire M, Girault V, Federspiel X, Bouyssou R X, Vannier P, Normandon P. Microelectron Eng, 2006; 83: 2377]。但Cu与Si低温下(<300℃)直接反应形成高阻Cu3Si化合物相,且Cu易扩散至Si基体内形成深能级杂质,弱化器件性能,见文献 [B. Liu, Z.X. Song, Y.H. Li, K.W. Xu, Appl. Phys. Lett. 93/17 (3008)]。因此,如何选择适当的具有低电阻率和良好阻隔性能的材料来抑止Cu与Si基体或Si基介质间的相互扩散仍然是工业界和学术界的研究热点问题。
国际半导体发展规划预言,2016年27 nm节点技术要求其互连结构中阻挡层厚度缩减至2 nm,见文献[The international Technology Roadmap for Semiconductors (ITRS), 2003]。传统阻挡层材料如Ta/TaN在此尺度下的稳定性面临巨大挑战。诸多文献研究表明采用Cu基合金(CuM(M=Zr、Mg、Mn、Al、 Ti、 Ru、WN、等))直接沉积在Si或SiO2基体上,通过后续退火处理驱使合金元素扩散至Cu(M)/Si界面并反应形成数纳米厚钝化层,如MnSiyOx,TiOx,ZrOx,MgO和AlyOx等的自形成阻挡层技术可能是解决此技术瓶颈的一种有效途径,见文献[Kohama K, Ito K, Tsukimoto S, Mori K, Maekawa K, Murakami M. J Electron Mater, 2008; 37: 1148]和[Iijima J, Haneda M , Koike J. Proc IEEE IITC 2006, 2006;155]。然而,在升温初期,尚未达到合金元素扩散所需的热动力学条件(通常大于400℃)时,合金中的Cu原子与Si或SiO2基介质间已发生互扩散反应(<300℃),最终引发器件性能恶化,见文献[Liu A Y, Cohen M L. Phys Rev B, 1990; 41(15): 10727]和[Aboelfotoh M O, Svensson B G. Phys Rev B, 1991; 44(23): 12742]。
近年来,铜锗化合物作为一种潜在的低温Cu金属化材料而备受人们关注。研究表明,Cu 在低温度下(<150℃)和Ge原子反应形成低阻ε-Cu3Ge(~5.5 μΩ cm)且成分可调范围宽(Ge含量在25-40%),见文献[M. A. Borek, S. Oktyabrsky, M. O. Aboelfotoh, and J. Narayan Appl. Phys. Lett., 1996; 69 :3560];再者,Cu3Ge具有高抗氧化性能且本身能够阻挡Cu的扩散是作为浅结器件的首选材料,见文献[Liu C Y, Wang S J. J Electron Mater, 2003; 32: L1]和[Tsukimoto S, Morita T, Moriyama M, Ito K , Murakami M. J Electron Mater, 2005; 34: 592]。然而,仍存在两个关键性的问题制约其在Cu金属化制程中的应用:其一,Borek等人的研究表明, Cu3Ge/Si在温度高于400℃时两者发生互扩散,Si原子扩散至Cu3Ge体内并导致电阻率显著升高,见文献[[M. A. Borek, S. Oktyabrsky, M. O. Aboelfotoh, and J. Narayan Appl. Phys. Lett., 1996; 69 :3560];其二,Gaudet等人研究表明Cu3Ge膜体表面形貌在高于350 ℃退火条件下已经开始明显粗化,这显然远不能满足Cu互连制程工艺要求,见文献[S. Gaudet, C. Detavernier, A. J. Kellock, and C. Lavoie J. Vac. Sci. Technol. A , 2006; 24(3) :474]。
发明内容
本发明的目的在于针对上述Cu互连技术中自形成阻挡层材料性能研究面临的不足,提供一种可控的自形成阻挡层用Cu(Ge,Zr)合金制备工艺,该工艺不仅简便易行,而且通过该工艺制备的Cu(Ge,Zr)合金经高温退火后电阻率低、抗氧化性强,且能够有效阻挡Cu的扩散,是当今先进纳器件互连提供了一种新的技术途径。
为达到上述目的,本发明的基本思想是:采用气相物理共溅射技术在Cu膜中同时掺入Ge和Zr合金元素,所制备Cu(Ge,Zr)/Si样品在不同温度条件下退火,探讨Zr掺杂对铜锗化合过程的影响及提高Cu3Ge/Si多层膜系热稳定性的相关机制。选择Zr为掺杂元素主要基于以下几点理由:首先,400℃下Cu和Ge与 Zr都不互溶,Zr元素掺杂不会阻碍Cu与Ge的反应;其次,较高温度下Zr易从Cu基合金沉淀析出,并能与Si反应能形成低阻ZrSi2/Si欧姆接触界面(势垒约0.55 eV),其特性能同时兼容n型和p型掺杂区域。
本发明提供的技术方案是:提供一种可控自形成阻挡层用Cu(Ge,Zr)合金制备工艺,在常温下实施,其特征在于包含以下步骤:
a、清洗衬底材料:
将衬底材料Si(111)基体依次放入丙酮、无水乙醇中分别进行30分钟超声波清洗,干燥后放入真空室内,然后抽真空度至4.5×10-4 Pa;
b、沉积前对衬底的处理:
保持真空室本底真空为4.5×10-4 Pa条件下,采用偏压反溅射清洗10分钟、预溅射清洗5分钟,去除Si衬底和靶材杂质;反溅射功率为100-200 W;预溅射功率为100-200 W;反溅射偏压和预溅射偏压分别为-500 V、-150 V;反溅射和预溅射气体均为Ar;工作真空度为1.0-3.0 Pa;
c、沉积Cu(Ge,Zr)合金层:
采用气相物理共溅射技术,在步骤b得到的Si(111)基体上使用磁控Cu靶、磁控Ge靶和直流Zr靶共溅射沉积Cu(Ge,Zr)合金层,沉积时间30-40秒;磁控Cu靶溅射功率为120-150 W;磁控Ge靶的溅射功率为100-120 W;直流Zr靶溅射功率为80-100 W;偏压为-100到-300 V之间;工作气氛Ar,Ar流量为180 Sccm;工作真空度为0.40-0.50 Pa;沉积完成后关闭磁控Cu靶、磁控Ge靶和直流Zr靶,关闭气体Ar,恢复反应室真空为4.5×10-4 Pa,冷却后出炉样品即为Cu(Ge,Zr)合金层。
所述磁控Cu靶、磁控Zr靶和磁控Ge靶纯度均为99.99%。
所述可控自形成阻挡层用Cu(Ge,Zr)合金采用磁控Cu靶、磁控Ge靶和直流Zr靶共溅射的方法,磁控Cu靶、磁控Ge靶与真空腔中心轴线方向呈45˚夹角,直流Zr靶与真空腔中心轴线方向一致。
所述可控自形成阻挡层用Cu(Ge,Zr)合金沉积过程中通过调节各磁控靶材的功率来控制合金中各组元的成分,磁控Cu靶溅射功率为150 W,磁控Ge靶溅射功率为120 W,直流Zr靶溅射功率为80 W。
上述步骤c中的冷却是在反应室基底真空度为4.5×10-4下自然冷却。
上述步骤c的目的在于,减少真空污染元素的吸附,保持过渡层表面洁净。
本发明与现有技术相比具有以下有益效果:
1、本发明在Si基体上设计制备的30 nm厚的Cu(Ge,Zr)合金经高温退火后,在Cu/Si界面处自发形成ZrGe2/Cu3Ge和ZrOx(ZrSiyOx)/Cu3Ge复合层,电阻率低至8 μΩ.cm,失效温度高于650℃,显著提高了阻挡层的高热稳定性;
2、本发明采用的是气相物理共溅射技术,具有技术成熟,成本低,污染物少的特点,并可与现有的微电子制备工艺相兼容。
附图说明
图1为Cu/Cu(Ge,Zr)/Si样品分别在沉积态、450℃、550℃和650℃退火条件下的XRD衍射图
图2为Cu/Cu(Ge,Zr)/Si样品在650℃退火态下的HRTEM截面图
具体实施方式
下面结合附图及实施例对本发明进行详细的说明,但不意味着对本发明保护内容的任何限定。
本发明提供的可控自形成阻挡层用Cu(Ge,Zr)合金制备工艺,在常温下实施,采用气相物理沉积设备;所用磁控Cu靶、磁控Ge靶和直流Zr靶的纯度均为99.99%;所用磁控Cu靶、磁控Ge靶与真空腔中心轴线方向呈45˚夹角,直流Zr靶与真空腔中线轴线方向一致,三靶共溅射沉积获得样品;制备的Cu(Ge,Zr)复合过渡阻挡层厚度为30 nm。
实施例1
本实施例采用的可控自形成用Cu(Ge,Zr)合金层制备工艺包含以下步骤:
a、清洗衬底材料:
将衬底材料Si(111)基体依次放入丙酮、无水乙醇中分别进行30分钟超声波清洗,干燥后放入真空室内,然后抽真空度至4.5×10-4 Pa;
b、沉积前对衬底的处理:
在步骤a的真空条件下,用偏压反溅射清洗10分钟、预溅射清洗5分钟,去除Si衬底和靶材杂质;反溅射功率为150 W;预溅射功率为150 W;反溅射偏压和预溅射偏压分别为-500 V、-150 V;反溅射和预溅射气体均为Ar;工作真空度为2.0 Pa;
c、沉积Cu(Ge,Zr)合金层:
采用气相物理共溅射技术,在步骤b得到的Si(111)基体上使用磁控Cu靶、磁控Ge靶和直流Zr靶共溅射沉积Cu(Ge,Zr)合金层,沉积时间30秒;磁控Cu靶溅射功率为150 W;磁控Ge靶溅射功率为120 W;直流Zr靶的溅射功率为80 W;偏压为-150 V;工作气氛Ar,Ar流量为180 Sccm;工作真空度为0.49 Pa;沉积完成后关闭磁控Cu靶、磁控Ge靶和直流Zr靶,关闭气体Ar,恢复反应室真空度为4.5×10-4 Pa,冷却后出炉样品即为Cu(Ge,Zr)合金层。
对上述实施例1所述的Cu/Cu(Ge,Zr)/ Si样品采用四探针测试仪对其表面进行测试,先后在样品表面测试了5个点,取其平均值计算电阻率为8 μΩ.cm,相比常规阻挡层电阻率而言大幅降低。图1所示为Cu/Cu(Ge,Zr)/ Si分别在沉积态、450℃、550℃和650℃退火时的XRD衍射图像,分析知Cu/Cu(Ge,Zr)/ Si经650℃高温退火后,仅出现Cu3Ge衍射峰,未发现包含有CuSix化合物的峰出现,亦表明Cu/Cu(Ge,Zr)/ Si在650℃情况下未发生失效,即Cu与Si不发生相互扩散,具有高的热稳定性能。
通过650℃退火态TEM截面形貌分析,在图2中Cu/Cu(Ge,Zr)/ Si样品经650℃退火后,在Cu/Si界面处自发形成了ZrOx(ZrSiyOx)/Cu3Ge复合层,复合层总厚度约为30 nm,ZrOx(ZrSiyOx)层约5 nm,图中未发现有Cu-Si化合物出现,亦验证了图1分析。
实施例2
由于在沉积Cu(Ge,Zr)合金层过程中,溅射偏压对涂层成分、均匀度及结构影响较大。本实施例Cu(Ge,Zr)合金层所用镀膜设备和其他工作条件均与实施例1相同,并保持所述合金层沉积厚度30 nm不变,沉积Cu(Ge,Zr)合金层时改变沉积偏压,如选定为-50 V、-100 V、-150 V和-200 V则可对Cu(Ge,Zr)合金层成分、组织及微结构的调控,也可满足其低阻和高热稳定性能要求。

Claims (1)

1.一种可控自形成阻挡层用Cu(Ge,Zr)合金制备工艺,在常温下实施,其特征在于包含以下步骤:
a、清洗衬底材料:
将衬底材料Si(111)基体依次放入丙酮、无水乙醇中分别进行30分钟超声波清洗,干燥后放入真空室内,抽真空度至4.5×10-4 Pa;
b、沉积前对衬底的处理:
保持真空室真空为4.5×10-4 Pa条件下,采用偏压反溅射清洗10分钟、预溅射清洗5分钟,去除Si衬底和靶材杂质;反溅射功率为100-200 W;预溅射功率为100-200 W;反溅射偏压和预溅射偏压分别为-500 V、-150 V;反溅射和预溅射气体均为Ar;工作真空度为1.0-3.0 Pa;
c、沉积Cu(Ge,Zr)合金层:
采用气相物理共溅射技术,在步骤b得到的Si(111)基体上使用磁控Cu靶、磁控Ge靶和直流Zr靶共溅射沉积Cu(Ge,Zr)合金层,沉积时间30-40秒;磁控Cu靶溅射功率为120-150 W;磁控Ge靶的溅射功率为100-120 W;直流Zr靶溅射功率为80-100 W;偏压为-100到-300 V之间;工作气氛Ar,Ar流量为180 Sccm;工作真空度为0.40-0.50 Pa;沉积完成后关闭磁控Cu靶、磁控Ge靶和直流Zr靶,关闭气体Ar,恢复反应室真空为4.5×10-4 Pa,冷却后出炉样品即为Cu(Ge,Zr)合金层;该Cu(Ge,Zr)合金层经550℃退火处理能自发在Cu/Cu(Ge,Zr)/Si界面形成ZrGe2/Cu3Ge和ZrOx(ZrSiyOx)/Cu3Ge复合阻挡层。
2. 根据权利要求1所述自形成阻挡层用Cu(Ge,Zr)合金制备工艺,其特征在于:所述磁控Cu靶、磁控Ge靶和直流Zr靶纯度均为99.99%。
3. 根据权利要求1所述自形成阻挡层用Cu(Ge,Zr)合金制备工艺,其特征在于:采用磁控Cu靶、磁控Ge靶和直流Zr靶共溅射沉积的方法,磁控Cu靶、磁控Ge靶与真空腔中心轴线方向呈45˚夹角,直流Zr靶与真空腔中心轴线方向一致。
4. 根据权利要求1所述自形成阻挡层用Cu(Ge,Zr)合金制备工艺,其特征在于:沉积过程中通过调节各磁控靶及直流靶的功率来控制Cu(Ge,Zr)合金中各组元的成分,磁控Cu靶溅射功率为150W,磁控Ge靶溅射功率为120W,直流Zr靶溅射功率为80W。
5. 根据权利要求1所述自形成阻挡层用Cu(Ge,Zr)合金制备工艺,其特征在于:步骤c中的冷却是在反应室基底真空度为4.5×10-4 Pa条件下随炉自然冷却。
CN201210439672.3A 2012-11-07 2012-11-07 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺 Expired - Fee Related CN103000576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210439672.3A CN103000576B (zh) 2012-11-07 2012-11-07 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210439672.3A CN103000576B (zh) 2012-11-07 2012-11-07 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺

Publications (2)

Publication Number Publication Date
CN103000576A CN103000576A (zh) 2013-03-27
CN103000576B true CN103000576B (zh) 2015-06-03

Family

ID=47928983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210439672.3A Expired - Fee Related CN103000576B (zh) 2012-11-07 2012-11-07 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺

Country Status (1)

Country Link
CN (1) CN103000576B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972216B (zh) * 2014-05-13 2016-09-07 四川大学 一种可控自形成MnSixOy/Cu3Ge双层扩散阻挡层
CN104022075B (zh) * 2014-06-10 2016-09-07 四川大学 一种可控自形成Cu3Ge/TiN双层扩散阻挡层制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569042A (zh) * 2012-03-12 2012-07-11 四川大学 超薄、高热稳定性ZrGeN/CuGe复合梯度阻挡层制备工艺

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569042A (zh) * 2012-03-12 2012-07-11 四川大学 超薄、高热稳定性ZrGeN/CuGe复合梯度阻挡层制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An ultrathin Zr(Ge) alloy film as an exhaustion interlayer combined with Cu(Zr) seed layer for the Cu/porous SiOC:H dielectric integration;B.Liu,Z.X.Song;《APPLIED PHYSICS LETTERS》;20081031;第93卷;174108-1至174108-3 *

Also Published As

Publication number Publication date
CN103000576A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN109979813A (zh) 一种低温碳化硅欧姆接触的制备方法及金属结构
CN103000576B (zh) 一种可控自形成阻挡层用Cu(Ge,Zr)合金的制备工艺
He et al. Diffusion barrier performances of direct current sputter-deposited Mo and MoxN films between Cu and Si
CN102569042B (zh) 超薄、高热稳定性ZrGeN/CuGe复合梯度阻挡层制备工艺
Hübner et al. Influence of nitrogen content on the crystallization behavior of thin Ta–Si–N diffusion barriers
Ou Integrity of copper–hafnium, hafnium nitride and multilayered amorphous-like hafnium nitride metallization under various thickness
CN104393031B (zh) 一种插入层复合结构及其制作方法
Tsai et al. Characteristics of a 10 nm-thick (TiVCr) N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects
CN103972216B (zh) 一种可控自形成MnSixOy/Cu3Ge双层扩散阻挡层
CN104022075B (zh) 一种可控自形成Cu3Ge/TiN双层扩散阻挡层制备方法
TWI254386B (en) Nitride and polysilicon interface with titanium layer
CN110911352A (zh) 一种Cu互连用扩散阻挡层及其制备方法和应用
US9035323B2 (en) Silicon carbide barrier diode
Wang et al. Diffusion barrier capability of Zr–Si films for copper metallization with different substrate bias voltage
CN103441118B (zh) 一种用于铜互连的导电阻挡层材料及其制备方法
CN103972162B (zh) 一种无铜籽晶互连用碳化钼掺杂钌基合金扩散阻挡层制备工艺
TWI299503B (en) Zeolite-carbon doped oxide composite low k dielectric
Hsieh et al. Failure behavior of ITO diffusion barrier between electroplating Cu and Si substrate annealed in a low vacuum
Park et al. Effects of Ti and TiN underlayers on electromigration reliability of Al–Cu interconnects
Nogami et al. Suppressed Si precipitation at an AlSi/Si contact by the presence of thin SiO2 film on the Si substrate
Zhang et al. Preparation of α-FeSi2 by laser annealing
TWI300255B (en) Composite material as barrier layer in cu diffusion
Park et al. Degradation of Reactively Sputtered Ti‐Si‐N Films Used as a Barrier Layer in Titanium Silicide/Polycrystalline Si Gate Electrodes
KR101448852B1 (ko) 반도체 소자 및 그 제조방법
Chen et al. Study of the sputtered Mo/TaN and Mo-Ta thin film as diffusion barrier for copper metallization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150603

Termination date: 20151107

EXPY Termination of patent right or utility model