CN102996581B - 超声速转弯流道设计方法 - Google Patents

超声速转弯流道设计方法 Download PDF

Info

Publication number
CN102996581B
CN102996581B CN201210447983.4A CN201210447983A CN102996581B CN 102996581 B CN102996581 B CN 102996581B CN 201210447983 A CN201210447983 A CN 201210447983A CN 102996581 B CN102996581 B CN 102996581B
Authority
CN
China
Prior art keywords
wall curve
curve
ultrasound velocity
runner
boundary point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210447983.4A
Other languages
English (en)
Other versions
CN102996581A (zh
Inventor
赵玉新
王振国
赵延辉
梁剑寒
范晓樯
马志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201210447983.4A priority Critical patent/CN102996581B/zh
Publication of CN102996581A publication Critical patent/CN102996581A/zh
Application granted granted Critical
Publication of CN102996581B publication Critical patent/CN102996581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明提供了一种超声速转弯流道设计方法。该超声速转弯流道设计方法包括:根据超声速流道设计结构的几何约束确定超声速流道壁面曲线的入口边界;根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线;利用特征线法确定对应于单边壁面曲线的对边壁面曲线;根据出口流场参数确定超声速流道壁面曲线。根据本发明的超声速转弯流道设计方法,能够获得全流场为超声速的无激波超声速流道,为超声速风洞、超声速引射器、超声速飞行器的气动与结构设计提供更好的流场环境。

Description

超声速转弯流道设计方法
技术领域
本发明涉及空气动力设计领域,具体而言,涉及一种超声速转弯流道设计方法。 
背景技术
超声速流动方向的改变必然伴随马赫波的辐射,若超声速流道突然转弯或转弯曲率过大就会出现明显的激波结构,激波结构不仅带来流动的总压损失还会与壁面边界层相互作用形成复杂的分离区结构,极大地恶化超声速流道的气动性能。 
文献《气体动力学》(童秉刚,高等教育出版社,1989)公开了一种超声速喷管设计方法,步骤如下: 
1.根据收缩比和长径比的要求,设计亚声速段曲线; 
2.根据亚声速段曲线确定喉部的超声速初值线; 
3.根据超声速初值线和一定的理论公式确定超声速段的马赫数分布; 
4.根据超声速段的马赫数分布确定超声速段壁面。 
该种方法中必须设计亚声速区,且一般为二维或轴对称结构,如果需要流动转弯,就会出现集中的膨胀和压缩波,曲率过大就会产生激波,内部流场参数无法控制,对超声速流场品质造成不利的影响,此外,现有技术中也并无超声速无激波转弯流道的设计方法。 
发明内容
本发明旨在提供一种超声速转弯流道设计方法,能够获得全流场无激波的超声速流道,为超声速风洞、超声速引射器、超声速飞行器的气动与结构设计提供更好的流场环境。 
为了实现上述目的,根据本发明的一个方面,提供了一种超声速转弯流道设计方法,包括:根据超声速流道设计结构的几何约束确定超声速流道壁面曲线的入口边界;根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线;利用特征线法确定对应于单边壁面曲线的对边壁面曲线;根据出口流场参数要求确定对边壁面曲线下游的超声速流道壁面曲线。 
进一步地,入口边界包括第一入口边界点和第二入口边界点,根据超声速流道设计结构的几何约束确定超声速流道的入口边界还包括:根据入口边界的马赫数和流动方向角确定入口边界的入口影响域,根据第一入口边界点和第二入口边界点利用特征线法确定入口影响域的顶点。 
进一步地,根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线包括:根据出口几何约束,确定对应于第一入口边界点的第一出口边界点,并确定第一入口边界点和第一出口边界点之间的单边壁面曲线。 
进一步地,根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线还包括:根据单边壁面曲线上的第一入口边界点和入口影响域的顶点之间形成的特征线以及单边壁面曲线利用特征线法确定单边壁面曲线上的中间点;利用特征线法求解单边壁面曲线上的第一入口边界点、该中间点和入口影响域的顶点所形成的区域流场的马赫数和流动方向角。 
进一步地,在确定入口边界点、该中间点和入口影响域的顶点所形成的区域流场的马赫数和流动方向角之后,根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线还包括:根据该区域流场的马赫数和流动方向角确定第一入口边界点与该中间点的马赫数分布;根据出口马赫数设计确定单边壁面曲线的第一出口边界点的马赫数;利用二阶连续曲线将单边壁面曲线的第一入口边界点、第一出口边界点以及单边壁面曲线上的中间点的马赫数分布连接起来,形成单边壁面曲线的马赫数分布曲线。 
进一步地,利用特征线法确定对应于单边壁面曲线的对边壁面曲线包括:根据入口边界的第二入口边界点和单边壁面曲线的第一出口边界点利用特征线法确定位于对边壁面曲线上的中间点;根据单边壁面曲线的中间点与单边壁面曲线的第一出口边界点之间的曲线,利用特征线法确定第二入口边界点与对边壁面曲线上的中间点之间的曲线。 
进一步地,根据单边壁面曲线的中间点与单边壁面曲线的第一出口边界点之间的曲线,利用特征线法确定第二入口边界点与对边壁面曲线上的中间点之间的曲线之后,利用特征线法确定对应于单边壁面曲线的对边壁面曲线还包括:根据第二入口边界点与单边壁面曲线上的中间点之间的曲线马赫数和流动方向角,利用特征线法确定第一出口边界点与对边壁面曲线上的中间点之间的曲线。 
进一步地,根据设计要求确定超声速流道壁面曲线包括:根据出口设计要求确定第二出口边界点以及位于第一出口边界点和第二出口边界点之间的出口边界,并利用特征线法确定出口边界的马赫数和流动方向角。 
进一步地,利用特征线法确定出口边界的马赫数和流动方向角之后,根据设计要求确定超声速流道壁面曲线还包括:根据第一出口边界点与单边壁面曲线上的中间点之间的曲线和出口边界的马赫数和流动方向角,利用特征线法确定第二出口边界点与对边壁面曲线的中间点之间的壁面曲线坐标、马赫数和流动方向角。 
进一步地,在确定超声速流道壁面曲线之后还包括:根据超声速流道设计要求,利用超声速流道壁面曲线形成超声速流道。 
进一步地,根据超声速流道设计要求,利用超声速流道壁面曲线形成超声速流道包括:根据气体流动类型选择超声速流道的生成方式,当气体为二维流动时,将超声速流道壁面曲线沿垂直其自身方向拉伸,形成超声速矩形截面流道;当气体为三维流动时,根据超声速流道壁面曲线的坐标确定对称轴,超声速流道壁面曲线绕对称轴旋转,形成超声速环形截面流 道。 
进一步地,特征线法包括预估步和校正步,校正步根据预估步的结果进行校正。 
应用本发明的技术方案,超声速转弯流道设计方法包括:根据超声速流道设计结构的几何约束确定超声速流道的入口边界;根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线;利用特征线法确定对应于单边壁面曲线的对边壁面曲线;根据设计要求确定超声速流道壁面曲线。根据本方法设计的超声速流道,从入口至出口均为超声速区,因此,保证全流场为超声速流场,根据特征线法确定的超声速流道壁面曲线,能够形成无激波转弯的超声速流道,使流体可自由转弯,避免了流体在流动过程中形成集中的膨胀和压缩波,提高了流场质量。 
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中: 
图1示出了根据本发明的超声速转弯流道设计方法的入口边界的示意图; 
图2示出了根据本发明的超声速转弯流道设计方法形成入口影响域的示意图; 
图3示出了根据本发明的超声速转弯流道设计方法形成单边壁面曲线的示意图; 
图4示出了根据本发明的超声速转弯流道设计方法形成单边壁面曲线的中间点的示意图; 
图5示出了根据本发明的超声速转弯流道设计方法形成的单边壁面曲线的马赫数分布曲线示意图; 
图6示出了根据本发明的超声速转弯流道设计方法形成的至对边壁面曲线的中间点的曲线示意图; 
图7示出了根据本发明的超声速转弯流道设计方法的出口边界的马赫数分布曲线示意图; 
图8示出了根据本发明的超声速转弯流道设计方法的出口边界的流动方向角分布曲线示意图;以及 
图9示出了根据本发明的超声速转弯流道设计方法的超声速流道壁面曲线示意图;以及 
图10示出了根据本发明的超声速转弯流道设计方法的特征线法求解示意图。 
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。 
根据本发明的实施例,超声速转弯流道通过以下方法获得。 
如图1所示,首先根据超声速转弯流道的结构设计要求即出口流场参数的几何约束确定超声速流道壁面曲线的入口边界AB,其中A为入口边界AB的第二入口边界点,B为入口边界AB的第一入口边界点。然后根据入口边界AB的第二入口边界点A和第一入口边界点B的坐标、马赫数和流动方向角,利用特征线法确定入口影响域的顶点C的坐标以及该顶点C的马赫数和流动方向角。之后根据第二入口边界点A和第一入口边界点B之间的各点的坐标、马赫数和流动方向角,确定AC之间的曲线和BC之间的曲线,最终确定入口影响域ABC的区域流场的马赫数和流动方向角,如图2所示。 
如图3所示,在入口影响域ABC确定之后,根据出口设计要求的几何约束,确定对应于第一入口边界点B的第一出口边界点E,并根据设计要求的几何约束确定单边壁面曲线BE。 
如图4所示,在确定单边壁面曲线BE之后,根据左行特征线BC和单边壁面曲线BE的马赫数和流动方向角和坐标利用特征线法求解右行特征线CD,右行特征线CD的其中一个边界点D点位于单边壁面曲线BE上,形成单边壁面曲线BE的中间点(位于B和E两点之间曲线上的点)。根据左行特征线BC和单边壁面曲线BE的马赫数和流动方向角利用特征线法确定BCD的区域流场的马赫数和流动方向角。 
如图5所示,在确定BCD的区域流场的马赫数和流动方向角后,确定单边壁面曲线上的BD段的马赫数分布曲线,并将其标示为横坐标为弧长S,纵坐标为马赫数Ma的曲线图,然后根据出口马赫数的设计要求确定第一出口边界点E的马赫数,利用二阶连续曲线将BD和DE之间的马赫数分布连接起来,形成S-Ma坐标系,将单边壁面曲线BE的马赫数分布曲线表示为光滑曲线。 
如图6所示,在确定单边壁面曲线BE的马赫数分布曲线之后,根据入口边界的第二入口边界点A和单边壁面曲线BE的第一出口边界点E的坐标、马赫数和流动方向角,利用特征线法确定位于对边壁面曲线上的中间点F的坐标、马赫数和流动方向角,然后根据单边壁面曲线BE的中间点D与单边壁面曲线BE的第一出口边界点E之间的曲线坐标,以及曲线上的各点的马赫数和流动方向角,利用特征线法确定第二入口边界点A与对边壁面曲线上的中间点F之间的曲线AF,以及该曲线AF上各点的马赫数和流动方向角。 
然后根据第二入口边界点A与单边壁面曲线BE上的中间点D之间的曲线AD的坐标、马赫数和流动方向角,利用特征线法确定第一出口边界点E与对边壁面曲线上的中间点F之间的曲线EF的坐标、马赫数和流动方向角。其中曲线AD的马赫数和流动方向角可以利用特征线法进行求解。如此可以确定部分对边壁面曲线AF以及ACDEF区域流畅的马赫数和流动方向角的分布状况。 
如图7和图8所示,在部分对边壁面曲线AF确定之后,需要根据出口的结构设计要求确定满足超声速流场设计的出口边界EG,以及该出口边界EG的马赫数和流动方向角沿弧长S方向的分布曲线。 
如图9所示,在确定曲线EF的坐标、马赫数和流动方向角以及出口边界EG的坐标、马赫数、流动方向角分布状况之后,利用EF和EG的坐标以及马赫数、流动方向角,根据特征 线法确定对边壁面曲线上的中间点F与第二出口边界点G点之间的曲线FG的坐标、马赫数和流动方向角,最终确定对边壁面曲线AG的曲线坐标、马赫数和流动方向角,从而确定整个超声速转弯流道的壁面曲线ABEG。该壁面曲线ABEG上的各点通过在确定区域流场以及边界壁面曲线的过程中,保证壁面曲线各点以及区域流场内的马赫数处于超声速区域,从而实现整个超声速壁面曲线的流场全部为超声速。 
在确定超声速流道的壁面曲线之后,需要根据气体的流动类型选择超声速流道的最终成型方式。当气体为二维流动时,需要通过将超声速流道壁面曲线沿垂直其自身方向拉伸,形成超声速矩形截面流道;当气体为三维流动时,需要根据超声速流道壁面曲线的坐标确定对称轴,并使超声速流道壁面曲线绕对称轴旋转,从而形成超声速环形截面流道。 
其中利用特征线法对壁面曲线求解的过程如下: 
假设已知壁面曲线上的两点(x1,r1,M11,)(x2,r2,M22)需要求解第三点(x3,r3,M33)时,可利用图10所示过程进行求解。 
在求解过程中,首先根据预估步对第三点进行求解,然后对求解值进行校正,获得校正之后的第三点的坐标、马赫数和流动方向角。 
预估步包括: 
先求解(x3,r3
μ1=sin-1(1/M1
μ2=sin-1(1/M2
h1=tan[θ11
h2=tan[θ22
根据差分方程有: 
r3-r1=h1(x3-x1
r3-r2=h2(x3-x2
两式相减可得: 
r1-r2={h2-h1}x3+x1h1-x2h2
求得第三点的坐标 
x 3 = ( r 1 - r 2 ) - ( x 1 h 1 - x 2 h 2 ) h 2 - h 1 r 3 = h 1 ( x 3 - x 1 ) + r 1 - - - ( 1 )
下面求解相容性关系式: 
令: 
g 1 = ( M 1 2 - 1 ) 1 / 2 1 + ( γ - 1 ) M 1 2 / 2 1 M 1
g 2 = ( M 2 2 - 1 ) 1 / 2 1 + ( γ - 1 ) M 2 2 / 2 1 M 2
f 1 = δ tan θ ( M 2 - 1 ) 1 / 2 tan θ + 1 r 3 - r 1 r 1
f 2 = δ tan θ ( M 2 - 1 ) 1 / 2 tan θ + 1 r 3 - r 2 r 2
则有: 
g1(M3-M1)-(θ31)-f1=0 
g2(M3-M2)+(θ32)-f2=0 
从而获得第三点所在位置处的马赫数和流动方向角: 
M 3 = f 1 - θ 1 + g 1 M 1 + f 2 + θ 2 + g 2 M 2 g 1 + g 2
θ3=g1(M3-M1)+θ1-f1
μ3=sin-1(1/M3
上述公式中,M1为第一点所在位置处的马赫数,μ1为第一点所在位置处的马赫角,θ1 为第一点所在位置处的流动方向角,x1为第一点所在位置处的横坐标,r1为第一点所在位置处的纵坐标,γ为气体的定压比热与定容比热的比热比,M为当地马赫数且M>1,δ为流动类型参数,对于二维流动δ=0,三维轴对称流动δ=1,r≠0。 
M2为第二点所在位置处的马赫数,μ2为第二点所在位置处的马赫角,θ2为第二点所在位置处的流动方向角,x2为第二点所在位置处的横坐标,r2为第二点所在位置处的纵坐标。 
M3为第三点所在位置处的马赫数,μ3为第三点所在位置处的马赫角,θ3为第三点所在位置处的流动方向角,x3为第三点所在位置处的横坐标,r3为第三点所在位置处的纵坐标。 
在预估步中求解出第三点所在位置处的坐标、马赫数和流动方向角之后,对方程的系数或参数取平均值重复预估步的计算过程,对第三点的马赫数和流动方向角进行校正。这个参数或者系数平均值可通过求得的第三点的马赫数和流动方向角进行求解,令 
M 1 ′ = ( M 1 + M 3 ) 2
M 2 ′ = ( M 1 + M 3 ) 2
其中M1'为第一点进行校正后的马赫数平均值,M2'为第二点进行校正后的马赫数平均值,然后将M1'和M2'的值代入预估步中继续进行求解,直至最终校正步求得的第三点马赫数与预估步中求得的第三点马赫数M3相等为止,此时的第三点所处位置处的马赫数为校正之后的最终的马赫数。同理,第三点所在位置处的流动方向角也可以通过校正步获得最终的流动方向角。 
在本设计中,由于流道入口就是超声速的,而通过特征线又保证了在迭代过程中流场业肯定是超声速的,所以,马赫数大于1,设计出的转弯流道必然是超声速的,从而保证了内部流场参数的稳定性和准确性,保证了超声速流场的品质。 
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:根据超声速流道设计结构的几何约束确定超声速流道的入口边界;根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线;利用特征线法确定对应于单边壁面曲线的对边壁面曲线;根据设计要求确定超声速流道壁面曲线。根据本方法设计的超声速流道,从入口至出口均为超声速区,因此,保证全流场为超声速流场,根据特征线法确定的超声速流道壁面曲线,能够形成无激波的超声速转弯流道,使流体可自由转弯,避免了流体在流动过程中形成集中的膨胀和压缩波,提高了流场质量。 
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 

Claims (8)

1.一种超声速转弯流道设计方法,其特征在于,包括:
根据超声速流道设计结构的几何约束确定超声速流道壁面曲线的入口边界;
入口边界包括第一入口边界点和第二入口边界点,根据超声速流道设计结构的几何约束确定超声速流道壁面曲线的入口边界还包括:根据入口边界的马赫数和流动方向角确定入口边界的入口影响域,根据第一入口边界点和第二入口边界点利用特征线法确定入口影响域的顶点;
根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线;
根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线包括:根据出口几何约束,确定对应于第一入口边界点的第一出口边界点,并确定第一入口边界点和第一出口边界点之间的单边壁面曲线;
利用特征线法确定对应于单边壁面曲线的对边壁面曲线;
利用特征线法确定对应于单边壁面曲线的对边壁面曲线包括:根据入口边界的第二入口边界点和单边壁面曲线的第一出口边界点利用特征线法确定位于对边壁面曲线上的中间点;根据单边壁面曲线的中间点与单边壁面曲线的第一出口边界点之间的曲线,利用特征线法确定第二入口边界点与对边壁面曲线上的中间点之间的曲线;根据出口流场参数确定对边壁面曲线下游的超声速流道壁面曲线;
根据设计要求确定超声速流道壁面曲线包括:根据出口设计要求确定第二出口边界点以及位于第一出口边界点和第二出口边界点之间的出口边界,并利用特征线法确定出口边界的马赫数和流动方向角。
2.根据权利要求1所述的超声速转弯流道设计方法,其特征在于,根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线还包括:
根据单边壁面曲线上的第一入口边界点和入口影响域的顶点之间形成的特征线以及单边壁面曲线利用特征线法确定单边壁面曲线上的中间点;
利用特征线法求解单边壁面曲线上的第一入口边界点、该中间点和入口影响域的顶点所形成的区域流场的马赫数和流动方向角。
3.根据权利要求2所述的超声速转弯流道设计方法,其特征在于,在确定入口边界点、该中间点和入口影响域的顶点所形成的区域流场的马赫数和流动方向角之后,根据超声速流道设计结构的几何约束确定超声速流道的单边壁面曲线还包括:
根据该区域流场的马赫数和流动方向角确定第一入口边界点与该中间点的马赫数分布;
根据出口马赫数设计确定单边壁面曲线的第一出口边界点的马赫数;
利用二阶连续曲线将单边壁面曲线的第一入口边界点、第一出口边界点以及单边壁面曲线上的中间点的马赫数分布连接起来,形成单边壁面曲线的马赫数分布曲线。
4.根据权利要求1所述的超声速转弯流道设计方法,其特征在于,根据单边壁面曲线的中间点与单边壁面曲线的第一出口边界点之间的曲线,利用特征线法确定第二入口边界点与对边壁面曲线上的中间点之间的曲线之后,利用特征线法确定对应于单边壁面曲线的对边壁面曲线还包括:
根据第二入口边界点与单边壁面曲线上的中间点之间的曲线马赫数和流动方向角,利用特征线法确定第一出口边界点与对边壁面曲线上的中间点之间的曲线。
5.根据权利要求1所述的超声速转弯流道设计方法,其特征在于,利用特征线法确定出口边界的马赫数和流动方向角之后,根据设计要求确定超声速流道壁面曲线还包括:
根据第一出口边界点与单边壁面曲线上的中间点之间的曲线和出口边界的马赫数和流动方向角,利用特征线法确定第二出口边界点与对边壁面曲线的中间点之间的壁面曲线坐标、马赫数和流动方向角。
6.根据权利要求1至5中任一项所述的超声速转弯流道设计方法,其特征在于,在确定超声速流道壁面曲线之后还包括:
根据超声速流道设计要求,利用超声速流道壁面曲线形成超声速流道。
7.根据权利要求6所述的超声速转弯流道设计方法,其特征在于,根据超声速流道设计要求,利用超声速流道壁面曲线形成超声速流道包括:
根据气体流动类型选择超声速流道的生成方式,当气体为二维流动时,将超声速流道壁面曲线沿垂直其自身方向拉伸,形成超声速矩形截面流道;
当气体为三维流动时,根据超声速流道壁面曲线的坐标确定对称轴,超声速流道壁面曲线绕对称轴旋转,形成超声速环形截面流道。
8.根据权利要求1至5中任一项所述的超声速转弯流道设计方法,其特征在于,特征线法包括预估步和校正步,校正步根据预估步的结果进行校正。
CN201210447983.4A 2012-11-09 2012-11-09 超声速转弯流道设计方法 Active CN102996581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210447983.4A CN102996581B (zh) 2012-11-09 2012-11-09 超声速转弯流道设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210447983.4A CN102996581B (zh) 2012-11-09 2012-11-09 超声速转弯流道设计方法

Publications (2)

Publication Number Publication Date
CN102996581A CN102996581A (zh) 2013-03-27
CN102996581B true CN102996581B (zh) 2014-08-27

Family

ID=47925560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210447983.4A Active CN102996581B (zh) 2012-11-09 2012-11-09 超声速转弯流道设计方法

Country Status (1)

Country Link
CN (1) CN102996581B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321779B (zh) * 2013-06-28 2015-12-02 中国人民解放军国防科学技术大学 超声速非均匀来流最大推力喷管及其壁面确定方法
CN105574294B (zh) * 2016-02-01 2018-11-23 南京航空航天大学 一种弯曲激波压缩流场气流参数的快速确定方法
CN113378430A (zh) * 2021-05-25 2021-09-10 中国空气动力研究与发展中心计算空气动力研究所 一种基于双特征线的超声速空间曲面推进求解方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042893A (ja) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd 超音速ノズル
CN102323961B (zh) * 2011-05-18 2014-01-15 中国人民解放军国防科学技术大学 非对称超声速喷管及其设计方法
CN102606564B (zh) * 2012-04-13 2013-10-02 中国人民解放军国防科学技术大学 超声速流道的实现方法和装置

Also Published As

Publication number Publication date
CN102996581A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN103954425B (zh) 高超声速静风洞喷管设计方法及该喷管转捩位置确定方法
CN102996581B (zh) 超声速转弯流道设计方法
CN103495516B (zh) 一种复杂曲面两遍自动喷涂轨迹优化方法
CN106650173B (zh) 出口截面流场参数可控的内转式进气道基本流场设计方法
Oliviero et al. EPIC: NPSE analysis of hypersonic crossflow instability on yawed straight circular cone
CN102606564B (zh) 超声速流道的实现方法和装置
US20200283169A1 (en) Osculating cone theory-based fixed-plane waverider design method
CN114112286B (zh) 一种高超声速风洞轴对称型面喷管拟合喉道段设计方法
CN108421649A (zh) 一种矩形超音速喷嘴及其设计方法
CN102302990B (zh) 环形超声速喷管及其设计方法
CN105583522B (zh) 一种熔覆层侧向搭接方法和装置
CN103306820B (zh) 超声速进气道及其壁面的三维确定方法
Shanmugavel et al. A solution to simultaneous arrival of multiple UAVs using Pythagorean hodograph curves
CN102999697A (zh) 一种高超声速喷管多阶连续气动型面的确定方法
CN106014422B (zh) 一种城区隧道爆破设计药量的安全施工区间确定方法
CN103143461A (zh) 滑块式变马赫数喷管及其壁面确定方法
CN102996253B (zh) 超声速进气道及其壁面确定方法
CN115329489A (zh) 一种曲率连续的拉瓦尔喷管设计方法
CN102979623B (zh) 超声速进气道及其壁面确定方法
CN103321779B (zh) 超声速非均匀来流最大推力喷管及其壁面确定方法
US8731869B2 (en) Advancing layer surface grid generation
ITRE20110049A1 (it) Ugello capace di deviare in modo dinamico e controllabile un getto sintetico senza parti meccaniche in movimento e relativo sistema di controllo
Sarimurat et al. Shock management in diverging flow passages by blowing/suction, part 2: applications
CN109931995A (zh) 一种获取气体超声流量计内部声场的方法
CN103032424B (zh) 超声速分流流道及其壁面确定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant