CN102992516A - 一种高盐有机废水处理系统及其工艺 - Google Patents

一种高盐有机废水处理系统及其工艺 Download PDF

Info

Publication number
CN102992516A
CN102992516A CN2012105078291A CN201210507829A CN102992516A CN 102992516 A CN102992516 A CN 102992516A CN 2012105078291 A CN2012105078291 A CN 2012105078291A CN 201210507829 A CN201210507829 A CN 201210507829A CN 102992516 A CN102992516 A CN 102992516A
Authority
CN
China
Prior art keywords
reverse osmosis
waste water
water
osmosis device
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105078291A
Other languages
English (en)
Inventor
于洸
赵凤霞
禹晓磊
胡溪
帅伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Beijing Guodian Futong Science and Technology Development Co Ltd
Original Assignee
State Grid Corp of China SGCC
Beijing Guodian Futong Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Beijing Guodian Futong Science and Technology Development Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN2012105078291A priority Critical patent/CN102992516A/zh
Publication of CN102992516A publication Critical patent/CN102992516A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明所述高盐有机废水的处理系统,包括离子交换装置;一级反渗透装置;吸附池和二级反渗透装置。本发明将吸附池设置在一级反渗透装置与二级反渗透装置之间,原因在于,废水进入一级反渗透装置后产生的浓水中COD含量由于浓缩而增大,同时浓水的体积相对于反渗透装置的进水也大大降低,与在反渗透装置进水中添加活性焦/活性炭相比,此时只需要少量的活性焦/活性炭即可达到良好的有机物吸附效果。本发明中所述的高盐有机废水的处理系统,在废水进入二级反渗透装置前利用活性焦/活性炭除去废水中的大分子有机物和部分小分子有机物,从而有效避免了二级反渗透装置发生堵塞的问题,工艺流程简单且运行稳定。

Description

一种高盐有机废水处理系统及其工艺
技术领域
本发明属于废水处理领域,具体涉及一种高盐有机废水的处理工艺及其处理系统。 
背景技术
高盐废水是指工业上产生的总含盐量(Cl-、SO4 2-、Na+、Ca2+等)较高的废水。高盐废水主要来自化工、石油、食品加工、印染等行业。这些行业排放的废水中除了盐类外,还含有大量的有机物。现有技术中,为了有效利用水资源,防止废水排放造成环境污染,需要对高盐废水进行脱盐、脱有机物处理后再进行回收利用。现有技术中用于脱盐处理的方法主要有过滤法、离子交换法、电渗析法、反渗透法等。 
如中国专利文献CN101643284A中公开了一种高脱盐高产水率反渗透水处理工艺,该工艺首先对原水进行深层过滤,向过滤后的出水中加入石灰和苏打进行预软化后再将其送入离子交换软化系统进行软化处理,除去硬度;向软化处理后的水中加入氢氧化钠溶液进行pH调节至碱性;再将碱性的出水送入反渗透系统进行处理。为了提高反渗透系统的脱盐效率以及水回收率,现有技术中通常是采用多级反渗透处理装置,即一级反渗透装置出来的浓水再进入二级(浓水)反渗透进行处理,该工艺中反渗透系统的出水回收率达到75~90%。 
采用上述处理工艺对含盐废水进行处理,能够有效脱除废水中的盐类。但是上述工艺并不适用于处理含有机物的高盐废水,原因在于,如果上述工艺进水中含有COD,当废水进入多级反渗透装置后,会逐级发生浓缩,从而导致进入下级反渗透装置中的浓水COD浓度逐级增高,而反渗透膜只允许分子量小于100的有机物通过,而分子量大于100的有机物会被拦截在膜的表面,进而使得反渗透膜极易发生有机物堵塞,影响脱盐工艺的正常运行。 
因此在使用反渗透工艺进行脱盐处理之前,必须要对废水中的COD进行处理。现有技术中,处理高盐度有机废水主要是采用生物法,如中国科技文献《高含盐有机废水生物处理技术现状及进展》(2007年第30卷第11期)中就公开了采用活性污泥法、厌氧处理反应器等工艺处理高盐废水中有机物方法,但是采用生物法处理高盐度有机废水的缺陷在于,废水中的高盐浓度对微生物的活性有抑制作用,因此在利用生物法对废水进行处理时,必须要对微生物进行筛选和驯化,获得可承受高盐度的嗜盐菌,从而大大增加了工艺的难度和成本。因此,如何通过一种运行稳定且相对简单的工艺和系统,在脱除高盐有机废水中盐类的同时还能有效除去水中的COD,是本领域技术人员尚未解决的难题。 
发明内容
本发明要解决的技术问题在于现有技术中缺少一种简单且运行稳定的、在脱除高盐有机废水中盐类的同时还能有效除去水中的COD的工艺的问题。进而提供一种工艺简单、不易发生反渗透膜堵塞的高盐有机废水的处理系统及其工艺。 
本发明所述的高盐有机废水的处理系统及其工艺的技术方案为: 
一种高盐有机废水的处理系统,包括
离子交换装置;
与所述离子交换装置连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,所述吸附池中添加有活性焦;
与所述吸附池连接设置的二级反渗透装置。
所述离子交换装置为钠离子交换器。 
所述活性焦的粒径范围为0.3~0.8mm。 
在所述离子交换装置和所述一级反渗透装置之间设置有中间水池。 
在所述离子交换装置之前,且与所述离子交换装置连接设置有软化药剂加药池。 
所述吸附池中还添加有活性炭, 所述活性碳的孔径小于或者等于2nm; 
所述活性焦和活性炭的添加量之比为50:1~1:50。
一种基于所述的高盐有机废水处理系统的处理工艺,包括: 
(1)对废水进行离子交换处理;
(2)将离子交换处理后的出水送入一级反渗透装置;
(3)利用活性焦对所述一级反渗透装置的浓水出水进行吸附;
(4)将完成吸附后的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
进入所述一级反渗透装置和二级反渗透装置的进水pH值为6~9。 
步骤(3)中,所述浓水出水中活性焦的添加量为10~1000mg/L。 
所述步骤(1)中,利用所述钠离子交换器对废水进行离子交换处理,将步骤(4)中完成吸附后的浓水中的一部分作为钠离子交换器的再生药剂。 
在对废水进行离子交换处理前,先向所述废水中加入软化药剂进行软化。 
在所述步骤(3)中,利用活性焦和活性炭对所述一级反渗透装置的浓水出水进行吸附,所述活性碳的孔径小于或者等于2nm; 
所述活性焦和活性炭的添加量之比为50:1~1:50。
本发明所述高盐有机废水的处理工艺设置步骤(1)对废水进行离子交换处理;步骤(2)将离子交换处理后的出水送入一级反渗透装置;步骤(3)利用活性焦对所述一级反渗透装置的浓水出水进行吸附;现有技术中,吸附池是利用硅胶、膨润土、硅藻土、分子筛等吸附剂对废水中的污染物进行吸附,再将完成吸附后的吸附剂与水进行分离,得到吸附处理后的出水;本发明在这里选择活性焦吸附剂的优点在于,活性焦吸附剂兼具有发达的中孔结构和微孔结构,这种孔径分布在保证比表面积和吸附容量的同时,适宜于吸附浓水中的大分子有机物和部分小分子有机物,从而有效延长了反渗透膜的使用寿命。本发明还进一步限定了所述吸附池中活性焦的添加量为10~1000mg/L,原因在于活性焦的添加量过少,会导致 COD较高,不满足二级(浓水)反渗透的进水要求,而添加量过多,又会导致活性焦粉的流失和浪费,增加运行成本。本发明还设置所述活性焦的粒径范围为0.3~0.8mm,原因在于吸附效果好,有利于COD的去除,同时沉淀性能好,确保不随出水流失。 
作为优选的实施方式,本发明还设置向进入所述吸附池的浓水中添加活性焦和活性炭,所述活性焦和活性炭的添加量之比为50:1~1:50。这样设置的优点在于,活性焦颗粒的中孔发达,能够有效吸附大分子有机物,同时有效避免苯环类大分子与反渗透膜材料分子发生交联反应而导致反渗透膜结构的不可逆性破坏。而小于2nm的活性炭具有丰富的微孔结构,对小分子有机物具有较强的吸附能力,从而减缓易降解有机物导致反渗透膜发生微生物滋生和有机物污堵。本发明通过添加具有适宜比例,以及适宜粒径分布的活性焦和活性炭,提高了有机物的吸附效率,经本发明所述的活性焦和活性炭吸附后,浓水中COD的去除率达到70%以上。 
本发明中所述工艺的步骤(4)将所述吸附池中的出水送入所述二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水,经所述反渗透膜处理后的淡水具有非常低的含盐量和COD,适宜用于工业循环冷却水或锅炉补给水。 
本发明所述高盐有机废水的处理工艺,进一步限定所述吸附池出来的浓水中的一部分作为钠离子交换器的再生药剂。经所述吸附池吸附后的浓水中基本不含COD,作为钠离子交换器的再生药剂时不会造成钠离子交换器的堵塞。 
本发明所述高盐有机废水的处理系统的优点在于: 
本发明所述高盐有机废水的处理系统,包括离子交换装置;一级反渗透装置;吸附池和二级反渗透装置。本发明首先通过离子交换装置去除水中的大部分硬度,使废水的含盐量满足反渗透进水的要求,再将废水送入所述一级反渗透装置。本发明将吸附池设置在一级反渗透装置与二级反渗透装置之间,原因在于,废水进入一级反渗透装置后产生的浓水中COD含量由于浓缩而增大,同时浓水的体积相对于反渗透装置的进水也大大降低,与在反渗透装置进水中添加活性焦相比,此时只需要少量的活性焦或者活性焦和活性炭混合吸附剂即可达到良好的有机物吸附效果。本发明中所述的高盐有机废水的处理系统,在废水进入二级反渗透装置前利用活性焦除去废水中的大分子有机物和部分小分子有机物,从而有效避免了二级反渗透装置发生堵塞的问题,工艺流程简单且运行稳定。
附图说明
为了进一步阐明本发明所述的技术方案,下面结合具体实施例和附图对本发明所述的高盐有机废水的处理工艺做进一步的说明。 
如图1所示是本发明所述的高盐有机废水处理系统的流程图;
如图2所示是本发明所述的设置有中间水池的高盐有机废水处理系统的流程图;
如图3所示是本发明所述的设置有软化药剂加药池的高盐有机废水处理系统的流程图。
具体实施方式
实施例1
本实施例中所述的高盐有机废水的处理系统,如图1所示,包括:
离子交换装置,所述离子交换装置为钠离子交换器;
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,向进入所述吸附池的浓水中添加活性焦;
与所述吸附池连接二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
本发明所述的高盐有机废水的处理工艺,包括 
(1)将废水送入离子交换装置进行离子交换处理,废水的进水量为17000t/天; 
(2)将所述钠离子交换器的出水送入一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦,所述活性焦的添加量为 350mg/L;
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
实施例2
本实施例中所述的高盐有机废水的处理系统,如图1所示,包括:
离子交换装置,所述离子交换装置为钠离子交换器;
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,所述吸附池中添加有活性焦和活性炭;
与所述吸附池连接二级反渗透装置。
本发明所述的高盐有机废水的处理工艺,包括 
(1)将废水送入离子交换装置进行离子交换处理,废水的进水量为15000t/天; 
(2)将所述钠离子交换器的出水送入一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭,所述活性焦的添加量为10mg/L,活性炭的添加量为500mg/L;活性焦和活性炭的添加量之比为1:50。
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。 
实施例3
本实施例中所述的高盐有机废水的处理系统,如图1所示,包括:
离子交换装置,所述离子交换装置为钠离子交换器;
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,所述吸附池中添加有活性焦;
与所述吸附池连接二级反渗透装置。
本发明所述的高盐有机废水的处理工艺,包括 
(1)将废水送入离子交换装置进行离子交换处理,废水的进水量为15000t/天; 
(2)将所述钠离子交换器的出水送入一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦,所述活性焦的添加量为1000mg/L,所述活性炭的添加量为20mg/L;活性焦和活性炭的添加量之比为50:1。
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。 
实施例4
本实施例中所述的高盐有机废水的处理系统,如图2所示,包括:
离子交换装置,所述离子交换装置为钠离子交换器;
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭;
与所述吸附池连接设置有二级反渗透装置。
本实施例中所述的处理系统,在所述离子交换装置和所述一级反渗透装置之间还设置有中间水池。 
本发明所述的高盐有机废水的处理工艺,包括 
(1)将废水送入钠离子交换装置,废水的进水量为2000t/天; 
(2)将所述钠离子交换器的出水送入中间水池,再由所述中间水池送入所述一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭,其中所述活性焦的添加量为 170mg/L,所述活性炭的添加量为17mg/L; 活性焦和活性炭的添加量之比为10:1。
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。 
实施例5
本实施例中所述的高盐有机废水的处理系统,如图3所示,包括:
软化药剂加药池。
与所述软化药剂加药池连接的钠离子交换器; 
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭;
与所述吸附池连接二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
本实施例中所述的处理系统,在所述离子交换装置和所述一级反渗透装置之间设置有中间水池。 
本发明所述的高盐有机废水的处理工艺,包括 
(1)在所述软化加药池中向所述废水中加入软化药剂进行软化,再将软化后的废水送入钠离子交换装置,废水的进水量为9600t/天; 
(2)将所述钠离子交换器的出水送入中间水池,再由所述中间水池送入所述一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭,其中所述活性焦的添加量为230mg/L,所述活性炭的添加量为115mg/L;活性焦和活性炭的添加量之比为2:1。
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。 
本实施例还将完成吸附后的出水中的一部分作为钠离子交换器的再生药剂。 
实施例6
本实施例中所述的高盐有机废水的处理系统,如图3所示,包括:
软化药剂加药池。
与所述软化药剂加药池连接的钠离子交换器; 
与所述钠离子交换器连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭;
与所述吸附池连接二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
本实施例中所述的处理系统,在所述离子交换装置和所述一级反渗透装置之间设置有中间水池。 
本发明所述的高盐有机废水的处理工艺,包括 
(1)在所述软化加药池中向所述废水中加入软化药剂进行软化,再将软化后的废水送入钠离子交换装置,废水的进水量为6000t/天;
(2)将所述钠离子交换器的出水送入中间水池,再由所述中间水池送入所述一级反渗透装置;
(3)将所述一级反渗透装置的浓水出水送入吸附池,向进入所述吸附池的浓水中添加活性焦和活性炭,活性焦的添加量为 120mg/L,活性炭的添加量为30 mg/L,活性焦和活性炭的添加量之比为4:1。
(4)将所述吸附池的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。本实施例还将完成吸附后的出水中的一部分作为钠离子交换器的再生药剂。 
实验例
为了证明本发明所述的高盐有机废水的处理系统及其工艺的技术效果,本发明设置了实验例,对实施例1-4中所述的进水、一级反渗透浓水、吸附池出水和二级反渗透装置出水中的COD和总含盐量进行测定,结果如下:
Figure 66479DEST_PATH_IMAGE001
由上述实验结果可知,经本发明所述的高盐有机废水的处理系统处理后的出水COD cr的含量和总含盐量完全能够满足工业循环冷却水或锅炉补给水的要求。
对比例
为了证明本发明所述的高盐有机废水的处理系统及其工艺相比于现有技术具有技术效果,本发明还设置了对比例1-3,对比例1-3的构筑物分别与实施例1-3 相同,即设置有钠离子交换装置、一级反渗透、吸附池和二级反渗透装置,对比例1-3的进水水质与水量也分别与实施例1-3相同,区别仅在于:
对比例1中采用的吸附剂为有机膨润土,膨润土添加量为350mg/L;
对比例2中采用的吸附剂为硅藻土,硅藻土的添加量为510mg/L;
对比例3中采用的吸附剂为天然沸石,天然沸石的添加量为1020mg/L;
对对比例1-3中所述的进水、一级反渗透浓水、吸附池出水和二级反渗透装置出水中的COD和总含盐量进行测定,结果如下:
Figure 983619DEST_PATH_IMAGE002
由上述实验结果可知,经对比例1-3所述的吸附剂处理后的吸附池出水COD cr分别为98 mg/L、79 mg/L和73 mg/L,要远高于本发明实施例1-3中吸附池出水的COD cr的含量,而对比例1-3中的高COD cr容易导致其二级浓水反渗透装置在长期运行后发生堵塞,因此本发明实施例1-3相比于对比例1-3中的技术方案具有明显的技术优势。
虽然本发明已经通过具体实施方式对其进行了详细阐述,但是,本专业普通技术人员应该明白,在此基础上所做出的未超出权利要求保护范围的任何形式和细节的变化,均属于本发明所要保护的范围。 

Claims (12)

1.一种高盐有机废水的处理系统,包括
离子交换装置;
与所述离子交换装置连接的一级反渗透装置;
与所述一级反渗透装置的浓水出水口连接的吸附池,所述吸附池中添加有活性焦;
与所述吸附池连接设置的二级反渗透装置。
2.根据权利要求1所述的高盐有机废水的处理系统,其特征在于,所述离子交换装置为钠离子交换器。
3.根据权利要求1或2所述的高盐有机废水的处理系统,其特征在于,所述活性焦的粒径范围为0.3~0.8mm。
4.根据权利要求1或2所述的高盐有机废水的处理系统,其特征在于,在所述离子交换装置和所述一级反渗透装置之间设置有中间水池。
5.根据权利要求4所述的高盐有机废水的处理系统,其特征在于,在所述离子交换装置之前,且与所述离子交换装置连接设置有软化药剂加药池。
6.根据权利要求1或2或5所述的高盐有机废水的处理系统,其特征在于,所述吸附池中还添加有活性炭, 所述活性碳的孔径小于或者等于2nm;
所述活性焦和活性炭的添加量之比为50:1~1:50。
7.一种基于权利要求1-3所述的高盐有机废水处理系统的处理工艺,包括:
(1)对废水进行离子交换处理;
(2)将离子交换处理后的出水送入一级反渗透装置;
(3)利用活性焦对所述一级反渗透装置的浓水出水进行吸附;
(4)将完成吸附后的出水送入二级反渗透装置,从所述一级反渗透装置和所述二级反渗透装置中得到处理后的淡水。
8.根据权利要求7所述的处理工艺,其特征在于,进入所述一级反渗透装置和二级反渗透装置的进水pH值为6~9。
9.根据权利要求7或8所述的处理工艺,其特征在于,步骤(3)中,所述浓水出水中活性焦的添加量为10~1000mg/L。
10.根据权利要求7或8所述的处理工艺,其特征在于,所述步骤(1)中,利用所述钠离子交换器对废水进行离子交换处理,将步骤(4)中完成吸附后的浓水中的一部分作为钠离子交换器的再生药剂。
11.根据权利要求7或8所述的处理工艺,其特征在于,在对废水进行离子交换处理前,先向所述废水中加入软化药剂进行软化。
12.根据权利要求7或8所述的处理工艺,其特征在于,在所述步骤(3)中,利用活性焦和活性炭对所述一级反渗透装置的浓水出水进行吸附,所述活性碳的孔径小于或者等于2nm;
所述活性焦和活性炭的添加量之比为50:1~1:50。
CN2012105078291A 2012-12-03 2012-12-03 一种高盐有机废水处理系统及其工艺 Pending CN102992516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105078291A CN102992516A (zh) 2012-12-03 2012-12-03 一种高盐有机废水处理系统及其工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105078291A CN102992516A (zh) 2012-12-03 2012-12-03 一种高盐有机废水处理系统及其工艺

Publications (1)

Publication Number Publication Date
CN102992516A true CN102992516A (zh) 2013-03-27

Family

ID=47921718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105078291A Pending CN102992516A (zh) 2012-12-03 2012-12-03 一种高盐有机废水处理系统及其工艺

Country Status (1)

Country Link
CN (1) CN102992516A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002624A (zh) * 2017-12-05 2018-05-08 晓清环保科技股份有限公司 一种废水处理方法以及废水处理装置
CN109956553A (zh) * 2017-12-22 2019-07-02 株式会社久保田 一种选择性吸附与生物处理相结合的废水处理方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN101643284A (zh) * 2008-08-06 2010-02-10 郭静 高脱盐高产水率反渗透水处理方法及设备
CN201458853U (zh) * 2009-07-17 2010-05-12 上海雅沁环保设备有限公司 一种氰化物漂洗水的回用回收装置
CN101857331A (zh) * 2010-06-10 2010-10-13 哈尔滨瑞格能源环境技术发展有限责任公司 煤化工废水零排放处理方法及系统
CN202465440U (zh) * 2012-03-26 2012-10-03 新疆宜化化工有限公司 一种水处理系统
US20120255904A1 (en) * 2006-12-12 2012-10-11 Veolia Water Solutions & Technologies Support Method of Recovering Oil or Gas and Treating the Resulting Produced Water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120255904A1 (en) * 2006-12-12 2012-10-11 Veolia Water Solutions & Technologies Support Method of Recovering Oil or Gas and Treating the Resulting Produced Water
CN101643284A (zh) * 2008-08-06 2010-02-10 郭静 高脱盐高产水率反渗透水处理方法及设备
CN201458853U (zh) * 2009-07-17 2010-05-12 上海雅沁环保设备有限公司 一种氰化物漂洗水的回用回收装置
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN101857331A (zh) * 2010-06-10 2010-10-13 哈尔滨瑞格能源环境技术发展有限责任公司 煤化工废水零排放处理方法及系统
CN202465440U (zh) * 2012-03-26 2012-10-03 新疆宜化化工有限公司 一种水处理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张建忠 等: "反渗透水处理技术在石化工程中的应用", 《炼油设计》, vol. 32, no. 9, 30 September 2002 (2002-09-30), pages 58 - 61 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002624A (zh) * 2017-12-05 2018-05-08 晓清环保科技股份有限公司 一种废水处理方法以及废水处理装置
CN109956553A (zh) * 2017-12-22 2019-07-02 株式会社久保田 一种选择性吸附与生物处理相结合的废水处理方法和装置

Similar Documents

Publication Publication Date Title
Mai et al. A review of posttreatment technologies for anaerobic effluents for discharge and recycling of wastewater
CN101700938B (zh) 一种印染工艺用水的净化与软化方法
CN102633410B (zh) 高盐反渗透浓水的回用处理工艺
US20150076061A1 (en) Coking wastewater treatment
KR20090054151A (ko) 하/폐수 처리를 통한 음용수 생산 시스템 및 방법
CN207130086U (zh) 一种含盐废水处理装置
CN101786767A (zh) 臭氧氧化法与膜分离技术相结合的焦化废水深度处理工艺
CN103466844A (zh) 含铅废水处理与回用的工艺与设备
CN108640343A (zh) 一种用于工业废水近零排放的处理工艺
CN102276056B (zh) 一种向活性污泥池内投加活性材料的煤化工废水处理工艺
CN104355450A (zh) 一种高盐废水分质回用工艺
AU2011263113A1 (en) Freshwater-generating device, and freshwater-generating method
CN1810675B (zh) 含有生物处理水的水之处理方法及处理装置
CN102642989A (zh) 高盐反渗透浓水的回用处理设备
TW201313626A (zh) 處理飲用水供應中之過氯酸鹽的方法及裝置
CN104118947B (zh) 一种抗生素废水深度处理与回用的方法
CN110759575B (zh) 工业高盐废水脱盐方法
CN102992516A (zh) 一种高盐有机废水处理系统及其工艺
CN209322659U (zh) 一种废水回用处理系统
CN112919709A (zh) 一种高盐高浓度有机废水处理的工艺
CN104944638A (zh) 高盐低污染物工业废水的处理方法
Yu et al. Physico‐chemical processes
CN114772814A (zh) 复合预处理并联合超滤反渗透的污水处理方法及系统
CN103224307A (zh) 基于连续式电吸附工艺的海水淡化装置
Xue et al. Physico‐Chemical Processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130327