CN102976415A - 一种基于相分离的功能性杂化纳米颗粒的制备方法 - Google Patents

一种基于相分离的功能性杂化纳米颗粒的制备方法 Download PDF

Info

Publication number
CN102976415A
CN102976415A CN2012105575148A CN201210557514A CN102976415A CN 102976415 A CN102976415 A CN 102976415A CN 2012105575148 A CN2012105575148 A CN 2012105575148A CN 201210557514 A CN201210557514 A CN 201210557514A CN 102976415 A CN102976415 A CN 102976415A
Authority
CN
China
Prior art keywords
sio
nanometer particle
hybridized nanometer
preparation
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105575148A
Other languages
English (en)
Other versions
CN102976415B (zh
Inventor
胡彦杰
李春忠
李云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201210557514.8A priority Critical patent/CN102976415B/zh
Publication of CN102976415A publication Critical patent/CN102976415A/zh
Application granted granted Critical
Publication of CN102976415B publication Critical patent/CN102976415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于相分离的功能性杂化纳米颗粒的制备方法。该法主要采用H2/O2共流扩散火焰为辅助火焰提供能量,将相应的两种前驱体溶液以一定的速度经外部气体雾化进入火焰燃烧反应区,前驱体经历燃烧、热解、成核、凝结生长,随着反应温度的降低,相应的产物由于温度梯度相分离形成各种结构如双面的Fe2O3||SiO2和TiO2||SiO2。这些结构都包含两种不同组成和功能的组分如Fe2O3的外磁场响应性以及SiO2的亲水性。相分离的杂化使单一的颗粒集多种功能于一体,在智能材料和先进纳米器件领域有很大的应用前景。

Description

一种基于相分离的功能性杂化纳米颗粒的制备方法
技术领域
本发明是属于化工材料领域的一种制备方法,主要用于多组成、多结构、多功能的杂化纳米颗粒的快速制备。
背景技术
纳米材料由于其独特的纳米尺寸效应,在各个领域有着广泛的应用如增强填料、涂料、电子显示、生物医药、先进能源材料等。随着纳米科学和技术的发展以及社会日益增长的需求,单一组成,结构和功能的纳米材料已很难满足实际应用的要求。材料的多层次结构设计,功能的杂化是当今科学研究领域以及生活生产领域的热点。
迄今为止,研究人员已经发明出了多种制备多层次结构多功能型的纳米材料的方法,如电弧法、离子溅射技术、液相共沉淀法、水热溶剂热法等。制备出的材料结构多样,如颗粒状、棒状、线状、核壳、异质或者多种结构的结合,功能丰富如具有光、电、磁、亲水或疏水性等,在光催化、气体传感、显影成像、药物释放、分子检测等领域有着广泛的应用,展现出巨大的潜力。尽管如此,这种多结构多功能的复合颗粒的制备目前还只能是小批量的,而且方法比较复杂,时间周期较长,很难实现工业化,大多都停留在实验室的研究阶段。火焰燃烧技术已经被证明是一种能够工业化生产纳米粉体(如SiO2,TiO2,Al2O3)的有效工业技术,特别是近些年来,喷雾燃烧技术的发展,更是为大批量连续化制备功能性纳米材料提供了有效的技术支持。
发明内容
鉴于上述问题,本发明的目的之一,是提供一种基于相分离的功能杂化纳米颗粒的快速制备方法,以克服现有技术所存在的缺陷,满足科学技术和生产发展的需求。
本发明的构思是这样的:
功能性的杂化纳米颗粒都是多层次结构的,一般都是通过多步骤的技术路线实现的,如:外延生长法、种子生长法、模板去模板法、层层自组装法等,通过层层的结构设计来实现的,其过程步骤繁多,时间周期长,而且产率较低。为了解决以上问题,采用火焰喷雾燃烧技术共燃烧热解组合型前驱体,利用最终产物各自的特性差异,实现多功能多结构纳米颗粒的快速制备。通过前驱体种类的选择和配比设计,最终得到具有丰富结构和功能性的纳米颗粒。
本发明是通过以下技术方案实现的:
一种基于相分离的功能性杂化纳米颗粒的制备方法,包括如下步骤:采用注射泵将前驱体的乙醇溶液连续送入H2和O2的共流扩散火焰区,经过燃烧、高温热解和成核过程,在火焰方向温度随着热扩散而降低对应生成熔沸点不同的产物,最终相分离成不同组成和结构的杂化纳米颗粒;相分离后的各组分在高温下不会发生化学结合;
所述前驱体是组合型前驱体,为硝酸铁/正硅酸乙酯或者钛酸四丁酯/正硅酸乙酯;其中硝酸铁和正硅酸乙酯的比例是5:1~1:2,钛酸四丁酯和正硅酸乙酯的比例是4:1~1:3;
所述H2和O2的共流扩散火焰中H2流量为50~200 L/h,O2的流量为0.5~1.5 m3/h;
所述杂化纳米颗粒是Fe2O3||SiO2或TiO2||SiO2。其中,双竖线表示两种组成是相分离的,一半是Fe2O3或TiO2,一半是SiO2
所述杂化纳米颗粒的结构为相分离的双面异质结构。
所述的杂化纳米颗粒为整合两种组成的物质如Fe2O3(或TiO2)与SiO2在一个纳米颗粒中。
所述共流扩散火焰区的最高温度高于2000℃。
所述杂化纳米颗粒Fe2O3||SiO2具有Fe2O3半球的磁响应性和SiO2半球的非磁响应性,所述杂化纳米颗粒TiO2||SiO2具有TiO2半球的光响应性和SiO2半球非光响应性。
有益效果
由以上技术方案和实施方法可知,本发明通过改变前驱体的种类,以及前驱体的配比,在H2/O2扩散火焰的辅助燃烧热解下,沿着火焰燃烧方向,随着火焰温度的降低,最终相分离成多结构多功能的杂化纳米颗粒。该方法克服了传统方法多步骤,时间周期长,产率低的缺陷,能够连续化的快速的制备功能性的多结构纳米颗粒。
附图说明
图1是实施例1产物Fe2O3||SiO2的电镜照片;
图2是实施例2产物Fe2O3||SiO2的电镜照片;
图3是实施例3产物TiO2||SiO2的电镜照片;
图4是实施例4产物TiO2||SiO2的电镜照片;
图5是实施例2产物Fe2O3||SiO2的磁性能曲线(其中具有磁响应性能的主要为双面异质结构中的Fe2O3半球);
图6是实施例3产物TiO2||SiO2的在紫外可见光响应曲线(其中对紫外光响应为双面异质结构中的TiO2半球)。
具体实施方式
下面通过实施例对本发明进行具体描述,但只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制。对本领域的技术人员在不背离本发明精神和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。
实施例1
配制0.5 mol/L的硝酸铁和正硅酸乙酯(铁硅比为5:1)的乙醇溶液,经注射泵在外部O2的雾化作用下,以5ml/min的速度进入反应区,在H2/O2扩散火焰辅助下,燃烧热解,成核生长,最终产物在真空泵的辅助下,采用玻璃纤维的滤膜进行收集,得到的是50~100 nm的具有双面异质结构的Fe2O3||SiO2纳米颗粒,如图1所示。
实施例2
配制0.5 mol/L的硝酸铁和正硅酸乙酯(铁硅比为1:1)的乙醇溶液,经注射泵在外部O2的雾化作用下,以5ml/min的速度进入反应区,在H2/O2扩散火焰辅助下,燃烧热解,成核生长,最终产物在真空泵的辅助下,采用玻璃纤维的滤膜进行收集,得到的是50~100 nm的具有双面异质结构的Fe2O3||SiO2纳米颗粒,如图2所示。在外磁场下,该Fe2O3||SiO2纳米颗粒具有较好的磁响应性,如图5所示。
实施例3
配制0.5 mol/L的钛酸四丁酯和正硅酸乙酯(钛硅比为2:1)的乙醇溶液,经注射泵在外部O2的雾化作用下,以4ml/min的速度进入反应区,在H2/O2扩散火焰辅助下,燃烧热解,成核生长,最终产物在真空泵的辅助下,采用玻璃纤维的滤膜进行收集,得到的是50~80 nm的具有双面异质结构的TiO2||SiO2纳米颗粒,形貌特征如图3所示,其紫外可见光吸收曲线如图6所示。
实施例4
配制0.5 mol/L的钛酸四丁酯和正硅酸乙酯(钛硅比为1:2)的乙醇溶液,经注射泵在外部O2的雾化作用下,以4ml/min的速度进入反应区,在H2/O2扩散火焰辅助下,燃烧热解,成核生长,最终产物在真空泵的辅助下,采用玻璃纤维的滤膜进行收集,得到的是50~80 nm的具有双面异质结构的TiO2||SiO2纳米颗粒,如图4所示。

Claims (5)

1.一种基于相分离的功能性杂化纳米颗粒的制备方法,其特征在于,包括如下步骤:采用注射泵在外部氧气的雾化作用下将前驱体的乙醇溶液连续送入H2和O2的共流扩散火焰区,经过燃烧、高温热解和成核过程,在火焰方向温度随着热扩散而降低对应生成熔沸点不同的产物,最终相分离成不同组成和结构的杂化纳米颗粒;
所述前驱体是组合型前驱体,为硝酸铁/正硅酸乙酯或者钛酸四丁酯/正硅酸乙酯;其中硝酸铁和正硅酸乙酯的比例是5:1~1:2,钛酸四丁酯和正硅酸乙酯的比例是4:1~1:3;
所述H2和O2的共流扩散火焰中H2流量为50~200 L/h,O2的流量为0.5~1.5 m3/h;
所述杂化纳米颗粒是Fe2O3||SiO2或TiO2||SiO2
2.根据权利要求1所述的制备方法,其特征在于,所述杂化纳米颗粒的结构为相分离的双面异质结构。
3.根据权利要求1所述的制备方法,其特征在于,所述的杂化纳米颗粒为整合两种组成的物质如Fe2O3(TiO2)与SiO2在一个纳米颗粒中。
4.根据权利要求1所述的制备方法,其特征在于,所述共流扩散火焰区的最高温度高于2000℃。
5.根据权利要求1所述的制备方法,其特征在于,所述杂化纳米颗粒Fe2O3||SiO2具有Fe2O3半球的磁响应性和SiO2半球的非磁响应性,所述杂化纳米颗粒TiO2||SiO2具有TiO2半球的光响应性和SiO2半球非光响应性。
CN201210557514.8A 2012-12-20 2012-12-20 一种基于相分离的功能性杂化纳米颗粒的制备方法 Active CN102976415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210557514.8A CN102976415B (zh) 2012-12-20 2012-12-20 一种基于相分离的功能性杂化纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210557514.8A CN102976415B (zh) 2012-12-20 2012-12-20 一种基于相分离的功能性杂化纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN102976415A true CN102976415A (zh) 2013-03-20
CN102976415B CN102976415B (zh) 2015-04-08

Family

ID=47850835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210557514.8A Active CN102976415B (zh) 2012-12-20 2012-12-20 一种基于相分离的功能性杂化纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN102976415B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161700A (zh) * 2015-08-05 2015-12-16 华东理工大学 一种三氧化钼包覆钼掺杂二氧化钛纳米复合颗粒及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810640A (zh) * 2006-02-28 2006-08-02 华东理工大学 弥散相TiO2/SiO2纳米复合颗粒的制备方法和设备
CN1850598A (zh) * 2006-02-28 2006-10-25 华东理工大学 一种核壳式TiO2SiO2纳米复合颗粒的制备方法和设备
CN102834357A (zh) * 2010-04-06 2012-12-19 赢创德固赛有限公司 Janus状的铁-硅氧化物颗粒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810640A (zh) * 2006-02-28 2006-08-02 华东理工大学 弥散相TiO2/SiO2纳米复合颗粒的制备方法和设备
CN1850598A (zh) * 2006-02-28 2006-10-25 华东理工大学 一种核壳式TiO2SiO2纳米复合颗粒的制备方法和设备
CN102834357A (zh) * 2010-04-06 2012-12-19 赢创德固赛有限公司 Janus状的铁-硅氧化物颗粒

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAN ZHAO ET AL.: "Magnetic Janus Particles Prepared by a Flame Synthetic Approach: Synthesis, Characterizations and Properties", 《ADV. MATER.》 *
胡彦杰等: "气相燃烧法制备纳米材料的研究进展", 《中国材料进展》 *
胡彦杰等: "氢氧焰燃烧合成核壳结构纳米TiO2/SiO2复合颗粒及机理分析", 《无机材料学报》 *
董俊等: "气相燃烧合成纳米SiO2颗粒的工艺条件研究", 《化学世界》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161700A (zh) * 2015-08-05 2015-12-16 华东理工大学 一种三氧化钼包覆钼掺杂二氧化钛纳米复合颗粒及其制备方法与应用
CN105161700B (zh) * 2015-08-05 2017-10-24 华东理工大学 一种三氧化钼包覆钼掺杂二氧化钛纳米复合颗粒及其制备方法与应用

Also Published As

Publication number Publication date
CN102976415B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN101880917B (zh) 一种制备纳米陶瓷纤维的方法
CN103611431B (zh) 一种多孔陶瓷支撑的石墨烯膜的制备方法
Lang et al. Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: Fabrication, Modification and Performance
Yang et al. Mesoporous polymeric semiconductor materials of graphitic-C 3 N 4: general and efficient synthesis and their integration with synergistic AgBr NPs for enhanced photocatalytic performances
Ren et al. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment
CN103833074B (zh) 一种制备二氧化钛纳米粒子的方法
TWI458685B (zh) 二氧化鈦奈米粉體及其製造方法
CN104785126B (zh) 一种具有光催化性能的凹凸棒石/氧化钛纳米复合陶瓷微滤膜及其制备方法
CN103046163A (zh) 一维磁性Fe-Co合金/钴铁氧体复合纳米纤维及其制备方法
Truong et al. Controlled synthesis of titania using water-soluble titanium complexes: A review
Meng et al. Synthesis of WO3 microfibers and their optical properties
CN102631926A (zh) 表面负载氧化镍的可见光响应型球形二氧化钛复合光催化剂的制备方法
Cao et al. ZIF-8 based dual scale superhydrophobic membrane for membrane distillation
Li et al. Sol-gel derived zirconia membrane on silicon carbide substrate
CN102976415B (zh) 一种基于相分离的功能性杂化纳米颗粒的制备方法
CN103599770B (zh) TiO2/InVO4纳米结复合材料的制备方法
Van der Biest Nanoceramics: issues and opportunities
Chen et al. Core@ dual‐Shell Nanoporous SiO 2–TiO 2 Composite Fibers with High Flexibility and Its Photocatalytic Activity
Zhang et al. Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO2 nanocomposites via a mild solvothermal method
Wang et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth
Zhao et al. Modification of colloidal particles by unidirectional silica deposition for urchin-like morphologies
Li et al. Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes
CN106219605B (zh) 一种采用氢氧火焰炉制备金红石型纳米二氧化钛的方法
Ge et al. Enhanced photocatalytic degradation performance of antibiotics using magadiite-supported carbon nitride under visible light irradiation
CN108970601A (zh) 一种具有氧化锌/二氧化钛异质结构的光催化涂层及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant