CN102971850A - 包括电池组件的光伏模块的制造方法 - Google Patents

包括电池组件的光伏模块的制造方法 Download PDF

Info

Publication number
CN102971850A
CN102971850A CN2011800263764A CN201180026376A CN102971850A CN 102971850 A CN102971850 A CN 102971850A CN 2011800263764 A CN2011800263764 A CN 2011800263764A CN 201180026376 A CN201180026376 A CN 201180026376A CN 102971850 A CN102971850 A CN 102971850A
Authority
CN
China
Prior art keywords
substrate
film
photovoltaic
front surface
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800263764A
Other languages
English (en)
Other versions
CN102971850B (zh
Inventor
布伦丹·邓内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Nexcis SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexcis SAS filed Critical Nexcis SAS
Publication of CN102971850A publication Critical patent/CN102971850A/zh
Application granted granted Critical
Publication of CN102971850B publication Critical patent/CN102971850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏电池平板的制造方法,所述制造方法包括步骤:a)获得光伏薄膜(PV),其各自用于光伏电池并且设置于金属基板的前表面上;b)在光伏薄膜的各个前表面上涂敷至少一层导电的薄膜(CG、CND);c)在切割基板(SUB)上,使得电池单元相互分隔;以及d)将电池单元封装在共用的支架上(ENC)。根据发明,步骤d)和步骤c)可以翻转,即涉及封装基板前表面的步骤d)可以在通过其后表面切割基板的步骤c)之前。此外,在步骤b)中,导电薄膜的区域延伸出至基板,使得导电薄膜同时连接光伏模块薄膜的前表面和基板的前表面;以及在步骤c)中,切割基板,以避免在至少在导电薄膜的所述区域之下和小于所述区域宽度的基板宽度之上的光伏电池之间的短路。

Description

包括电池组件的光伏模块的制造方法
本发明涉及包括光伏电池组件的光伏模块的制造方法。
参考图1所描述的光伏电池组件,各个电池都具有分别位于基板SUP1、SUP2、…、SUPN-1、SUPN上的激励部件PV1、PV2、…,、PVN-1、PVN。通常,各个电池的激励部分对应于具有层叠结构的光电二极管,诸如:
-匹配层,用于匹配基板(通常是玻璃或其它形式的金属箔),例如匹配层为钼,
-具有光伏特性的激励层(例如,I-III-VI2合成物,例如-铜-(铟、镓和/或铝)-(硫和/或硒),或包括碲化镉或非晶硅的化合物),以及,
-通常为硫化镉、氧化锌等的附加层(透明的,以便光线与具有光伏特性的下层相互作用)。
在本文中,各个电池的激励部分被称之为“光伏薄膜”。
此外,在该薄膜上作选择性的沉积,以使光伏薄膜遮盖光线,收集栅极SCG用于收集由光伏效应所产生并由光伏薄膜所激发的电荷。因此,该收集栅极具有:
-沉积在电池的光伏薄膜的上表面上(如图1所示,例如采用丝网印刷的线条),用于收集由光伏效应所产生的电子;以及,
-连接至这些沉积SCG的主要收集极CG,用于全面收集由激励部件PV1所产生的“电”。
因此,收集栅极SCG和收集极CG的形状是光伏薄膜的入射光子数量和实际收集电子数量之间的折中。在下文中,电池的收集栅极SCG和收集极CG通常以术语称之为“收集栅极”。
一般来说,光伏电池制备在通用的基板上,随后将基板切割成多个独立的电池单元。接着,是各个电池单元的连接和电池单元之间的互连的步骤。例如,图1所示的串联连接C1,2、C2,N-1和CN-1,N。该步骤将有效的光伏电池组件(可以理解为已预先进行过功能检测)组装在常用支架SUP(由玻璃或高分子材料制成)上并且建立以上所述的连接。于是,随后将所获得的光伏模块连接至输入(通过连接C1)和输出(通过连接CN)。
我们参考图1a来详细阐述根据现有技术制造电池组件C1、C2方法的连续步骤。各种适用于后续电池C1、C2的光伏薄膜可以在基板SUB上获得(例如,通过在待形成电池基板的区域中选择性地沉积光伏薄膜,或通过选择性地蚀刻所沉积地薄膜,或通过其它已知的方法)。以连续步骤的方式在各个PV薄膜上涂敷收集极层CG。此后,切割基板(标记为D),以形成后续独立的电池单元。随后,将独立切割片与通用的衬底SUP相键合。接着,将绝缘薄膜IS涂敷在收集极层CG的附近并覆盖电池单元之间的间隔区域D,如图1a所示。最后,涂敷导电薄膜CND,以建立通过收集极层CG在光伏薄膜PV的前表面与临近电池单元C2的光伏薄膜PV的后表面之间直至它的基板SUB的连接。在该实施例中,可以理解的是,基板SUB是导体的,例如金属。所述方法可以继续将支架SUP前表面(支撑完整和互连的电池单元C1、C2)与具有封装材料ENC键合前表面的保护板VE(例如,玻璃的保护板)的封装步骤。
但是,这种用于切割和互连电池单元的方法的过程较长且成本较高。
本发明意旨改善这样的问题。
因此,提出将上述各个电池单元的光伏薄膜保留在同一支架上,并且所述支架可由光伏薄膜的原始基板构成。如以下实施例所述,基板可以进行切割,但电池单元不作分离,也就是说,它们的光伏薄膜在根据本发明方法的过程中不会相对移动的,并且将所有方法保留至电池互连步骤。
为此目的,本发明首先涉及用于制造光伏电池组件板的方法,包括下列步骤:
a)获得适用于各个电池单元且设置在金属基板的前表面上的光伏薄膜;
b)在光伏薄膜的各个前表面上涂敷至少一层导电薄膜(例如,作为收集栅极的收集极层);
c)切割基板,使得电池单元相互绝缘;
d)将电池单元封装在通用支架上。
根据本发明,步骤d)和c)可以翻转,封装基板前表面的步骤d)可以在步骤c)中通过它的后表面来切割基板之前。
此外:
-在步骤b)中,导电薄膜的区域延伸至基板,使得导电薄膜同时接触光伏薄膜的前表面和基板的前表面;
因此,在该步骤b)中,电池单元的光伏薄膜在两者之间由金属基板形成短路,并且,
-在步骤c)中,切割基板,以避免在光伏薄膜之间的短路,至少是导电薄膜的上述区域之下和小于该区域宽度的的基板宽度之上的光伏薄膜之间的短路。
所述导电薄膜的上述区域与基板相组合,于是形成光伏薄膜的前表面与相邻电池单元的光伏薄膜的后表面的电性能连接。
因此,根据本发明的方法使有可能在整个制造过程中将电池单元保留在相同的支架上(基板,前表面的封装),从而有可能避免它们相互之间的机械分离以及随后再重新粘结在共同的支架上。
上述导电薄膜优选包括用于从光伏薄膜(PV)激发电荷的收集栅极,并涂敷在光伏薄膜的前表面且延伸至基板的前表面(上述区域中)。
可选择但不是必须的是,导电薄膜还可包括导电带,其涂敷在收集栅极上且覆盖收集栅极的上述区域上,以接触基板的前表面。
以下参考图2可更加具体地看到:光伏薄膜(在图2中标记为PV)至少部分被导电薄膜(CND、CG)所覆盖。具体的是,导电薄膜延伸超出光伏薄膜(PV)直至第一区域(Z1)和第二连续区域(Z2)(第二区域比第一区域更远离光伏薄膜)。于是,
-第二区域(Z2)覆盖在基板的前表面上且相互接触,以及,
-切割基板(SUB),以获得“空的”空间(D),本文中标记为在第一区域(Z1)之下的“切割(D)”。
它们也可以是在步骤b)之前涂敷的绝缘薄膜(IS),并且:
-相邻于光伏薄膜(PV)且其厚度大于光伏薄膜的厚度,以及,
-位于基板切割(D)之上和在部分导电薄膜延伸区域(Z1)之下。
更具体的是说,绝缘薄膜(IS)位于第一区域(Z1)之下,使得光伏薄膜(PV)与第二区域(Z2)相隔离,绝缘薄膜优选覆盖上述第二区域(Z2)的光伏薄膜(PV)的一端边缘。
在第一实施例中:
-在步骤a)和b)之间,将绝缘薄膜至少涂敷在基板的前表面上,以及,
-在步骤c)中,基板在绝缘膜下进行切割。
在第一变化实施例中,
-在步骤b)之前,蚀刻基板的前表面,其深度小于基板的整个厚度,
以便形成步骤c)基板中的切割模板,
-在蚀刻操作之后,在蚀刻位置上,将绝缘薄膜涂敷在基板的前表面上,
-在封装步骤之后,基板的切割通过基板的整个厚度来完成。
在另一变化实施例中:
-在步骤b)之前,仅仅只在对应于上述第一区域的基板区域进行局部的基板切割且该区域明显大于第一区域;以及,
-在封装步骤之后,在大于所述第一区域的区域内完成基板的切割。
优选的是,还可以:
-平板的各个电池的功能测试操作;和,
-在检测到电池故障的情况中,对故障电池进行短路操作,这是由于导电材料填入在步骤c)所形成的基板切割空间中而形成故障电池。
因此,在平板电池中存在故障电池不会影响到整个平板的后续功能,并且也不需要从平板中机械去除故障电池。
本发明还涉及通过实施上述方法所获得的光伏电池组件平板,电池的导电薄膜包括用于收集光伏薄膜所激发的电荷的收集极层,其涂敷在光伏薄膜的前表面上,且收集极层至少部分覆盖光伏薄膜且延伸至第一和第二区域)上的光伏薄膜,其中第二区域比第一区域更远离光伏薄膜。尤其是,
-所述第二区域覆盖基板的前表面,与其相接触,以及,
-至少在所述第一区域下切割基板。
于是,可以理解的是,根据本发明的方法有可能应用于后续平板。可具体通过比较下文所讨论的图1a和图4b看到。
通过参考图5a至5c,在基板中的切割优选遵循对应于电池间互连的预定引线图形所选择的图案(串联、并联、串联/并联等)。具体的说,在电池周围的切割图案可以对应于在串联结构中的电池的位置。
本发明的其它优点和特征将在下文参考附图的实施例中进行阐述,并变得明晰,其中图1已经在上文中阐述:
-图2示出了根据本发明的两个电池组件的局部剖面示意图;
-图3示出了图2所示电池单元的顶视图
-图4a和4b以一个实施例示出了根据本发明方法的步骤;
-图5a、5b和5c分别示出了根据本发明用于连接电池组件的电池单元之间可能引线的图形;
-图6a和6b分别示出了图4a和4b的衍生变化实施例
-图7示出了根据本发明电池组件中的一个故障电池单元C的短路实例;
以及,
-图8示出了光伏平板的一个可能实施例。
首先,我们参考图2,其示出一个完整的电池单元C1和紧相邻的部分电池单元C2,其设置在标记为SUB的金属基板上。具体的说,各个电池单元C1包括:
-光伏薄膜PV,和,
-至少一层导电薄膜CND,能够用于互连两个电池单元C1和C2,如以下所述。
该导电薄膜CND至少部分覆盖光伏薄膜PV的前表面并且延伸出光伏薄膜PV,以接触基板SUB。具体的说,导电薄膜CND延伸出光伏薄膜至:
-第一区域Z1,随后,第二区域Z2,
第二区域Z2比第一区域Z1更加远离光伏薄膜PV。
实际上,正如我们参考图3所看到的,导电薄膜CND仅部分覆盖光伏薄膜PV,不会使光伏薄膜PV上的入射光变弱。
根据本发明,电池单元C1、C2保持在所有待持所共用的相同支架上,支架嵌入在金属基板SUB上,各个电池单元的光伏薄膜PV覆盖着共用的支架SUP上。如图3所示,具有电池单元的光伏特征的薄膜PV没有占据金属基板SUB的整个表面,只是仅仅部分覆盖,基板SUB表面的互补部分留作连接之用,如下文所述。
具体的说,在待互连相邻电池单元C2的电池单元C1中,上述第二区域Z2覆盖共用基板SUB并且相互接触。此外,切割基板SUB并且因此具体在第一区域Z1下形成空的空间D。没有这个空的空间D,则电池单元C1就例如因为金属基板SUB而短路。通过切割基板并且形成空的空间D,电流就在电池单元C1和C2的各自光伏薄膜之间流动,如图2所示,从电池单元C的膜PV的前表面,经过:
-导电薄膜CND,
-它的第一区域Z1,
-它的第二区域Z2,
-部分金属基板SUB,
最后到电池单元C2的PV膜的后表面。
图2中的空的空间可通过基板SUB的局部蚀刻形成。如在下文中阐述的电池单元互连的实施例所述,如在基板中的切割D,当围绕着C1实施,就有可能避免电池单元C1与电池单元C2的短路,例如图3所示的串联连接。
然而,必须保证光伏薄膜PV不超出空的空间D,并且不会与相邻电池单元C2的基板相接触(如图2所示的空的空间的右部)。为此目的,绝缘薄膜IS覆盖空的空间D,以便将膜PV与第二区域Z2分开。
如上所述,通常收集栅极用于收集由光伏薄膜PV所激发出的电荷。参考图2,导电薄膜CND优选包括具有收集光伏薄膜PV所激发电荷的特性的子薄膜CG。收集栅极薄膜的一个实例将在参考图4a至4c的下文中进行详细的阐述。
因此,如图2所述:
-在基板SUB中的切割可以认为具有在电池单元C1光伏薄膜PV和电池单元C2光伏薄膜PV之间的绝缘功能;
-同时延伸至第二区域Z2的导电薄膜CND具有两个光伏薄膜PV之间的连接功能。
如参考图3和图5a至图5c下文所述,在共用基板SUB中的切割可以为对应电池单元的电性能互连的预定图形提供所选择的图形。
图3示出了两个电池单元C1和C2采用串联结构的互连情况,图3中所示的箭头II表示图2中所示的横截面图。图3的标记与图2中的标记一一对应。具体的说,标记D表示在基板SUB中所形成的空的空间。空的空间D采用分割两个电池单元C1和C2的槽的形式来表示。
然而,用于分隔两个电池单元的槽D的图形,类似于电池单元之间互连的延伸区域Z2的图形,可以根据电池单元的电性能互连的预定图形来选择。
图5a示出了适用于四个电池单元C1至C4的串联连接的切割图形(虚线),其等效图标记为EQA。值得注意的是,电池单元C2的绝缘膜延伸至在电池单元C2和C3之间的基板中所形成的槽。环绕着电池单元(C1)切割图形对应于电池单元C1与相邻电池单元C2的串联连接。
在图5b中,示出了另一个可能的实施例,示出的电池单元C1至C4是根据图中的等效EQB并联连接的。
在图5c的实施例中,示出的四个电池单元C1至C4是根据并联/串联图EQC连接的,电池单元C1和C2与电池单元C4和C3是串联连接。
参考图4a和4b来阐述制造图2所示实例的电池单元C1、C2方法的一个可能的实施例。
光伏薄膜PV最初在普通的金属基板SUB上获得,如图4a顶部所示的第一图。例如,基板SUB可以是钢、铜或铝所制成的薄金属薄箔(50至100μm)。钼匹配层(未示出)可以在沉积具有光伏特性PV的激励层之间沉积在基板上。可通过例如电解来完成这些沉积,因为基板SUB是导电的并因此可适用于这些电解沉积。光伏层PV也可以通过电解进行沉积,并且以上述的I-III-VI2化合物构成。当然,本发明可以使用任何类型的沉积以及任何类型的光伏材料。
因此,在该实施例的第一步骤中,选择性沉积绝缘层IS,生成在光伏薄膜PV和基板前表面上,覆盖光伏薄膜的一边边沿以及基板SUB前表面的相邻部分。随后,将导电薄膜,例如以收集栅极层的形式连续涂敷于:
-光伏薄膜PV的前表面的部分;
-绝缘薄膜IS且
-超出绝缘薄膜IS至相邻绝缘薄膜IS的基板SUB的前表面部分。
收集栅极薄膜CG(当然是到导电的)可以自身满足电池单元的互连。可以包括液态银的金属化浆料的形式,其可以通过退火来烘干。可选择的是,可以有另一层导电薄膜CND涂敷于收集薄膜CG的前表面。该薄膜CND可以简单为胶粘的金属条。
绝缘薄膜IS用于覆盖参考图2所述的空的空间D,用于将光伏薄膜PV与导体CG的第二区域Z2相分隔。因此,绝缘薄膜IS在光伏薄膜PV和导电薄膜CG和/或CND之间的层中(在图2中的第一区域Z1中)。在根据本发明的具体实施例中,绝缘薄膜优选部分覆盖光伏薄膜PV。实际上,为了保证膜PV的边缘与收集栅极CG能够良好的隔离,绝缘体IS以完全覆盖光伏薄膜PV边缘的方式进行沉积。
在这些步骤中,进行薄膜的前表面(图4的上部)与基板组件的封装ENC。其目的部分为:
-首先,通过涂敷来保护沉积层,例如玻璃板VE(或任何其它透明保护材料所制成的),且与封装材料相键合,例如EVA(烯醋酸乙烯酯)或PVB(聚乙烯醇缩丁醛)等聚合物。
-其次,当实施切割步骤时,机械固定组件作为单一的整体,如图4b所示。
如上所述,具体参考图3a或图5a,基板可以完全围绕各个电池单元进行切割,有可能引起电池单元之间的机械分离。由于在切割基板之前的组件前表面的封装,可以避免这种分离。
因此,参考图4b,可以发现:在键合保护平板VE之后,基板SUB的后表面是闲置的。因此,从基板的后表面进行切割,以形成空的空间,具体在各个电池单元的绝缘体IS之下。这样就可避免电池单元之间的短路。这样的切割步骤可以采用激光蚀刻技术或简单锯切技术或通过化学蚀刻或其它类型能够至少避免损坏绝缘膜IS上的收集栅极CG的技术实施。一旦切割了基板且避免了电池单元的短路,就随后将保护性涂层PROT涂敷在基板SUB的后表面上。
参考图6a来阐述一个变化实施例,可以具体看到:在基板SUB的切割步骤中,应尽可能多地保护绝缘薄膜IS和收集栅极CG。具体的说,基板仅仅只通过其前表面的部分厚度(图6a中的D’区域)进行预切割。实施后续子步骤,以便获得光伏薄膜PV、绝缘薄膜IS、收集栅极CG的沉积以及补充导电薄膜CND,直至键合平板的前表面封装ENC。随后,在基板SUB的后表面进行附加的切割,使之通过基板的整个厚度,以产生部分在隔离薄膜IS之下的空的空间D。保护平板PROT可以与完全切割的基板的后表面相键合。
例如,在该实施例中,在沉积绝缘薄膜IS之前,从前表面来部分激光蚀刻共用基板SUB的金属。因此,基板的完全切割以较低的激光功率来执行,在该工艺结束后,因而降低了损坏收集层CG或连接带CND的风险。
基板SUB切割步骤可因此是关键性的,特别是在收集栅极CG中,如果基板SUB的切割存在风险。因此,还有一个变化实施例,在基板SUB上沉积绝缘IS和收集栅极CG之前,局部切割基板SUB的整个厚度,以保护收集栅极CG。这个变化例如图6b所示。在根据该变化例的方法中,基板SUB只在基板准备接收绝缘IS和收集栅极的区域D中进行预先局部切割。光伏薄膜PV在参考图4a和6a的上述方法的开始时获得。随后,绝缘IS沉积在由基板局部切割所产生空的空间D上。需要注意的是,绝缘薄膜IS的材料会渗入至空间D。然而,这样的可能性不会影响到电池单元的最后的功能,空间D的目的实际上是隔离在所述空间边缘上的两部分基板。当基板的厚度仅仅只进行预切割时(如图6a顶部第一图所示),还可以应用相同的方法。然后,在基板SUB后表面的空置处实施沉积收集栅极CG和导电CND以及封装ENC其它步骤。一旦实施这些步骤之后,基板就可以通过其后表面进行完全的切割,例如环绕着整个电池单元的外围。在图6b所示的实施例中,所述基板可以沿着虚线示出的各个电池单元C1、C2进行整体切割。一旦基板被完全切割之后,就有可能处理后表面的封装。
值得注意的是,根据图6a和6b所述的解决方法仍然存在在该方法结束之前机械修复粘连着其它电池单元上的所有电池单元的可能性。
因此,根据本发明的方法有可能优选保持在一个由基板SUB所嵌入的相同支架上,所有的光伏电池组件沉积在支架上,且不具有:
-电池单元系统性的单独切割,
-将所有电池单元固定在通用支架上,
-然后最后,电池单元的互连。
因此,基板SUB提供了电池单元的机械支架,直至封装基板的前表面。
然而,在根据本发明的实施例中,参考图7,有可能存在着在电池组件中有故障电池单元C的问题。这里,电池单元通过共用的支架相互机械性粘合在一起,故障电池单元C必须采用电子排除的。这个困难可以克服,因为:
-在封装前表面之前,执行了各个电池单元操作的功能性检测,以及,
-在发现被测电池单元有故障的情况下,通过将导电材料填入在故障电
池单元C之下的空的空间D,来对故障电池单元执行短路的操作。
可以重新焊接所述电池单元C的空的空间D,其具有在其正极和负极之间短路的可能。
当然,本发明不仅限于上述的实施例,也可以有其它实施例。
因此,可以理解的是,根据本发明方法可以适用于任何类型的光伏PV或绝缘IS或导电CG,且不仅限于上述的实施例中。同样,在附图中示出的薄膜的几何形状以及它们各自厚度仅作为实施例来阐述。例如,参考图8,一个可能的光伏薄膜PV的可能图形,如在图1至7中示出的变化例,包括超过整个基板宽度的带状物。各层薄膜PV通过在所述基板上涂敷绝缘薄膜IS利用在基板中的切割与另一个相邻薄膜PV相分隔。沉积在各层薄膜PV上的收集栅极CG包括在切割空间D之后直接与金属基板相接触的导体针状物。这样的组件对应于在两个电极ELE(阴极和阳极)之间的串联连接。
此外,涂敷收集层CG的连接带CND在上文的实施例中进行阐述。实际上,与Z2区域的基板SUB相接触的收集层CG足以实现光伏薄膜PV的前表面与基板互连以及与相邻电池单元的光伏薄膜的后表面的互连。值得注意的是,现有技术的收集层CG,如图1a所示,不具有这样的功能,并且它简单地停止在绝缘薄膜IS上。因此,与图2所示的本发明实施例相比,在现有技术中没有发现延伸至收集层的区域Z1和Z2超出光伏薄膜PV。因此,可以理解的是,在基板SUB上的收集层CG的延伸是根据本发明实施例获得的光伏电池组件平板上的显著特征。

Claims (13)

1.适用于制造光伏电池平板的方法,包括步骤:
a)获得各自用于电池单元的光伏薄膜(PV),其设置在金属基板(SUB)的前表面上;
b)在光伏薄膜(PV)的各个前表面上涂敷至少一层导电薄膜(CG,CND);
c)切割基板(SUB)以从另一个电池单元上分离电池单元;
d)将电池单元封装在共用支架上(ENC);
其中,步骤d)和c)可以翻转,在步骤c)通过其后表面来切割基板之前先进行步骤d)封装基板的前表面,
以及其中:
-在步骤b),导电薄膜的区域延伸至基板上,以使导电薄膜同时连接光伏薄膜的前表面和基板的前表面;
-在步骤c)中,切割基板,以避免至少在导电薄膜所述区域下的光伏模块和小于该区域的基板之上的光伏薄膜之间的短路;
所述导电薄膜区域与基板相组合,将光伏薄膜的前表面与相邻电池单元的光伏薄膜的后表面电性能连接。
2.根据权利要求1所述的方法,其特征在于,所述导电薄膜包括涂敷在光伏薄膜(PV)前表面上用于收集光伏薄膜(PV)激发电荷的收集栅极(CG)。
3.根据权利要求2所述的方法,其特征在于,所述导电薄膜还包括涂敷在收集栅极上并覆盖所述区域(Z1、Z2)的导电带(CND),以便与基板的前表面相连接。
4.根据上述权利要求中任一项所述的方法,其特征在于,所述导电薄膜(CND)至少部分覆盖光伏薄膜(PV)且延伸出光伏模块(PV)至第一和第二区域(Z1,Z2),第二区域(Z2)比第一区域(Z1)更远离光伏薄膜(PV);并且其中,
-所述第二区域(Z2)覆盖基板(SUB)的前表面并与基板(SUB)相连接;
-切割基板(SUB),以获得在所述第一区域下(Z1)的空的空间(D)。
5.根据上述权利要求中任一项所述的方法,其特征在于,所述绝缘薄膜(IS)在步骤b)之前涂敷,所述绝缘薄膜:
-相邻光伏薄膜(PV)且厚度大于光伏薄膜的厚度;以及,
-设置于基板切割之上和导电薄膜的部分延伸区域(Z1)之下。
6.根据权利要求5所述的方法,并且结合权利要求4,其特征在于。所述绝缘薄膜(IS)设置于所述第一区域(Z1)之下,用于将光伏薄膜(PV)与第二区域(Z2)分隔开。
7.根据权利要求6所述的方法,其特征在于,所述绝缘薄膜覆盖光伏薄膜(PV)面对所述第二区域(Z2)的一边边缘。
8.根据权利要求6或7所述的方法,其特征在于,
-在步骤a)和b)之间,将所述绝缘薄膜(IS)涂敷于基板的前表面;
-在步骤c)中,所述基板在绝缘薄膜(IS)之下进行切割。
9.根据权利要求6或7所述的方法,其特征在于,
-在步骤b)之前,蚀刻基板(SUB)的前表面且深度小于基板的整个厚度,以形成从步骤c)开始的在基板中的切割模板;
-在蚀刻操作之后,将所述绝缘薄膜(IS)涂敷于基板(SUB)的前表面,以及,
-在封装步骤之后,完成通过基板整个厚度的基板切割。
10.根据权利要求6或7所述的方法,其特征在于,
-在步骤b)之前,在对应于上述第一区域(Z1)的基板第一区域上进行基板局部切割,且明显长于第一区域(Z1),
-在封装步骤之后,完成超出所述第一区域(Z1)的基板切割。
11.根据上述权利要求中任一项所述的方法,其特征在于,还包括:
-平板各个电池单元的功能性测试操作;以及,
-在检测到故障电池的情况中,通过将导电材料填入步骤c)所制成的基板中的分隔(D)中形成故障电池单元的短路操作,来形成故障电池单元。
12.通过实施上述权利要求中任一项所述的方法所获得光伏电池组件平板,所述导电薄膜包括涂敷于光伏薄膜(PV)的前表面用于收集光伏薄膜(PV)所激发电荷的收集层(CG),
其中,收集层(CG)至少部分覆盖光伏薄膜(PV)且在第一和第二区域(Z1、Z2)之上延伸出光伏薄膜(PV),第二区域(Z2)比第一区域(Z1)更远离光伏薄膜(PV);并且其中,
-所述第二区域(Z2)覆盖举办(SUB)的前表面且与所述基板(SUB)相连接;
-至少在所述第一区域(Z1)之下切割基板(SUB)。
13.根据权利要求12所述的平板,其特征在于,在基板(SUB)中的切割遵循对应于用于电池单元之间互连的预定引线图形所选择的图形,并且切割图形围绕着对应于串联结构中所放置电池单元位置的电池单元。
CN201180026376.4A 2010-03-26 2011-03-24 包括电池组件的光伏模块的制造方法 Active CN102971850B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1052225 2010-03-26
FR1052225A FR2958082B1 (fr) 2010-03-26 2010-03-26 Fabrication d'un module photovoltaique comportant un ensemble de cellules.
PCT/FR2011/050632 WO2011117548A1 (fr) 2010-03-26 2011-03-24 Fabrication d'un module photovoltaique comportant un ensemble de cellules

Publications (2)

Publication Number Publication Date
CN102971850A true CN102971850A (zh) 2013-03-13
CN102971850B CN102971850B (zh) 2016-03-16

Family

ID=43533117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180026376.4A Active CN102971850B (zh) 2010-03-26 2011-03-24 包括电池组件的光伏模块的制造方法

Country Status (7)

Country Link
US (1) US20130023068A1 (zh)
EP (1) EP2553724B1 (zh)
JP (1) JP2013524483A (zh)
KR (1) KR20130012131A (zh)
CN (1) CN102971850B (zh)
FR (1) FR2958082B1 (zh)
WO (1) WO2011117548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229354A (zh) * 2016-08-26 2016-12-14 泰州中来光电科技有限公司 一种太阳能电池串及其制备方法和组件、系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311349A (zh) * 2012-03-15 2013-09-18 常熟阿特斯阳光力科技有限公司 太阳能电池组件
CN103681925B (zh) * 2013-12-26 2016-01-20 无锡市斯威克科技有限公司 反射型反光焊带

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754544A (en) * 1985-01-30 1988-07-05 Energy Conversion Devices, Inc. Extremely lightweight, flexible semiconductor device arrays
US5391236A (en) * 1993-07-30 1995-02-21 Spectrolab, Inc. Photovoltaic microarray structure and fabrication method
CN101459183A (zh) * 2007-12-10 2009-06-17 泰瑞太阳能国际有限公司 一种太阳能光伏模块及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486288A (en) * 1977-12-21 1979-07-09 Sharp Corp Manufacture of semiconductor
US4612408A (en) * 1984-10-22 1986-09-16 Sera Solar Corporation Electrically isolated semiconductor integrated photodiode circuits and method
EP0189976A3 (en) * 1985-01-30 1987-12-02 Energy Conversion Devices, Inc. Extremely lightweight, flexible semiconductor device arrays and method of making same
DE3604917A1 (de) * 1986-02-17 1987-08-27 Messerschmitt Boelkow Blohm Verfahren zur herstellung eines integrierten verbandes in reihe geschalteter duennschicht-solarzellen
JPH06291344A (ja) * 1993-03-31 1994-10-18 Asahi Chem Ind Co Ltd 光電変換素子集合体
US5547516A (en) * 1995-05-15 1996-08-20 Luch; Daniel Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US5735966A (en) * 1995-05-15 1998-04-07 Luch; Daniel Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7732243B2 (en) * 1995-05-15 2010-06-08 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US20080314433A1 (en) * 1995-05-15 2008-12-25 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
JP3721620B2 (ja) * 1995-12-13 2005-11-30 株式会社カネカ 並列型集積化太陽電池
JPH11126914A (ja) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd 集積化太陽電池の製造方法
US6239352B1 (en) * 1999-03-30 2001-05-29 Daniel Luch Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays
US7507903B2 (en) * 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898054B2 (en) * 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
JP2006185979A (ja) * 2004-12-27 2006-07-13 Matsushita Electric Ind Co Ltd 薄膜太陽電池モジュールおよびその製造方法
US20090229596A1 (en) * 2008-03-12 2009-09-17 Myung-Hun Shin Solar energy module having repair line, solar energy assembly having the same, method of repairing the solar energy module and method of trimming the solar energy assembly
WO2010001729A1 (ja) * 2008-06-30 2010-01-07 シャープ株式会社 太陽光発電装置の補修方法と太陽光発電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754544A (en) * 1985-01-30 1988-07-05 Energy Conversion Devices, Inc. Extremely lightweight, flexible semiconductor device arrays
US5391236A (en) * 1993-07-30 1995-02-21 Spectrolab, Inc. Photovoltaic microarray structure and fabrication method
CN101459183A (zh) * 2007-12-10 2009-06-17 泰瑞太阳能国际有限公司 一种太阳能光伏模块及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229354A (zh) * 2016-08-26 2016-12-14 泰州中来光电科技有限公司 一种太阳能电池串及其制备方法和组件、系统

Also Published As

Publication number Publication date
FR2958082A1 (fr) 2011-09-30
FR2958082B1 (fr) 2013-11-29
JP2013524483A (ja) 2013-06-17
EP2553724A1 (fr) 2013-02-06
CN102971850B (zh) 2016-03-16
WO2011117548A1 (fr) 2011-09-29
EP2553724B1 (fr) 2016-03-23
US20130023068A1 (en) 2013-01-24
KR20130012131A (ko) 2013-02-01

Similar Documents

Publication Publication Date Title
EP2757591B1 (en) Solar cell module
CN105164816B (zh) 光伏互连系统、装置和方法
US3411952A (en) Photovoltaic cell and solar cell panel
US8691694B2 (en) Solderless back contact solar cell module assembly process
US9608140B2 (en) Solar cell and solar cell module
US20120125391A1 (en) Methods for interconnecting photovoltaic cells
EP2159846A1 (en) Thin film solar cell and photovoltaic string assembly
WO2014002329A1 (ja) 太陽電池モジュールおよびその製造方法
US20050115602A1 (en) Photo-electric conversion cell and array, and photo-electric generation system
US20120152299A1 (en) Solar Cell And Solar Cell Module With Improved Read-Side Electrodes, And Production Method
JP5726303B2 (ja) 太陽電池およびその製造方法
CN101204004A (zh) 具有改进连线的可升级的光伏电池和太阳能电池板
EP2522031A2 (en) Solar panel module and method for manufacturing such a solar panel module
US9425339B2 (en) Thin film solar module and method for production of the same
CN106463561A (zh) 晶体硅系太阳能电池、晶体硅系太阳能电池模块及它们的制造方法
CN101496178B (zh) 太阳电池模块
CN104576822B (zh) 背接触式太阳能电池及其制造方法
US20070089780A1 (en) Serial circuit of solar cells with integrated semiconductor bodies, corresponding method for production and module with serial connection
CN102971850B (zh) 包括电池组件的光伏模块的制造方法
KR20140095658A (ko) 태양 전지
EP2073269A1 (en) Method for providing a series connection in a solar cell system
CN102412316A (zh) 薄膜光伏器件中作为背接触的各向异性传导层
US20140318614A1 (en) Back-contact solar cell and method for producing such a back-contact solar cell
US20130133714A1 (en) Three Terminal Thin Film Photovoltaic Module and Their Methods of Manufacture
EP4195297A1 (fr) Module photovoltaïque à diode de dérivation imprimée intégrée

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190219

Address after: France

Patentee after: Electricite De France

Address before: French ruse

Patentee before: Nexcis

TR01 Transfer of patent right