CN102971254A - 硒化物粉末及生产方法 - Google Patents

硒化物粉末及生产方法 Download PDF

Info

Publication number
CN102971254A
CN102971254A CN201180031937XA CN201180031937A CN102971254A CN 102971254 A CN102971254 A CN 102971254A CN 201180031937X A CN201180031937X A CN 201180031937XA CN 201180031937 A CN201180031937 A CN 201180031937A CN 102971254 A CN102971254 A CN 102971254A
Authority
CN
China
Prior art keywords
metal
selenide
powder
mixture
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201180031937XA
Other languages
English (en)
Inventor
侯赛因·艾米尼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
Umicore NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore NV SA filed Critical Umicore NV SA
Publication of CN102971254A publication Critical patent/CN102971254A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及用于在适合制造光伏电池(如基于CIGS或CIGSS的太阳能电池)的分散体、糊剂、或墨中使用的硒化物粉末。在此提出了一种合成方法,用于制造含一种金属或金属混合物的硒化物的亚微米或纳米微粒粉末,该方法包括以下步骤:选择所述金属或金属混合物的一种含氧的前体;将所述含氧的前体与一种至少化学剂量量值的硒进行混合;并且在足以确保与该前体的氧发生反应的温度下,用H2还原该混合物,并且形成硒化物。这些粉末可以沉积在一个基底上并且进行退火,而无需一个单独的硒化步骤。如此,避免了使用一种非常有毒性的气体H2Se作为硒源。

Description

硒化物粉末及生产方法
技术领域
本发明涉及用于在适合制造光伏电池(如基于CIGS或CIGSS的太阳能电池)的分散体、糊剂、或墨中使用的硒化物粉末。
背景技术
铜铟镓硒化物(CIGS)是由Cu、In、Ga、和Se组成的一种复合半导体,其化学式为CuInxGa(1-x)Se2,其中x的值可以从1(纯的铜铟硒化物)到0(纯的铜镓硒化物)变化。它用作薄膜太阳能电池中的一种光吸收剂材料。硒可以部分或全部被硫替代,由此获得铜铟镓硫硒化物(CIGSS)。
最常见的用于制造基于CIGS的太阳能电池的方法是基于真空的,由此Cu、Ga和In被共蒸发或共溅射到一个基底上,然后将所获得的薄膜退火并在一种硒蒸汽中进行硒化以形成所希望的CIGS结构。一种替代方案是将Cu、Ga、In和Se直接共沉积到一个加热后的基底上。
以上这些方法是基于昂贵的、低产率和低生产力的真空沉积技术。因此,正在开发多种基于非真空技术的新方法,如使用含一种溶剂和一种具有Cu、In和Ga的混合氧化物的纳米微粒的胶体悬浮液的墨进行印刷。在氢气下还原这个干燥的前体层以形成一种金属合金,然后将其退火并且用H2Se硒化。这样一种方法在例如EP-A-0978882中进行了例举说明。
上一种方法的一个主要缺陷是将H2Se用在硒化步骤中,或者按原样引入或者可能形成在一种Se(气体)和H2(气体)的混合物中。然而,H2Se是剧毒的,并且即使采取最好的预防措施时,它也承担着显著的健康风险。
US-A-2009/214763披露了通过将一种CIG氧化物粉末与SeCl4反应并在还原性气氛下加热所得的混合物来生产CIGS粉末。然而这些反应将会产生HCl,它是对设备和基底都有腐蚀性的,特别是在获得基于CIGS的粉末所需要的约400°C的温度处。还有在粉末中形成氯化物的风险。
因此,提出了一种风险更低且更清洁的方法来合成作为适合用于结合到分散体、糊剂、或墨中的精细粉末的硒化物。当在基底上已经形成一种沉积物之后,还需要热处理来获得一个退火的层。然而,不需要额外的硒化步骤并且完全避免了H2Se。
发明内容
本发明特别涉及一种用于合成具有金属或金属混合物的硒化物的亚微米或纳米微粒粉末的方法,该方法包括以下步骤:选择所述金属或金属混合物的一种含氧的前体;将所述含氧的前体与的至少化学剂量量值的硒进行混合;并且在足以确保与该前体的氧反应的温度下,用H2还原该混合物,并且形成硒化物。
所述化学剂量量值的硒与有待合成的硒化物相关,这些硒化物典型地是CuSe、Cu2Se、(InxGa(1-x))2Se3、CuInxGa(1-x)Se2
氧化物、氢氧化物、和羟基氧化物是优选的含氧的前体,因为避免了除水之外的残余反应产物。
上面定义的含氧的前体可以通过沉淀出一种或多种所述金属的盐、并且将沉淀物煅烧而制备。这个步骤可以在空气或另一种含O2的气体中,在诸如用于分解该盐并且氧化其金属的温度下进行。适合的盐应应当在适度的温度下分解和反应;碳酸盐或有机盐如草酸盐通常是适当的。
硒化物是优选的目标,因为它们被广泛应用于太阳能电池的生产。可以合成二元硒化物(例如,CuSe、Cu2Se),三元硒化物(例如(InxGa(1-x))2Se3)或四元硒化物(CuInxGa(1-x)Se2或CIGS)。这种合成将特别针对根据通常的CIGS化学式的粉末,其中x的值可以从1(纯的铜铟硒化物)到0(纯的铜镓硒化物)变化。
这个方法还适合于通过将硫添加到含氧的金属前体和硒的混合物中而制备硫化物和硒化物的混合物。这样混合的硒化物和硫化物适合于制备铜铟镓硫硒化物(CIGSS)。
对于CIGS粉末,需要相当高的退火温度,高达700°C。预期这样的温度会通过蒸发而导致金属和Se的损失。它还往往使在低成本太阳能电池结构中使用的苏打-石灰玻璃基底变形。因此有利的是按原样应用硒化物的混合物来替代CIGS。单独的硒化物,特别是CuSe可以用作焊剂,因此允许适度的烧结温度。这样的温度是有利的,因为它们可以与更低成本的基底如塑料柔性基底相容。
可能有用的是提供一种相对于所设想的硒化物而言化学剂量量值过量的Se。实际上,Se在相对较低的221°C熔化并且可以在通过填充在合金颗粒(它们具有更高的独立的熔点)之间的空隙而退火的过程中用作润湿剂和焊剂。此外,过量的Se将补偿由于在退火步骤中可能发生的蒸发而导致的损失。根据退火条件(炉的类型、温度、所处理的材料量等),这种过量可以是按重量计大于百分之1的Se。这种过量可以通过在还原步骤之前或之后添加适当量的Se粉末来提供。
小于500nm的平均粒径(d50)是适合于结合到墨中的,并且是与所设想的层的厚度相容的。然而,具有小于200nm的d50的更精细颗粒是优选的,因为这可能有助于降低退火温度。上面定义的方法很适于制备这样的产品,特别是当从亚微米或纳米微粒前体(如氧化物或氢氧化物)开始时。
混合的Se和/或S粉末不需要特别精细颗粒的,因为这些成分将在大于300°C的温度熔化,这个温度会在还原过程中遇到。
在另外的实施方式中,以上颗粒用于制造一种分散体、糊剂或墨水。如此获得的组合物适合于制造光伏电池。
本发明的另一个实施方案涉及根据上述方法可获得的微粒材料,尤其是当存在化学剂量过量的Se时。
具体实施方式
实例
根据本发明的方法可以典型地通过从所希望的金属的水溶液中沉积出氢氧化物而进行。
在55°C,通过在约2小时的过程中缓慢加入NaOH溶液,使含有47.7g/l Cu、18.4g/l Ga和56.1g/l In的硝酸盐水溶液沉淀。pH从1.7的初始值变化到约12,由此作为氢氧化物回收的金属是接近定量的。
然后将所沉淀的氢氧化物进行清洗并在一个常规的烘箱中在90°C进行干燥。将经干燥的粉末在空气中在550°C煅烧2小时。将其与一种化学剂量量值的Se粉末进行混合,并且将这种混合物用H2在一个烘箱中在约300°C还原。所得的粉末是CIGS(CuIn0.65Ga0.35Se2),它可以进行分散用于进一步的用途。获得了90mm的d50,如在图1(粉末的SEM图)中所示。图2显示了相应的结晶学分析,证明该产物的单相性质。
H2可以成功地被混合气体(forming gas)所替代。还原温度应当是300°C或更高,以便制成具有仅一个相存在的CIGS。在250°C的测试确实造成了多个相的形成,这是不希望的,因为在退火之后可能仍然保留有多个相。

Claims (8)

1.用于合成含金属或金属混合物的硒化物的亚微米或纳米微粒粉末的方法,该方法包括以下步骤:
选择所述金属或金属混合物的一种含氧的前体;
将所述含氧的前体与一种至少化学剂量量值的硒进行混合;并且,
在足以确保与该前体的氧反应的温度下,用H2还原该混合物,并且形成硒化物。
2.根据权利要求1所述的方法,其中,该含氧的前体是一种氧化物或者氢氧化物。
3.根据权利要求2所述的方法,其中,该含氧的前体是一种通过以下方式制备的氧化物:
沉淀出一种或多种所述金属的盐;并且,
煅烧该沉淀物。
4.根据权利要求1或3中任一项所述的方法,其中,该金属或金属混合物包括来自由Cu、In和Ga组成的清单中的一种或多种金属。
5.根据权利要求1到4中任一项所述的方法,其中,该粉末是CIGS。
6.根据权利要求1到6中任一项所述的方法,其中,该粉末具有化学剂量过量的Se。
7.根据权利要求1到6中任一项制备的粉末用于制造分散体、糊剂、或墨的用途。
8.根据权利要求8的分散体、糊剂、或墨用于制造光伏电池的用途。
CN201180031937XA 2010-07-02 2011-06-30 硒化物粉末及生产方法 Pending CN102971254A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10006875.8 2010-07-02
EP10006875 2010-07-02
US34437410P 2010-07-08 2010-07-08
US61/344,374 2010-07-08
PCT/EP2011/060996 WO2012001094A1 (en) 2010-07-02 2011-06-30 Selenide powders and manufacturing process

Publications (1)

Publication Number Publication Date
CN102971254A true CN102971254A (zh) 2013-03-13

Family

ID=42985440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180031937XA Pending CN102971254A (zh) 2010-07-02 2011-06-30 硒化物粉末及生产方法

Country Status (6)

Country Link
EP (1) EP2588407A1 (zh)
JP (1) JP2013533841A (zh)
KR (1) KR20130098272A (zh)
CN (1) CN102971254A (zh)
CA (1) CA2803044A1 (zh)
WO (1) WO2012001094A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601169A (zh) * 2013-06-13 2014-02-26 南昌大学 一种碳杂化纳米带的制备方法
CN111517291A (zh) * 2019-02-01 2020-08-11 中国科学院物理研究所 一种具有条纹结构的过渡金属二硫属化合物及其制备方法
CN111807333A (zh) * 2020-07-28 2020-10-23 安徽大学 一种三维硒化亚铜纳米晶超晶格的制备方法
CN113874547A (zh) * 2019-11-12 2021-12-31 昭和电工株式会社 附着物除去方法及成膜方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320144B (zh) * 2020-03-30 2022-02-22 中北大学 黑色素-纳米硒及其制备方法
CN114671414B (zh) * 2022-03-25 2023-05-16 浙江大学 一种用于钠离子电池的铁铜锡三元硒化物纳米材料及制备方法
CN116332137B (zh) * 2023-01-05 2024-05-24 南京信息工程大学 一种多元金属硒化物吸波材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017889A2 (en) * 1997-10-02 1999-04-15 Chris Eberspacher Method for forming solar cell materials from particulates
CN101219779A (zh) * 2008-01-14 2008-07-16 重庆大学 复合碱金属氢氧化物溶剂制备硒化物和碲化物纳米材料的方法
US20090214763A1 (en) * 2008-02-27 2009-08-27 Korea Institute Of Science And Technology Preparation of thin film for solar cell using paste
CN101613091A (zh) * 2009-07-27 2009-12-30 中南大学 一种cigs粉末、靶材、薄膜及其制备方法
US20100133479A1 (en) * 2008-12-03 2010-06-03 Industrial Technology Research Institute Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017889A2 (en) * 1997-10-02 1999-04-15 Chris Eberspacher Method for forming solar cell materials from particulates
CN101219779A (zh) * 2008-01-14 2008-07-16 重庆大学 复合碱金属氢氧化物溶剂制备硒化物和碲化物纳米材料的方法
US20090214763A1 (en) * 2008-02-27 2009-08-27 Korea Institute Of Science And Technology Preparation of thin film for solar cell using paste
US20100133479A1 (en) * 2008-12-03 2010-06-03 Industrial Technology Research Institute Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
CN101613091A (zh) * 2009-07-27 2009-12-30 中南大学 一种cigs粉末、靶材、薄膜及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601169A (zh) * 2013-06-13 2014-02-26 南昌大学 一种碳杂化纳米带的制备方法
CN111517291A (zh) * 2019-02-01 2020-08-11 中国科学院物理研究所 一种具有条纹结构的过渡金属二硫属化合物及其制备方法
CN113874547A (zh) * 2019-11-12 2021-12-31 昭和电工株式会社 附着物除去方法及成膜方法
CN111807333A (zh) * 2020-07-28 2020-10-23 安徽大学 一种三维硒化亚铜纳米晶超晶格的制备方法

Also Published As

Publication number Publication date
CA2803044A1 (en) 2012-01-05
JP2013533841A (ja) 2013-08-29
KR20130098272A (ko) 2013-09-04
EP2588407A1 (en) 2013-05-08
WO2012001094A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
CN102971254A (zh) 硒化物粉末及生产方法
WO2012023519A1 (ja) 化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、およびその太陽電池の製造方法
JP6688832B2 (ja) アンチモンがドープされたナノ粒子
WO2012037391A2 (en) Annealing processes for photovoltaics
Indubala et al. Secondary phases and temperature effect on the synthesis and sulfurization of CZTS
Jin et al. Preparation of Cu2ZnSnS4-based thin film solar cells by a combustion method
TWI552373B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
JP2013512173A (ja) 銅亜鉛硫化スズの調製
Gapanovich et al. New absorbers for third-generation thin-film solar cells based on Cu–A–B–S–Se (A= Ba, Sr, Fe, Ni, or Mn; B= Si, Ge, or Sn) quaternary copper compounds
Pejjai et al. Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe 2 thin film solar cell applications
Wang et al. Progress and prospectives of solution-processed kesterite absorbers for photovoltaic applications
US20180248057A1 (en) Preparation of Copper-Rich Copper Indium (Gallium) Diselenide/Disulphide Nanoparticles
JP2010067727A (ja) ナノインク前駆体、ナノインク及び該ナノインクを用いて形成した膜
TWI675890B (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
Watt et al. Copper-based Multinary Materials for Solar Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130313