CN102968538B - The modeling method of PSP mismatch model of MOS transistor - Google Patents

The modeling method of PSP mismatch model of MOS transistor Download PDF

Info

Publication number
CN102968538B
CN102968538B CN201210506129.0A CN201210506129A CN102968538B CN 102968538 B CN102968538 B CN 102968538B CN 201210506129 A CN201210506129 A CN 201210506129A CN 102968538 B CN102968538 B CN 102968538B
Authority
CN
China
Prior art keywords
mis
mismatch
model
psp
wot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210506129.0A
Other languages
Chinese (zh)
Other versions
CN102968538A (en
Inventor
石艳玲
周卉
李曦
孙立杰
任铮
胡少坚
陈寿面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
East China Normal University
Original Assignee
East China Normal University
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University, Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical East China Normal University
Priority to CN201210506129.0A priority Critical patent/CN102968538B/en
Publication of CN102968538A publication Critical patent/CN102968538A/en
Application granted granted Critical
Publication of CN102968538B publication Critical patent/CN102968538B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种MOS晶体管PSP失配模型(mismatch model)的建模方法,包括在标准PSP模型部分上增加器件性能失配子模块,该器件性能失配子模块包括与器件性能失配相关的拟合参数和参数方程,拟合参数为器件性能失配对PSP模型基本参数toxo、vfbo和wot影响程度的影响系数。其中该器件性能失配子模块通过所述影响系数对晶体管线性阈值电压Vtlin、饱和阈值电压Vtsat、线性漏极电流Idlin和饱和漏极电流Idsat的变化特性施加的影响,确定器件性能失配对栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot的作用,来重新定义所述栅氧厚度toxo、所述与尺寸无关的平带电压vfbo和所述由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot。

The invention discloses a modeling method of a MOS transistor PSP mismatch model (mismatch model), which includes adding a device performance mismatch sub-module to the standard PSP model part, and the device performance mismatch sub-module includes a simulated model related to the device performance mismatch. The fitting parameters and parametric equations, the fitting parameters are the influence coefficients of the device performance mismatch on the basic parameters toxo, vfbo and wot of the PSP model. The device performance mismatch sub-module determines the device performance mismatch through the impact of the influence coefficient on the transistor linear threshold voltage V tlin , saturation threshold voltage V tsat , linear drain current I dlin and saturation drain current I dsat The gate oxide thickness toxo, the size-independent flat band voltage vfbo and the effective channel width variation wot caused by the lateral diffusion of channel stop doping are paired to redefine the gate oxide thickness toxo, the and The size-independent flat-band voltage vfbo and the effective channel width variation wot caused by the lateral diffusion of channel-stop doping.

Description

MOS晶体管PSP失配模型的建模方法Modeling Method of PSP Mismatch Model of MOS Transistor

技术领域technical field

本发明属于集成电路领域,尤其涉及一种MOS晶体管PSP失配(mismatch)模型的建模方法。The invention belongs to the field of integrated circuits, in particular to a modeling method for a MOS transistor PSP mismatch model.

背景技术Background technique

集成电路制造过程中存在着不同程度的工艺波动,每项工艺步骤顺序中的器件性能都可能会影响芯片的性能和成本率。随着微电子技术的不断发展,CMOS集成电路工艺中器件特征尺寸和栅氧厚度已经达到深纳米量级,器件性能虽然得到了改善,但是电路对于工艺波动也变得更加敏感,器件特性的工艺波动对集成电路性能的影响更加严重。因此在集成电路设计中对于工艺波动的考虑和预估显得十分重要。There are different degrees of process fluctuations in the manufacturing process of integrated circuits, and the device performance in the sequence of each process step may affect the performance and cost rate of the chip. With the continuous development of microelectronics technology, the feature size and gate oxide thickness of the device in the CMOS integrated circuit process have reached the order of deep nanometers. Although the performance of the device has been improved, the circuit has become more sensitive to process fluctuations. The process of device characteristics The impact of fluctuations on the performance of integrated circuits is even more severe. Therefore, it is very important to consider and estimate process fluctuations in integrated circuit design.

作为集成电路设计和制造之间的重要桥梁,MOSFET器件模型可以有效地预估芯片中各种物理效应和集成电路制造过程中工艺波动的影响。在MOSFET器件模型中考虑失配(mismatch)模型,可以有效地预估深纳米量级器件制造过程中工艺波动的影响。因此一种具有精确失配模型参数的SPICE模型能够更加精准地为集成电路设计工程师预测考虑工艺波动情况下的器件电学特性。As an important bridge between integrated circuit design and manufacturing, the MOSFET device model can effectively predict the impact of various physical effects in the chip and process fluctuations in the integrated circuit manufacturing process. Considering the mismatch model in the MOSFET device model can effectively predict the impact of process fluctuations in the fabrication of deep nanoscale devices. Therefore, a SPICE model with accurate mismatch model parameters can more accurately predict the electrical characteristics of devices considering process fluctuations for integrated circuit design engineers.

工艺波动问题在上世纪90年代末就已经引起了业内专家学者的关注。Nassif.S.R等人研究得出不能只考虑芯片间的工艺波动,由于器件尺寸的成比例缩小,芯片的工艺敏感度增大,在芯片设计中考虑和预估芯片内部的工艺波动(即失配属性,指的是同一个晶圆内位置临近且尺寸结构完全相同的器件间存在的电学特性差异),可以有效地提高芯片的性能和成品率。传统的方法是对每个器件采集大量IV特性数据,然后使用优化方法提取器件模型参数。这种方法精确但非常耗时。Purviance等人用主成份分析建立了MESFET的统计模型其主要思想是用一组互不相关的随机变量的线性组合来近似表示MESFET的S参数测量值。对于深亚微米MOSFET器件,短沟道效应影响着失配(mismatch)属性,因此Bastos等人在他们的失配研究中加入了短沟道效应部分。The problem of process fluctuation has attracted the attention of experts and scholars in the industry in the late 1990s. Nassif.S.R et al. researched that we should not only consider the process fluctuations between chips. Due to the proportional reduction of the device size, the process sensitivity of the chip increases. Consider and estimate the process fluctuations inside the chip (that is, mismatching) in the chip design. properties, which refer to the differences in electrical characteristics between devices that are adjacent in the same wafer and have the same size and structure), can effectively improve the performance and yield of chips. The traditional method is to collect a large amount of IV characteristic data for each device, and then use optimization methods to extract device model parameters. This method is precise but very time-consuming. Purviance et al established a statistical model of MESFET with principal component analysis. The main idea is to use a linear combination of a group of independent random variables to approximate the measured values of S parameters of MESFET. For deep submicron MOSFET devices, the short-channel effect affects the mismatch (mismatch) properties, so Bastos et al. added the short-channel effect part to their mismatch research.

近几年来,国内一些学者也对工艺波动产生的影响进行了研究,如西安电子科技大学在考虑工艺波动的互连方面取得了一定的成果。但是在系统地建立集成电路MOSFET工艺波动模型的研究还很少。In recent years, some domestic scholars have also conducted research on the impact of process fluctuations. For example, Xidian University has achieved certain results in interconnection considering process fluctuations. But there are few researches on systematically establishing integrated circuit MOSFET process fluctuation model.

基于表面势的PSP模型是通过精确求解沟道表面势分布,从而得到电荷和电流的方程,其对器件特性的描述更为精确,是目前业界在纳米量级标准工艺MOSFET进行建模时广泛使用的模型。PSP SPICE模型提供了大量综合的模型模块。本发明在原有标准PSP模型的基础上,通过将器件性能失配参数及其参数方程以子电路的形式添加到PSP SPICE模型平台,建立完善的与器件性能失配相关的失配(mismatch)模型,可以对所设计的电路进行更为准确地工艺波动分析和器件电学特性仿真,从而提高器件的性能和成品率。The PSP model based on the surface potential obtains the equations of charge and current by accurately solving the channel surface potential distribution. It describes the device characteristics more accurately, and is currently widely used in the industry when modeling nanoscale standard process MOSFETs. model. PSP SPICE models provide a large number of comprehensive model modules. Based on the original standard PSP model, the present invention establishes a perfect mismatch model related to device performance mismatch by adding device performance mismatch parameters and their parameter equations to the PSP SPICE model platform in the form of sub-circuits , can more accurately analyze the process fluctuation and simulate the electrical characteristics of the device for the designed circuit, so as to improve the performance and yield of the device.

发明内容Contents of the invention

本发明的目的在于提供一种MOS晶体管PSP失配(mismatch)模型的建模方法,在标准PSP模型部分上增加器件性能失配子模块。该器件性能失配子模块包括与器件性能失配相关的拟合参数和参数方程,拟合参数为器件性能失配对PSP模型基本参数栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot影响程度的影响系数。该器件性能失配子模块通过所述影响系数对晶体管线性阈值电压Vtlin、饱和阈值电压Vtsat、线性漏极电流Idlin和饱和漏极电流Idsat的变化特性施加的影响,来修正PSP模型中所述toxo、vfbo和wot的表达式,即确定器件性能失配对栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot的作用,来重新定义所述栅氧厚度toxo、所述与尺寸无关的平带电压vfbo和所述由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot。The object of the present invention is to provide a modeling method of a MOS transistor PSP mismatch model, which adds a device performance mismatch sub-module to the standard PSP model. The device performance mismatch sub-module includes fitting parameters and parameter equations related to device performance mismatch. The influence coefficient of the influence degree of the effective channel width variation wot caused by the lateral diffusion of blocking doping. The device performance mismatch sub-module corrects the PSP model through the influence of the influence coefficient on the variation characteristics of transistor linear threshold voltage V tlin , saturation threshold voltage V tsat , linear drain current I dlin and saturated drain current I dsat The expressions of said toxo, vfbo and wot, that is to determine the device performance mismatch pair gate oxide thickness toxo, the size-independent flat band voltage vfbo and the effective channel width variation wot caused by the lateral diffusion of channel stop doping to redefine the gate oxide thickness toxo, the dimension-independent flat-band voltage vfbo, and the effective channel width variation wot caused by the lateral diffusion of channel stop doping.

所述影响系数包括:器件性能失配对所述toxo、vfbo和wot影响程度的参数dtoxo_mis、dvfbo_mis和dwot_mis。The influence coefficient includes: parameters dtoxo_mis, dvfbo_mis and dwot_mis of the degree of influence of device performance mismatch on the toxo, vfbo and wot.

所述修正PSP模型中toxo、vfbo和wot的表达式的方法中还包括由所述影响系数的运算而得到的中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v,参与到toxo、vfbo和wot的表达。其中所述dtoxo_mis_v是受器件性能失配影响栅氧厚度的变化量;所述dvfbo_mis_v是受器件性能失配影响与尺寸无关的平带电压的变化量;所述dwot_mis_v是受器件性能失配影响由沟道阻断掺杂的横向扩散导致的有效沟道宽度的变化量。The method for correcting the expressions of toxo, vfbo and wot in the PSP model also includes the intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v obtained by the operation of the influence coefficient, which participate in the expression of toxo, vfbo and wot. Wherein, the dtoxo_mis_v is the variation of the gate oxide thickness affected by the device performance mismatch; the dvfbo_mis_v is the variation of the flat band voltage which is affected by the device performance mismatch and has nothing to do with the size; the dwot_mis_v is affected by the device performance mismatch by The amount of change in effective channel width due to lateral diffusion of channel-stop doping.

其中,所述由影响系数得到中间变量的运算中,包括与器件尺寸相关的参量geo_fac,得到geo_fac的运算如下:Wherein, the operation of obtaining the intermediate variable from the influence coefficient includes the parameter geo_fac related to the device size, and the operation of obtaining geo_fac is as follows:

geogeo __ facfac == 11 ll ·&Center Dot; ww

式中l是MOSFET器件的沟道长度,w是MOSFET器件的沟道宽度。Where l is the channel length of the MOSFET device, and w is the channel width of the MOSFET device.

其中,所述失配(mismatch)模型的成因是工艺波动,在电学仿真中认为这些波动是由很多独立变量的随机漫步导致的,因此所述中间变量符合高斯分布,波动的分布表达式为random=agauss(0.0,1.0,1),其中agauss(0.0,1.0,1)表示期望为0,方差为1的高斯分布。Wherein, the cause of the mismatch (mismatch) model is process fluctuations. In electrical simulation, these fluctuations are considered to be caused by random walks of many independent variables, so the intermediate variables conform to Gaussian distribution, and the distribution expression of fluctuations is random = agauss(0.0, 1.0, 1), where agauss(0.0, 1.0, 1) represents a Gaussian distribution with an expectation of 0 and a variance of 1.

因此所述中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v由以下公式决定:Therefore, the intermediate variables dtoxo_mis_v, dvfbo_mis_v, and dwot_mis_v are determined by the following formulas:

dtoxo_mis_v=dtoxo_mis·randoml·geo_facdtoxo_mis_v=dtoxo_mis randoml geo_fac

dvfbo_mis_v=dvfbo_mis·random2·geo_facdvfbo_mis_v=dvfbo_mis random2 geo_fac

dwot_mis_v=dwot_mis·random3·geo_facdwot_mis_v=dwot_mis random3 geo_fac

式中In the formula

random1=agauss(0.0,1.0,1)random1=agauss(0.0, 1.0, 1)

random2=agauss(0.0,1.0,1)random2=agauss(0.0, 1.0, 1)

random3=agauss(0.0,1.0,1)。random3=agauss(0.0, 1.0, 1).

本发明通过中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v对所述栅氧厚度toxo、与尺寸无关的平带电压vfbo、由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot做出修正。所述中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v与toxo、vfbo和wot的关系,即toxo、vfbo和wot受器件性能失配影响而发生变化的参数方程分别为:The present invention uses the intermediate variables dtoxo_mis_v, dvfbo_mis_v, and dwot_mis_v to correct the gate oxide thickness toxo, the size-independent flat-band voltage vfbo, and the effective channel width variation wot caused by lateral diffusion of channel stop doping. The relationship between the intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v and toxo, vfbo and wot, that is, the parameter equations of toxo, vfbo and wot being affected by the mismatch of device performance are respectively:

toxo=toxooriginal+dtoxo_mis_vtoxo=toxo original +dtoxo_mis_v

vfbo=vfbooriginal+dvfbo_mis_vvfbo=vfbo original +dvfbo_mis_v

wot=wotoriginal+dwot_mis_vwot=wot original +dwot_mis_v

式中toxooriginal是初始栅氧厚度值,即直流模型提取得到的栅氧厚度值;vfbooriginal是与尺寸无关的初始平带电压值,即直流模型提取得到的与尺寸无关的平带电压值;wotoriginal是由沟道阻断掺杂的横向扩散导致有效沟道宽度变化的初始变化量,即直流模型提取得到的由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量。where toxo original is the initial gate oxide thickness value, that is, the gate oxide thickness value extracted by the DC model; vfbo original is the size-independent initial flat-band voltage value, that is, the size-independent flat-band voltage value extracted by the DC model; wot original is the initial variation of the effective channel width caused by the lateral diffusion of the channel-stopping dopant, that is, the variation of the effective channel width caused by the lateral diffusion of the channel-stopping dopant extracted by the DC model.

本发明适用的MOSFET是包括22nm-130nm标准工艺的MOSFET。The applicable MOSFET of the present invention is a MOSFET including 22nm-130nm standard technology.

根据本发明的MOS晶体管PSP失配(mismatch)模型的建模方法所建立的模型,其物理含义明确、精确度高,准确考虑由于工艺波动造成的器件电学特性差异,能够对不同尺寸类型的MOSFET电学特性进行更为精确地模拟仿真。According to the model established by the modeling method of the MOS transistor PSP mismatch (mismatch) model of the present invention, its physical meaning is clear, the accuracy is high, and the difference in electrical characteristics of the device due to process fluctuations is accurately considered, and MOSFETs of different sizes and types can be accurately considered. The electrical characteristics are simulated more accurately.

附图说明Description of drawings

图1为本发明的MOS晶体管PSP失配(mismatch)模型的建模方法所建立的模型的示意性结构框图;Fig. 1 is the schematic structural block diagram of the model that the modeling method of MOS transistor PSP mismatch (mismatch) model of the present invention establishes;

图2为NMOSFET线性阈值电压变化量的σ值σ(ΔVtlin)与几何参数因子geo_fac的关系图;Fig. 2 is the relationship diagram of the σ value σ(ΔV tlin ) of the linear threshold voltage variation of the NMOSFET and the geometric parameter factor geo_fac;

图3为NMOSFET饱和阈值电压变化量的σ值σ(ΔVtsat)与几何参数因子geo_fac的关系图;Fig. 3 is a relationship diagram between the σ value σ(ΔV tsat ) of the NMOSFET saturation threshold voltage variation and the geometric parameter factor geo_fac;

图4为NMOSFET线性漏极电流相对变化量的σ值σ(ΔIdlin/Idlin)与几何参数因子geo_fac的关系图;Fig. 4 is a relationship diagram between the σ value σ(ΔI dlin /I dlin ) and the geometric parameter factor geo_fac of the relative variation of the linear drain current of the NMOSFET;

图5为NMOSFET饱和漏极电流相对变化量的σ值σ(ΔIdsat/Idsat)与几何参数因子geo_fac的关系图;Fig. 5 is a relationship diagram between the σ value σ(ΔI dsat /I dsat ) and the geometric parameter factor geo_fac of the relative variation of the saturated drain current of the NMOSFET;

图6为PMOSFET线性阈值电压变化量的σ值σ(-ΔVtlin)与几何参数因子geo_fac的关系图;Fig. 6 is a relationship diagram between the σ value σ(-ΔV tlin ) and the geometric parameter factor geo_fac of the linear threshold voltage variation of the PMOSFET;

图7为PMOSFET饱和阈值电压变化量的σ值σ(-ΔVtsat)与几何参数因子geo_fac的关系图;Fig. 7 is a relationship diagram between the σ value σ(-ΔV tsat ) of the PMOSFET saturation threshold voltage variation and the geometric parameter factor geo_fac;

图8为PMOSFET线性漏极电流相对变化量的σ值σ(ΔIdlin/I dlin)与几何参数因子geo_fac的关系图;Fig. 8 is a relationship diagram between the σ value σ(ΔI dlin /I dlin ) and the geometric parameter factor geo_fac of the relative variation of the linear drain current of the PMOSFET;

图9为PMOSFET饱和漏极电流相对变化量的σ值σ(ΔIdsat/Idsat)与几何参数因子geo_fac的关系图。FIG. 9 is a graph showing the relationship between the σ value σ(ΔI dsat /I dsat ) of the relative variation of the saturated drain current of the PMOSFET and the geometric parameter factor geo_fac.

具体实施方式Detailed ways

以下结合附图和实施例进一步详细阐述本发明。以下实施例并不是对本发明的限制,在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中。The present invention will be further elaborated below in conjunction with the accompanying drawings and examples. The following examples do not limit the present invention. Without departing from the spirit and scope of the inventive concept, changes and advantages that can be imagined by those skilled in the art are all included in the present invention.

本发明提供MOS晶体管PSP失配(mismatch)模型的建模方法,具体地为22nm-130nm标准工艺MOSFET与器件性能失配相关的PSP失配(mismatch)模型的建模方法。该方法所建立的模型物理含义明确、精确度高,准确考虑由于工艺波动造成的器件电学特性差异,有助于对不同尺寸类型的MOSFET电学特性进行更为精确地模拟仿真。The invention provides a modeling method of a PSP mismatch model of a MOS transistor, specifically a modeling method of a PSP mismatch model related to a mismatch between a 22nm-130nm standard process MOSFET and device performance. The model established by this method has clear physical meaning and high accuracy, and accurately considers the differences in device electrical characteristics caused by process fluctuations, which is helpful for more accurate simulation of the electrical characteristics of MOSFETs of different sizes and types.

本发明方法在标准PSP模型部分上增加器件性能失配子模块。该器件性能失配子模块包括与器件性能失配相关的拟合参数和参数方程,拟合参数为器件性能失配对PSP模型基本参数栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot影响程度的影响系数。该器件性能失配子模块通过影响系数对晶体管线性阈值电压Vtlin、饱和阈值电压Vtsat、线性漏极电流Idlin和饱和漏极电流Idsat的变化特性施加的影响,来修正PSP模型中所述toxo、vfbo和wot的表达式,以使通过本发明的建模方法获得的PSP失配模型能够更准确地仿真纳米级MOSFET器件的实际性能。也就是说,该器件性能失配子模块通过所述影响系数对晶体管线性阈值电压Vtlin、饱和阈值电压Vtsat、线性漏极电流Idlin和饱和漏极电流Idsat的变化特性施加的影响,确定器件性能失配对栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot的作用,来重新定义所述栅氧厚度toxo、所述与尺寸无关的平带电压vfbo和所述由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot。The method of the invention adds a device performance mismatch sub-module to the part of the standard PSP model. The device performance mismatch sub-module includes fitting parameters and parameter equations related to device performance mismatch. The influence coefficient of the influence degree of the effective channel width variation wot caused by the lateral diffusion of blocking doping. The device performance mismatch sub-module modifies the effects described in the PSP model by influencing the influence coefficients exert on the variation characteristics of transistor linear threshold voltage V tlin , saturation threshold voltage V tsat , linear drain current I dlin , and saturated drain current I dsat The expression of toxo, vfbo and wot, so that the PSP mismatch model obtained by the modeling method of the present invention can more accurately simulate the actual performance of nanoscale MOSFET devices. That is to say, the device performance mismatch sub-module is determined by the impact of the influence coefficient on the variation characteristics of the transistor linear threshold voltage V tlin , saturation threshold voltage V tsat , linear drain current I dlin and saturated drain current I dsat The effect of device performance mismatch on the gate oxide thickness toxo, the size-independent flat band voltage vfbo and the effective channel width variation wot caused by the lateral diffusion of channel stop doping, to redefine the gate oxide thickness toxo, The size-independent flat-band voltage vfbo and the effective channel width variation wot caused by lateral diffusion of channel-stop doping.

图1为本发明MOS晶体管PSP失配(mismatch)模型的建模方法所建立的模型的示意性结构框图。如图1所示,本发明是MOS晶体管PSP失配(mismatch)模型的建模方法建立的模型,由三个受器件性能失配影响而发生变化的PSP SPICE模型参数的计算公式(即图1中的参数方程)以及相关的拟合参数以子电路的形式引入到PSP SPICE模型平台中。其中,三个PSP SPICE模型参数为:栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot。本发明较佳实施例的主要用途在于利用三个PSPSPICE参数计算公式和拟合参数计算不同沟道长度和宽度MOSFET的toxo、vfbo和wot的具体数值,进而通过这些PSP SPICE参数在不同沟道长度和宽度下的数值结合PSP SPICE模型平台对MOSFET的电学特性进行仿真。FIG. 1 is a schematic structural block diagram of a model established by a modeling method for a MOS transistor PSP mismatch model of the present invention. As shown in Figure 1, the present invention is the model that the modeling method of MOS transistor PSP mismatch (mismatch) model establishes, by the calculation formula (being Fig. 1 The parameter equations in ) and related fitting parameters are introduced into the PSP SPICE model platform in the form of sub-circuits. Among them, the three PSP SPICE model parameters are: gate oxide thickness toxo, size-independent flat-band voltage vfbo, and effective channel width variation wot caused by lateral diffusion of channel-stop doping. The main purpose of the preferred embodiment of the present invention is to utilize three PSPSPICE parameter calculation formulas and fitting parameters to calculate the specific values of toxo, vfbo and wot of different channel lengths and width MOSFETs, and then use these PSP SPICE parameters in different channel lengths The electrical characteristics of the MOSFET are simulated by combining the values under the width and width with the PSP SPICE model platform.

本发明中影响系数包括:器件性能失配对所述toxo、vfbo和wot影响程度的参数dtoxo_mis、dvfbo_mis和dwot_mis。该三个参数是在建模过程中添加的拟合参数,其初始值均设为零,通过调节这三个拟合参数的值来对器件的实际测试情况进行拟合,当拟合达到要求精度时,即可得到这三个拟合参数的值。In the present invention, the influence coefficient includes: parameters dtoxo_mis, dvfbo_mis and dwot_mis of the degree of influence of device performance mismatch on the toxo, vfbo and wot. These three parameters are fitting parameters added during the modeling process, and their initial values are all set to zero. By adjusting the values of these three fitting parameters, the actual test conditions of the device are fitted. When the fitting meets the requirements When the accuracy is high, the values of these three fitting parameters can be obtained.

所述修正考虑器件性能失配后PSP模型中toxo、vfbo和wot的表达式的方法中还包括由所述影响系数的运算而得到的中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v,参与到toxo、vfbo和wot的表达。其中所述dtoxo_mis_v是受器件性能失配影响栅氧厚度的变化量;所述dvfbo_mis_v是受器件性能失配影响与尺寸无关的平带电压的变化量;所述dwot_mis_v是受器件性能失配影响由沟道阻断掺杂的横向扩散导致的有效沟道宽度的变化量。The method of modifying the expressions of toxo, vfbo and wot in the PSP model after considering the mismatch of device performance also includes the intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v obtained by the operation of the influence coefficient, which participate in toxo, vfbo and wot expression. Wherein, the dtoxo_mis_v is the variation of the gate oxide thickness affected by the device performance mismatch; the dvfbo_mis_v is the variation of the flat band voltage which is affected by the device performance mismatch and has nothing to do with the size; the dwot_mis_v is affected by the device performance mismatch by The amount of change in effective channel width due to lateral diffusion of channel-stop doping.

所述修正考虑器件性能失配后PSP模型中toxo、vfbo和wot的表达式的方法中还包括通过中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v对所述栅氧厚度toxo、与尺寸无关的平带电压vfbo、由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot做出修正。所述中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v与toxo、vfbo和wot的关系,即toxo、vfbo和wot受器件性能失配影响而发生变化的参数方程分别为:The method of modifying the expressions of toxo, vfbo and wot in the PSP model after considering the device performance mismatch also includes adjusting the gate oxide thickness toxo, the size-independent flat band voltage vfbo, A correction is made for the effective channel width variation wot caused by the lateral diffusion of the channel-stop doping. The relationship between the intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v and toxo, vfbo and wot, that is, the parameter equations of toxo, vfbo and wot being affected by the mismatch of device performance are respectively:

toxo=toxooriginal+dtoxo_mis_vtoxo=toxo original +dtoxo_mis_v

vfbo=vfbooriginal+dvfbo_mis_vvfbo=vfbo original +dvfbo_mis_v

wot=wotoriginal+dwot_mis_vwot=wot original +dwot_mis_v

式中toxooriginal是初始栅氧厚度值,即直流模型提取得到的栅氧厚度值;vfbooriginal是与尺寸无关的初始平带电压值,即直流模型提取得到的与尺寸无关的平带电压值;wotoriginal是由沟道阻断掺杂的横向扩散导致有效沟道宽度变化的初始变化量,即直流模型提取得到的由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量。where toxo original is the initial gate oxide thickness value, that is, the gate oxide thickness value extracted by the DC model; vfbo original is the size-independent initial flat-band voltage value, that is, the size-independent flat-band voltage value extracted by the DC model; wot original is the initial variation of the effective channel width caused by the lateral diffusion of the channel-stopping dopant, that is, the variation of the effective channel width caused by the lateral diffusion of the channel-stopping dopant extracted by the DC model.

其中,所述由影响系数得到中间变量的运算中,包括与器件尺寸相关的参量geo_fac,得到geo_fac的运算如下:Wherein, the operation of obtaining the intermediate variable from the influence coefficient includes the parameter geo_fac related to the device size, and the operation of obtaining geo_fac is as follows:

geogeo __ facfac == 11 ll ·&Center Dot; ww

式中l是MOSFET器件的沟道长度,w是MOSFET器件的沟道宽度。Where l is the channel length of the MOSFET device, and w is the channel width of the MOSFET device.

其中,所述失配(mismatch)模型的成因是工艺波动,在电学仿真中认为这些波动是由很多独立变量的随机漫步导致的,因此所述中间变量符合高斯分布,波动的分布表达式为random=agauss(0.0,1.0,1),其中agauss(0.0,1.0,1)表示期望为0,方差为1的高斯分布。Wherein, the cause of the mismatch (mismatch) model is process fluctuations. In electrical simulation, these fluctuations are considered to be caused by random walks of many independent variables, so the intermediate variables conform to Gaussian distribution, and the distribution expression of fluctuations is random = agauss(0.0, 1.0, 1), where agauss(0.0, 1.0, 1) represents a Gaussian distribution with an expectation of 0 and a variance of 1.

因此所述中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v由以下公式决定:Therefore, the intermediate variables dtoxo_mis_v, dvfbo_mis_v, and dwot_mis_v are determined by the following formulas:

dtoxo_mis_v=dtoxo_mis·random1·geo_facdtoxo_mis_v=dtoxo_mis random1 geo_fac

dvfbo_mis_v=dvfbo_mis·random2·geo_facdvfbo_mis_v=dvfbo_mis random2 geo_fac

dwot_mis_v=dwot_mis·random3·geo_facdwot_mis_v=dwot_mis random3 geo_fac

式中In the formula

random1=agauss(0.0,1.0,1)random1=agauss(0.0, 1.0, 1)

random2=agauss(0.0,1.0,1)random2=agauss(0.0, 1.0, 1)

random3=agauss(0.0,1.0,1)。random3=agauss(0.0, 1.0, 1).

首先,使用PSP SPICE模型对40nm标准工艺沟道长度为0.036-0.9μm,沟道宽度为0.108-0.9μm的MOSFET进行测量,再进行PSP模型参数提取,得到这些器件toxo、vfbo、wot SPICE模型参数数值。First, use the PSP SPICE model to measure MOSFETs with a channel length of 0.036-0.9 μm and a channel width of 0.108-0.9 μm in the 40nm standard process, and then extract the parameters of the PSP model to obtain the toxo, vfbo, and wot SPICE model parameters of these devices value.

以下将以40nm标准工艺MOSFET实施例对如何应用本发明的建模方法获得的PSP失配(mismatch)模型作进一步的详细说明。Hereinafter, how to apply the PSP mismatch model obtained by the modeling method of the present invention will be further described in detail in the embodiment of a 40nm standard process MOSFET.

图2为NMOSFET线性阈值电压变化量的σ值与几何参数因了geo_fac的关系图。图6为PMOSFET线性阈值电压变化量的σ值与几何参数因子geo_fac的关系图。常温下对MOSFET施加零衬偏,对于有相同沟道长度l和沟道宽度w且在晶圆上所处位置临近的三十五个MOSFET分别进行线性阈值电压测量,NMOSFET测量条件为Vds(漏极电压)=0.05V,Vgs(栅极电压)=1.8V,Vbs(衬底偏压)=0V,PMOSFET测量条件为Vds=-0.05V,Vgs=-1.8V,Vbs=0V,再根据线性阈值电压的值和PSP内部的模型计算出线性阈值电压变化量的σ值。在不同的沟道长度l和沟道宽度w下,分别提取出每个尺寸MOSFET的线性阈值电压变化量的σ值,然后对线性阈值电压变化量的σ值进行曲线拟合,纵坐标为线性阈值电压变化量的σ值,横坐标1/sqrt(w*1)即为与器件尺寸相关的参量geo_fac(在模型文件中为便于表达式的书写,用sqrt(w*1)代替)。图中圆点为测试数据点,虚线为测试点趋势曲线,方点为仿真数据点,实线为仿真点拟合曲线,使两条曲线均过原点。以NMOSFET为例,虚线的表达式为y=0.003*x,即虚线斜率为0.003,实线的表达式为y=0.003*x,即实线斜率为0.003。如图2和图6所示,随着geo_fac的增大,MOSFET线性阈值电压变化量的σ值逐渐增大,主要观察实际测量结果曲线和仿真结果曲线之间斜率的差异,此时两条曲线间的斜率差越小越好,由图可见,测量曲线斜率和仿真曲线斜率精确到小数点后第三位仍一致,由于准确地考虑由于工艺波动造成的器件电学特性差异,因此能够对不同尺寸类型的MOSFET电学特性进行更为精确的模拟仿真。Fig. 2 is a graph showing the relationship between the σ value of the NMOSFET linear threshold voltage variation and the geometric parameter geo_fac. FIG. 6 is a graph showing the relationship between the σ value of the linear threshold voltage variation of the PMOSFET and the geometric parameter factor geo_fac. Apply zero lining bias to the MOSFET at room temperature, and measure the linear threshold voltage of thirty-five MOSFETs with the same channel length l and channel width w and located close to each other on the wafer. The NMOSFET measurement condition is Vds (drain Pole voltage) = 0.05V, Vgs (gate voltage) = 1.8V, Vbs (substrate bias) = 0V, PMOSFET measurement conditions are Vds = -0.05V, Vgs = -1.8V, Vbs = 0V, and then according to the linear The value of the threshold voltage and the model inside the PSP calculate the σ value of the linear threshold voltage variation. Under different channel length l and channel width w, the σ value of the linear threshold voltage change of each size MOSFET is extracted respectively, and then the curve fitting is performed on the σ value of the linear threshold voltage change, and the ordinate is linear The σ value of the threshold voltage variation, the abscissa 1/sqrt(w*1) is the parameter geo_fac related to the device size (in the model file, for the convenience of writing the expression, replace it with sqrt(w*1) ). The dots in the figure are the test data points, the dotted line is the trend curve of the test points, the square points are the simulation data points, and the solid line is the fitting curve of the simulation points, so that both curves pass through the origin. Taking NMOSFET as an example, the expression of the dotted line is y=0.003*x, that is, the slope of the dotted line is 0.003, and the expression of the solid line is y=0.003*x, that is, the slope of the solid line is 0.003. As shown in Figure 2 and Figure 6, with the increase of geo_fac, the σ value of the MOSFET linear threshold voltage variation gradually increases, mainly observing the slope difference between the actual measurement result curve and the simulation result curve, at this time the two curves The smaller the slope difference, the better. It can be seen from the figure that the slope of the measured curve and the simulated curve are accurate to the third decimal place and are still consistent. Due to the accurate consideration of the differences in the electrical characteristics of the device due to process fluctuations, it is possible to perform different sizes. Conduct more accurate simulations of the MOSFET electrical characteristics.

图3为NMOSFET饱和阈值电压变化量的σ值与几何参数因子geo_fac的关系图。图7为PMOSFET饱和阈值电压变化量的σ值与几何参数因子geo_fac的关系图。常温下对MOSFET施加零衬偏,对于有相同沟道长度l和沟道宽度w且在晶圆上所处位置临近的三十五个MOSFET分别进行饱和阈值电压测量,NMOSFET测量条件为Vds=1.8V,Vgs=1.8V,Vbs=0V,PMOSFET测量条件为Vds=-1.8V,Vgs=-1.8V,Vbs=0V,再根据饱和阈值电压的值和PSP内部的模型计算出饱和阈值电压变化量的σ值。在不同的沟道长度l和沟道宽度w下,分别提取出每个尺寸MOSFET的饱和阈值电压变化量的σ值,然后对饱和阈值电压变化量的σ值进行曲线拟合,纵坐标为饱和阈值电压变化量的σ值,横坐标1/sqrt(w*1)即为与器件尺寸相关的参量geo_fac(在模型文件中为便于表达式的书写,用sqrt(w*1)代替)。图中圆点为测试数据点,虚线为测试点趋势曲线,方点为仿真数据点,实线为仿真点拟合曲线,使两条曲线均过原点。以NMOSFET为例,虚线的表达式为y=0.003*x,即虚线斜率为0.003,实线的表达式为y=0.003*x,即实线斜率为0.003。如图3和图7所示,随着geo_fac的增大,MOSFET饱和阈值电压变化量的σ值逐渐增大,主要观察实际测量结果曲线和仿真结果曲线之间斜率的差异,此时两条曲线间的斜率差越小越好,由图可见,测量曲线斜率和仿真曲线斜率精确到小数点后第三位仍一致,由于准确地考虑由于工艺波动造成的器件电学特性差异,因此能够对不同尺寸类型的MOSFET电学特性进行更为精确的模拟仿真。Fig. 3 is a graph showing the relationship between the σ value of the NMOSFET saturation threshold voltage variation and the geometric parameter factor geo_fac. FIG. 7 is a graph showing the relationship between the σ value of the PMOSFET saturation threshold voltage variation and the geometric parameter factor geo_fac. Apply zero offset to the MOSFET at room temperature, and measure the saturation threshold voltage of thirty-five MOSFETs that have the same channel length l and channel width w and are located close to each other on the wafer. The NMOSFET measurement condition is Vds=1.8 V, Vgs=1.8V, Vbs=0V, PMOSFET measurement conditions are Vds=-1.8V, Vgs=-1.8V, Vbs=0V, and then calculate the saturation threshold voltage variation according to the value of the saturation threshold voltage and the internal model of the PSP The σ value. Under different channel length l and channel width w, the σ value of the saturation threshold voltage change of each size MOSFET is extracted, and then the curve fitting is performed on the σ value of the saturation threshold voltage change, and the ordinate is saturation The σ value of the threshold voltage variation, the abscissa 1/sqrt(w*1) is the parameter geo_fac related to the device size (in the model file, for the convenience of writing the expression, replace it with sqrt(w*1) ). The dots in the figure are the test data points, the dotted line is the trend curve of the test points, the square points are the simulation data points, and the solid line is the fitting curve of the simulation points, so that both curves pass through the origin. Taking NMOSFET as an example, the expression of the dotted line is y=0.003*x, that is, the slope of the dotted line is 0.003, and the expression of the solid line is y=0.003*x, that is, the slope of the solid line is 0.003. As shown in Figure 3 and Figure 7, with the increase of geo_fac, the σ value of the MOSFET saturation threshold voltage variation gradually increases. The main observation is the difference in slope between the actual measurement result curve and the simulation result curve. At this time, the two curves The smaller the slope difference, the better. It can be seen from the figure that the slope of the measured curve and the simulated curve are accurate to the third decimal place and are still consistent. Due to the accurate consideration of the differences in the electrical characteristics of the device due to process fluctuations, it is possible to perform different sizes. Conduct more accurate simulations of the MOSFET electrical characteristics.

图4为NMOSFET线性漏极电流相对变化量的σ值与几何参数因子geo_fac的关系图。图8为PMOSFET线性漏极电流相对变化量的σ值与几何参数因子geo_fac的关系图。常温下对MOSFET施加零衬偏,对于有相同沟道长度l和沟道宽度w且在晶圆上所处位置临近的三十五个MOSFET分别进行线性漏极电流测量,NMOSFET测量条件为Vds=0.05V,Vgs=1.8V,Vbs=0V,PMOSFET测量条件为Vds=-0.05V,Vgs=-1.8V,Vbs=0V,再根据线性漏极电流的值和PSP内部的模型计算出线性漏极电流相对变化量的σ值。在不同的沟道长度l和沟道宽度w下,分别提取出每个尺寸MOSFET的线性漏极电流相对变化量的σ值,然后对线性漏极电流相对变化量的σ值进行曲线拟合,纵坐标为线性漏极电流相对变化量的σ值,横坐标1/sqrt(w*1)即为与器件尺寸相关的参量geo_fac(在模型文件中为便于表达式的书写,用sqrt(w*1)代替)。图中圆点为测试数据点,虚线为测试点趋势曲线,方点为仿真数据点,实线为仿真点拟合曲线,使两条曲线均过原点。以NMOSFET为例,虚线的表达式为y=0.004*x,即虚线斜率为0.004,实线的表达式为y=0.004*x,即实线斜率为0.004。如图4和图8所示,随着geo_fac的增大,MOSFET线性漏极电流相对变化量的σ值逐渐增大,主要观察实际测量结果曲线和仿真结果曲线之间斜率的差异,此时两条曲线间的斜率差越小越好,由图可见,测量曲线斜率和仿真曲线斜率精确到小数点后第三位仍一致,由于准确地考虑由于工艺波动造成的器件电学特性差异,因此能够对不同尺寸类型的MOSFET电学特性进行更为精确的模拟仿真。Fig. 4 is a graph showing the relationship between the σ value of the relative variation of the linear drain current of the NMOSFET and the geometric parameter factor geo_fac. FIG. 8 is a graph showing the relationship between the σ value of the relative variation of the linear drain current of the PMOSFET and the geometric parameter factor geo_fac. Apply zero lining bias to the MOSFET at room temperature, and perform linear drain current measurement on thirty-five MOSFETs with the same channel length l and channel width w and located close to each other on the wafer. The NMOSFET measurement condition is Vds= 0.05V, Vgs=1.8V, Vbs=0V, PMOSFET measurement conditions are Vds=-0.05V, Vgs=-1.8V, Vbs=0V, and then calculate the linear drain according to the value of the linear drain current and the internal model of the PSP The σ value of the relative change in current. Under different channel length l and channel width w, the σ value of the relative change in the linear drain current of each size MOSFET is extracted, and then the curve fitting is performed on the σ value of the relative change in the linear drain current, The ordinate is the σ value of the relative change of the linear drain current, and the abscissa 1/sqrt(w*1) is the parameter geo_fac related to the device size (in the model file, for the convenience of writing the expression, use sqrt(w* 1) instead of ). The dots in the figure are the test data points, the dotted line is the trend curve of the test points, the square points are the simulation data points, and the solid line is the fitting curve of the simulation points, so that both curves pass through the origin. Taking NMOSFET as an example, the expression of the dotted line is y=0.004*x, that is, the slope of the dotted line is 0.004, and the expression of the solid line is y=0.004*x, that is, the slope of the solid line is 0.004. As shown in Figure 4 and Figure 8, with the increase of geo_fac, the σ value of the relative change of MOSFET linear drain current increases gradually, mainly observing the slope difference between the actual measurement result curve and the simulation result curve, at this time the two The smaller the slope difference between the two curves, the better. It can be seen from the figure that the slope of the measured curve and the slope of the simulated curve are accurate to the third decimal place and are still consistent. Due to the accurate consideration of the device electrical characteristics caused by process fluctuations, it can be used for different Conduct more accurate simulations of the electrical characteristics of MOSFETs of different size types.

图5为NMOSFET饱和漏极电流相对变化量的σ值与几何参数因子geo_fac的关系图。图9为PMOSFET饱和漏极电流相对变化量的σ值与几何参数因子geo_fac的关系图。常温下对MOSFET施加零衬偏,对于有相同沟道长度l和沟道宽度w且在晶圆上所处位置临近的三十五个MOSFET分别进行饱和漏极电流测量,NMOSFET测量条件为Vds=1.8V,Vgs=1.8V,Vbs=0V,PMOSFET测量条件为Vds=-1.8V,Vgs=-1.8V,Vbs=0V,再根据饱和漏极电流的值和PSP内部的模型计算出饱和漏极电流相对变化量的σ值。在不同的沟道长度l和沟道宽度w下,分别提取出每个尺寸MOSFET的饱和漏极电流相对变化量的σ值,然后对饱和漏极电流相对变化量的σ值进行曲线拟合,纵坐标为饱和漏极电流相对变化量的σ值,横坐标1/sqrt(w*1)即为与器件尺寸相关的参量geo_fac(在模型文件中为便于表达式的书写,用sqrt(w*1)代替)。图中圆点为测试数据点,虚线为测试点趋势曲线,方点为仿真数据点,实线为仿真点拟合曲线,使两条曲线均过原点。以NMOSFET为例,虚线的表达式为y=0.004*x,即虚线斜率为0.004,实线的表达式为y=0.004*x,即实线斜率为0.004。如图5和图9所示,随着geo_fac的增大,MOSFET饱和漏极电流相对变化量的σ值逐渐增大,主要观察实际测量结果曲线和仿真结果曲线之间斜率的差异,此时两条曲线间的斜率差越小越好,由图可见,测量曲线斜率和仿真曲线斜率精确到小数点后第三位仍一致,由于准确地考虑由于工艺波动造成的器件电学特性差异,因此能够对不同尺寸类型的MOSFET电学特性进行更为精确的模拟仿真。FIG. 5 is a graph showing the relationship between the σ value of the relative variation of the saturated drain current of the NMOSFET and the geometric parameter factor geo_fac. FIG. 9 is a graph showing the relationship between the σ value of the relative variation of the saturated drain current of the PMOSFET and the geometric parameter factor geo_fac. Under normal temperature, zero lining bias is applied to the MOSFET, and the saturation drain current is measured for thirty-five MOSFETs with the same channel length l and channel width w and located close to each other on the wafer. The NMOSFET measurement condition is Vds= 1.8V, Vgs=1.8V, Vbs=0V, PMOSFET measurement conditions are Vds=-1.8V, Vgs=-1.8V, Vbs=0V, and then calculate the saturated drain according to the value of the saturated drain current and the internal model of the PSP The σ value of the relative change in current. Under different channel length l and channel width w, the σ value of the relative change in the saturated drain current of each size MOSFET is extracted, and then the curve fitting is performed on the σ value of the relative change in the saturated drain current, The ordinate is the σ value of the relative change of the saturated drain current, and the abscissa 1/sqrt(w*1) is the parameter geo_fac related to the device size (in the model file, for the convenience of writing the expression, use sqrt(w* 1) instead of ). The dots in the figure are the test data points, the dotted line is the trend curve of the test points, the square points are the simulation data points, and the solid line is the fitting curve of the simulation points, so that both curves pass through the origin. Taking NMOSFET as an example, the expression of the dotted line is y=0.004*x, that is, the slope of the dotted line is 0.004, and the expression of the solid line is y=0.004*x, that is, the slope of the solid line is 0.004. As shown in Figure 5 and Figure 9, with the increase of geo_fac, the σ value of the relative change of MOSFET saturated drain current increases gradually, mainly to observe the slope difference between the actual measurement result curve and the simulation result curve, at this time the two The smaller the slope difference between the two curves, the better. It can be seen from the figure that the slope of the measured curve and the simulated curve are accurate to the third decimal place and are still consistent. Due to the accurate consideration of the device electrical characteristics caused by process fluctuations, it can be used for different Conduct more accurate simulations of the electrical characteristics of MOSFETs of different size types.

综上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,部应属于本发明的技术范畴。In summary, the above are only preferred embodiments of the present invention, and are not intended to limit the implementation scope of the present invention. That is, all equivalent changes and modifications made according to the content of the patent scope of the present invention should belong to the technical category of the present invention.

Claims (8)

1.MOS晶体管PSP失配模型的建模方法,其特征在于,包括在标准PSP模型部分上增加器件性能失配子模块,所述器件性能失配子模块包括与器件性能失配相关的拟合参数和参数方程,所述拟合参数为器件性能失配对PSP模型基本参数栅氧厚度toxo、与尺寸无关的平带电压vfbo和由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot影响程度的影响系数;其中,所述器件性能失配子模块通过所述影响系数对晶体管线性阈值电压Vtlin、饱和阈值电压Vtsat、线性漏极电流Idlin和饱和漏极电流Idsat的变化特性施加的影响,来修正PSP模型中所述toxo、vfbo和wot的表达式。 1. The modeling method of MOS transistor PSP mismatch model is characterized in that, comprises on standard PSP model part and increases device performance mismatch sub-module, and described device performance mismatch sub-module includes fitting parameters relevant to device performance mismatch and Parametric equation, the fitting parameters are device performance mismatch pair PSP model basic parameters gate oxide thickness toxo, size-independent flat band voltage vfbo and effective channel width variation wot caused by lateral diffusion of channel stop doping Influence coefficient of influence degree; Wherein, the change of the linear threshold voltage V tlin , saturation threshold voltage V tsat , linear drain current I dlin and saturation drain current I dsa t of the transistor by the mismatch sub-module of the device performance through the influence coefficient The influence exerted by the properties to modify the expressions of toxo, vfbo and wot described in the PSP model. 2.如权利要求1所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述影响系数包括:器件性能失配对所述toxo、vfbo和wot影响程度的拟合参数dtoxo_mis、dvfbo_mis和dwot_mis。 2. the modeling method of MOS transistor PSP mismatch model as claimed in claim 1, is characterized in that, described influence coefficient comprises: the fitting parameter dtoxo_mis, dvfbo_mis of device performance mismatch to described toxo, vfbo and wot influence degree and dwot_mis. 3.如权利要求1所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述修正PSP模型中所述toxo、vfbo和wot的表达式还包括由所述影响系数的运算而得到的中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v,参与到toxo、vfbo和wot的表达;其中所述dtoxo_mis_v是受器件性能失配影响栅氧厚度的变化量;所述dvfbo_mis_v是受器件性能失配影响与尺寸无关的平带电压的变化量;所述dwot_mis_v是受器件性能失配影响由沟道阻断掺杂的横向扩散导致的有效沟道宽度的变化量。 3. the modeling method of MOS transistor PSP mismatch model as claimed in claim 1, is characterized in that, the expression of described toxo, vfbo and wot in the described correction PSP model also comprises by the operation of described influence coefficient The obtained intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v are involved in the expression of toxo, vfbo and wot; wherein the dtoxo_mis_v is the variation of gate oxide thickness affected by device performance mismatch; the dvfbo_mis_v is affected by device performance mismatch and size The amount of variation of the irrelevant flat-band voltage; the dwot_mis_v is the amount of variation of the effective channel width caused by the lateral diffusion of the channel stop doping, which is affected by the device performance mismatch. 4.如权利要求3所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述由影响系数得到所述中间变量的运算中,包括与器件尺寸相关的参量geo fac,得到geo fac的运算如下: 4. the modeling method of MOS transistor PSP mismatch model as claimed in claim 3, it is characterized in that, in the described operation that obtains described intermediate variable by influence coefficient, comprise the parameter geofac relevant with device size, obtain geo The operation of fac is as follows: 其中l是MOSFET器件的沟道长度,w是MOSFET器件的沟道宽度。 Where l is the channel length of the MOSFET device and w is the channel width of the MOSFET device. 5.如权利要求3所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述中间变量符合高斯分布,波动的分布表达式为random=agauss(0.0,1.0,1),其中agauss(0.0,1.0,1)表示期望为0,方差为1的高斯分布。 5. the modeling method of MOS transistor PSP mismatch model as claimed in claim 3 is characterized in that, described intermediate variable meets Gaussian distribution, and the distribution expression of fluctuation is random=agauss(0.0,1.0,1), wherein agauss(0.0,1.0,1) represents a Gaussian distribution with an expectation of 0 and a variance of 1. 6.如权利要求3所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v由以下公式决定: 6. the modeling method of MOS transistor PSP mismatch model as claimed in claim 3, is characterized in that, described intermediate variable dtoxo_mis_v, dvfbo_mis_v, dwot_mis_v are determined by following formula: dtoxo_mis_v=dtoxo_mis·random1·geo_fac dtoxo_mis_v=dtoxo_mis random1 geo_fac dvfbo_mis_v=dvfbo_mis·random2·geo_fac dvfbo_mis_v=dvfbo_mis random2 geo_fac dwot_mis_v=dwot_mis·random3·geo_fac dwot_mis_v=dwot_mis random3 geo_fac 其中 in random1=agauss(0.0,1.0,1) random1=agauss(0.0,1.0,1) random2=agauss(0.0,1.0,1) random2=agauss(0.0,1.0,1) random3=agauss(0.0,1.0,1)。 random3=agauss(0.0,1.0,1). 7.如权利要求3所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述修正PSP模型中所述toxo、vfbo和wot的表达式还包括通过中间变量dtoxo_mis_v、dvfbo_mis_v、dwot_mis_v对所述栅氧厚度toxo、与尺寸无关的平带电压vfbo、由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量wot做出修正,所述中间变量dtoxo_mis_v、dvfbo_mis_v和dwot_mis_v与toxo、vfbo和wot的关系,即toxo、vfbo和wot受器件性能失配影响而发生变化的参数方程分别为: 7. The modeling method of MOS transistor PSP mismatch model as claimed in claim 3, is characterized in that, the expression of described toxo, vfbo and wot in the described correction PSP model also comprises by intermediate variable dtoxo_mis_v, dvfbo_mis_v, dwot_mis_v The gate oxide thickness toxo, the size-independent flat-band voltage vfbo, and the effective channel width variation wot caused by the lateral diffusion of channel stop doping are corrected, and the intermediate variables dtoxo_mis_v, dvfbo_mis_v and dwot_mis_v are related to The relationship between toxo, vfbo, and wot, that is, the parameter equations of toxo, vfbo, and wot that are affected by the mismatch of device performance are: toxo=toxooriginal+dtoxo_mis_v  toxo=toxo original +dtoxo_mis_v vfbo=vfbooriginal+dvfbo_mis_v  vfbo=vfbo original +dvfbo_mis_v wot=wotoriginal+dwot_mis_v  wot=wot original +dwot_mis_v 其中toxooriginal是初始栅氧厚度值,即直流模型提取得到的栅氧厚度值;vfbooriginal是与尺寸无关的初始平带电压值,即直流模型提取得到的与尺寸无关的平带电压值;wotoriginal是由沟道阻断掺杂的横向扩散导致有效沟道宽度变化的初始变化量,即直流模型提取得到的由沟道阻断掺杂的横向扩散导致的有效沟道宽度变化量。 Among them, toxo original is the initial gate oxide thickness value, that is, the gate oxide thickness value extracted by the DC model; vfbo original is the initial flat-band voltage value independent of size, that is, the size-independent flat-band voltage value obtained by the DC model extraction; wot original is the initial change in effective channel width caused by the lateral diffusion of channel-stop doping, that is, the change in effective channel width caused by the lateral diffusion of channel-stop doping extracted by the DC model. 8.根据权利要求1所述的MOS晶体管PSP失配模型的建模方法,其特征在于,所述的MOSFET是包括22nm-130nm标准工艺的MOSFET。 8. The modeling method of MOS transistor PSP mismatch model according to claim 1, characterized in that, said MOSFET is a MOSFET including a 22nm-130nm standard process.
CN201210506129.0A 2012-11-30 2012-11-30 The modeling method of PSP mismatch model of MOS transistor Active CN102968538B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210506129.0A CN102968538B (en) 2012-11-30 2012-11-30 The modeling method of PSP mismatch model of MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210506129.0A CN102968538B (en) 2012-11-30 2012-11-30 The modeling method of PSP mismatch model of MOS transistor

Publications (2)

Publication Number Publication Date
CN102968538A CN102968538A (en) 2013-03-13
CN102968538B true CN102968538B (en) 2015-08-19

Family

ID=47798675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210506129.0A Active CN102968538B (en) 2012-11-30 2012-11-30 The modeling method of PSP mismatch model of MOS transistor

Country Status (1)

Country Link
CN (1) CN102968538B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090999B (en) * 2014-06-24 2018-05-29 上海集成电路研发中心有限公司 The production method of MOS angle models in a kind of SRAM
CN104657558B (en) * 2015-02-28 2018-01-26 上海华虹宏力半导体制造有限公司 The method for extracting LOD effect models
CN105138803A (en) * 2015-09-27 2015-12-09 上海华力微电子有限公司 Universal mismatch model with consideration of temperature effect and method for extracting mismatch model
CN105302943B (en) * 2015-09-27 2018-08-24 上海华力微电子有限公司 A kind of dominant relevant mismatch model of bias voltage and its extracting method
CN108614904B (en) * 2016-12-11 2021-10-12 复旦大学 Method for rapidly analyzing yield of integrated circuit parameters based on simulation data correlation
CN108153960A (en) * 2017-12-21 2018-06-12 上海华力微电子有限公司 A kind of modeling method of the mismatch model with temperature effect model
CN111381139B (en) * 2018-12-29 2022-04-26 长鑫存储技术有限公司 Semiconductor device testing method and semiconductor device testing system
CN111368490B (en) * 2020-02-24 2023-07-18 杰华特微电子股份有限公司 Circuit system of lateral double-diffusion transistor and modeling method thereof
CN112052637B (en) * 2020-08-31 2025-02-25 中国科学院微电子研究所 FDSOI MOSFET model generation method and device based on BSIMIMG

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281877A (en) * 2007-04-03 2008-10-08 中芯国际集成电路制造(上海)有限公司 Method for measuring MOS transistor dismatching features, territory pattern and forming method thereof
CN101739472A (en) * 2008-11-18 2010-06-16 上海华虹Nec电子有限公司 Method for constructing and simulating MOSFET mismatch model
CN102385646A (en) * 2010-09-03 2012-03-21 上海华虹Nec电子有限公司 Correction method for device mismatch of MOS (Metal Oxide Semiconductor) transistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281877A (en) * 2007-04-03 2008-10-08 中芯国际集成电路制造(上海)有限公司 Method for measuring MOS transistor dismatching features, territory pattern and forming method thereof
CN101739472A (en) * 2008-11-18 2010-06-16 上海华虹Nec电子有限公司 Method for constructing and simulating MOSFET mismatch model
CN102385646A (en) * 2010-09-03 2012-03-21 上海华虹Nec电子有限公司 Correction method for device mismatch of MOS (Metal Oxide Semiconductor) transistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于表面势的MOSFET模型;程彬杰等;《固体电子学研究与进展》;20000229;第20卷(第1期);全文 *

Also Published As

Publication number Publication date
CN102968538A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN102968538B (en) The modeling method of PSP mismatch model of MOS transistor
CN102142057B (en) BSIM4 Stress Modeling Applied to MOSFET Electrical Simulation
CN102645569B (en) Measuring circuit and measuring method of fluctuation of threshold voltage of MOS (Metal Oxide Semiconductor) device
US9134361B2 (en) Method for determining BSIMSOI4 DC model parameters
CN100538383C (en) MOS transistor family curve emulation mode
CN102081686B (en) The modeling method of MOS transistor process corner SPICE model
CN104237764B (en) Method and device for testing MOS device hot carrier injection life degradation
CN102184879A (en) TCAD simulation calibration method of SOI field effect transistor
CN102176215B (en) Modeling method for SPICE model series of SOI (Silicon on Insulator) field effect transistor
CN100468421C (en) A Method for Establishing Models Based on IC Process Performance Variations
CN106991201B (en) Method for determining total dose model parameters of SOI MOSFET
CN102176442B (en) Test structure and method for measuring HCI (hot carrier injection) reliability of MOS (metal oxide semiconductor) device
CN101571884A (en) Modeling method for MOSFET BSIM3 hot carrier injection reliability model
US20050203719A1 (en) Method for simulating reliability of semiconductor device
CN107292026A (en) A kind of technological parameter fluctuation causes the method for estimation of MOSFET performance changes
US20130054219A1 (en) Equivalent Electrical Model of SOI FET of Body Leading-Out Structure, and Modeling Method Thereof
Li et al. A two-dimensional analysis method on STI-aware layout-dependent stress effect
CN108875200B (en) General WPE optimization model and extraction method thereof
CN102915394B (en) PSP stress model applied to MOSFET (Metal Oxide Semiconductor Field Effect Transistor) electric emulation
CN105652175B (en) A kind of difference fluctuation source influences device electrology characteristic the extracting method of amplitude
CN113361229B (en) Analog calculation method of MOSFET (Metal-oxide-semiconductor field Effect transistor) intrinsic voltage
US8539426B2 (en) Method and system for extracting compact models for circuit simulation
Ismail et al. Modeling of temperature variations in MOSFET mismatch for circuit simulations
Gu Modeling method of local mismatch model for MOS transistors
CN117272886A (en) Extraction method of parasitic capacitance of MOS tube in integrated circuit chip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant