CN106991201B - Method for determining total dose model parameters of SOI MOSFET - Google Patents

Method for determining total dose model parameters of SOI MOSFET Download PDF

Info

Publication number
CN106991201B
CN106991201B CN201610038229.3A CN201610038229A CN106991201B CN 106991201 B CN106991201 B CN 106991201B CN 201610038229 A CN201610038229 A CN 201610038229A CN 106991201 B CN106991201 B CN 106991201B
Authority
CN
China
Prior art keywords
total dose
model
parameters
dose
soi mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610038229.3A
Other languages
Chinese (zh)
Other versions
CN106991201A (en
Inventor
陈静
黄建强
罗杰馨
柴展
吕凯
何伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201610038229.3A priority Critical patent/CN106991201B/en
Publication of CN106991201A publication Critical patent/CN106991201A/en
Application granted granted Critical
Publication of CN106991201B publication Critical patent/CN106991201B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

The invention provides a method for determining parameters of a total dose model of an SOI MOSFET (silicon on insulator MOSFET), which comprises the following steps of: s1: acquiring transfer characteristic data and transmission characteristic data of the SOI MOSFET under the irradiation of different doses in two working states of on and off; s2: screening the data obtained in the step S1, and importing the test data into parameter extraction software; s3: extracting equivalent transistor parameters of the upper edge angle and equivalent transistor parameters of the field oxide side wall; s4: exporting a total dose intensive model card file; s5: and importing the total dose model of each single point into the parameter extraction software to generate a total dose Bin model card file of the whole region. The method adopts a mode of separating from the main transistor to extract parameters, refines the sensitive parameters of each region in the physical model, improves the accuracy of parameter fitting, can accurately fit out hump effect generated in a sub-threshold region when the SOI MOSFET is influenced by total dose radiation effect, and can simulate the total dose effect of a full-region size device because the model exists in the form of a Bin model card.

Description

一种SOI MOSFET总剂量模型参数确定方法A Determination Method of SOI MOSFET Total Dose Model Parameters

技术领域technical field

本发明属于器件集约模型参数提取技术领域,特别是涉及一种SOI MOSFET总剂量模型参数确定方法。The invention belongs to the technical field of device intensive model parameter extraction, in particular to a method for determining parameters of a SOI MOSFET total dose model.

背景技术Background technique

随着空间技术的不断发展,信息社会使用的电子产品被越来越广泛地应用于空间探测与太空航行。而太空中存在的各类射线,将对电子产品产生不可逆破坏,从而使空间仪器失灵。SOI(Silicon-On-Insulator)是一种绝缘体上硅技术,其很好地降低地空间粒子对电路造成的单粒子翻转、单粒子闩锁等辐射效应,但由于其仍然存在大量的硅、二氧化硅界面(浅槽隔离场氧、埋氧),使得辐射粒子在这些界面产生大量的冗余电荷,进一步导致电子器件不能工作在正常工作区。从而对基于SOI器件的电路进行辐射工艺加固与设计加固成为必要。With the continuous development of space technology, electronic products used in the information society are more and more widely used in space exploration and space navigation. And all kinds of rays existing in space will cause irreversible damage to electronic products, thus causing the failure of space instruments. SOI (Silicon-On-Insulator) is a silicon-on-insulator technology, which can well reduce radiation effects such as single-event flipping and single-event latch-up caused by ground-space particles to circuits. The silicon oxide interface (shallow trench isolation field oxygen, buried oxygen) causes radiation particles to generate a large number of redundant charges at these interfaces, which further causes electronic devices to fail to work in the normal working area. Therefore, it is necessary to carry out radiation process reinforcement and design reinforcement for circuits based on SOI devices.

MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)集约模型是一种将MOSFET器件物理效应描述为数学方程,并通过参数提取形成可供电路大规模EDA仿真的模型。SOI MOSFET集约模型是一种可以用于仿真SOI器件的集约模型。高精度与高速度的集约模型可以缩小电路设计者在设计与流片成品之间的差异,可以大大提高设计准确度,缩短开发周期。MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide Semiconductor Field-Effect Transistor) intensive model is a model that describes the physical effects of MOSFET devices as mathematical equations, and forms a model for large-scale EDA simulation of circuits through parameter extraction . The SOI MOSFET intensive model is an intensive model that can be used to simulate SOI devices. The high-precision and high-speed intensive model can narrow the difference between the circuit designer's design and the tape-out product, which can greatly improve the design accuracy and shorten the development cycle.

SOI MOSFET总剂量集约模型是一种可以反映出总剂量在SOI MOSFET中影响,并能通过仿真准确地反映在电路电学特性的变化上。通过这种模型可以为电路设计者提供可行可靠的辐射加固电路设计方案,减少辐射测试次数,大幅缩短设计周期与研发资金投入。The SOI MOSFET total dose intensive model is a kind of model that can reflect the influence of the total dose in SOI MOSFET, and can accurately reflect the change of the electrical characteristics of the circuit through simulation. This model can provide circuit designers with a feasible and reliable radiation-hardened circuit design scheme, reduce the number of radiation tests, and greatly shorten the design cycle and R&D capital investment.

现有的SOI MOSFET总剂量集约模型是基于在主晶体管外围加子电路的基本思路而建立的宏模型。而宏模型的建立必须通过参数提取才能得到对应工艺的可用于仿真的集约模型。其包含器件辐照测试数据采集与参数提取两大部分。现有的SOI MOSFET总剂量集约模型存在参数提取过程复杂的问题。The existing SOI MOSFET total dose intensive model is a macro model based on the basic idea of adding sub-circuits around the main transistor. The establishment of the macro model must be through the extraction of parameters in order to obtain the intensive model of the corresponding process that can be used for simulation. It includes two parts: device irradiation test data acquisition and parameter extraction. The existing SOI MOSFET total dose intensive model has the problem of complicated parameter extraction process.

发明内容SUMMARY OF THE INVENTION

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种SOI MOSFET总剂量模型参数确定方法,用于解决现有技术中SOI MOSFET总剂量集约模型参数提取过程复杂、精确度不高的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method for determining the parameters of the SOI MOSFET total dose model, which is used to solve the problems in the prior art that the SOI MOSFET total dose intensive model parameter extraction process is complex and the accuracy is not high. question.

为实现上述目的及其他相关目的,本发明提供一种SOI MOSFET总剂量模型参数确定方法,包括如下步骤:In order to achieve the above-mentioned purpose and other related purposes, the present invention provides a method for determining the parameters of a SOI MOSFET total dose model, comprising the following steps:

S1:获取SOI MOSFET在不同剂量辐照下开、关两种工作状态下的转移特性数据与传输特性数据;S1: Obtain the transfer characteristic data and transfer characteristic data of the SOI MOSFET under two working states of ON and OFF under different dose irradiation;

S2:筛选步骤S1得到的数据,并导入测试数据到参数提取软件;S2: filter the data obtained in step S1, and import the test data into the parameter extraction software;

S3:提取上边角等效晶体管参数及场氧侧壁等效晶体管参数;S3: Extract the equivalent transistor parameters of the upper corner and the equivalent transistor parameters of the field oxygen sidewall;

S4:导出总剂量集约模型卡文件;S4: Export the total dose intensive model card file;

S5:导入各个单点的总剂量模型到所述参数提取软件,生成全区域的总剂量Bin模型卡文件。S5: Import the total dose model of each single point into the parameter extraction software, and generate the total dose Bin model card file of the whole area.

可选地,于所述步骤S1中,所述MOSFET为PMOS或NMOS。Optionally, in the step S1, the MOSFET is a PMOS or an NMOS.

可选地,于所述步骤S1中,采用钴60辐照源进行辐照测试。Optionally, in the step S1, a cobalt 60 irradiation source is used to perform the irradiation test.

可选地,于所述步骤S1中,辐射剂量范围是0~1000k rad/SiO2Optionally, in the step S1, the radiation dose ranges from 0 to 1000 k rad/SiO 2 .

可选地,于所述步骤S1中,至少采用两种辐射剂量进行辐照测试。Optionally, in the step S1, at least two radiation doses are used for the irradiation test.

可选地,于所述步骤S1中,在开工作状态下,施加在各端口的电压为V_drain=V_source=V_body=V_substrate=0V,V_gate=VDD,在关工作状态下,施加在各端口电压为V_drain=V_source=V_body=V_substrate=V_gate=0V,其中,V_drain为漏极电压,V_source为源极电压,V_body为体区电压,V_substrate为基底电压,V_gate为栅极电压,VDD为工作电压。Optionally, in the step S1, in the ON state, the voltage applied to each port is V_drain=V_source=V_body=V_substrate=0V, V_gate=VDD, and in the OFF state, the voltage applied to each port is V_drain=V_source=V_body=V_substrate=V_gate=0V, where V_drain is the drain voltage, V_source is the source voltage, V_body is the body voltage, V_substrate is the substrate voltage, V_gate is the gate voltage, and VDD is the working voltage.

可选地,于所述步骤S2中,筛选步骤S1得到的数据包括如下步骤:计算每组测试数据各个剂量点的阈值电压,如果该组数据的阈值电压变化为随剂量增大而单调减小,则选取该组数据。Optionally, in the step S2, the data obtained in the screening step S1 includes the following steps: calculating the threshold voltage of each dose point of each group of test data, if the threshold voltage of the group of data changes to monotonically decrease as the dose increases. , select this group of data.

可选地,于所述步骤S2中,所述参数提取软件为TIDFit。Optionally, in the step S2, the parameter extraction software is TIDFit.

可选地,于所述步骤S2中,还包括设置器件的工艺参数、几何参数及类型参数的步骤。Optionally, in the step S2, the step of setting process parameters, geometric parameters and type parameters of the device is further included.

可选地,还包括仿真没有辐照前的器件转移特性,并根据得到的亚阈值斜率值对所述工艺参数中的亚阈值斜率参数进行修正的步骤,修正之后重新仿真本底电流。Optionally, it also includes the steps of simulating the device transfer characteristics before no irradiation, and revising the sub-threshold slope parameter in the process parameters according to the obtained sub-threshold slope value, and re-simulating the background current after the modification.

可选地,于所述步骤S3中,还包括调节上边角等效晶体管参数及场氧侧壁等效晶体管参数以修正曲线的拟合细节的步骤。Optionally, in the step S3, the step of adjusting the equivalent transistor parameters of the upper corners and the equivalent transistor parameters of the field oxygen sidewalls to correct the fitting details of the curve is further included.

可选地,于所述步骤S3中,所述上边角等效晶体管参数包括上边角栅氧厚度、上边角阈值电压、上边角阈值电压偏移、上边角迁移率、上边角剂量饱和因子、上边角饱和速度及上边角宽度中的一种或多种;所述场氧侧壁等效晶体管参数包括场氧侧壁栅氧厚度、场氧侧壁阈值电压、场氧侧壁阈值电压偏移、场氧侧壁迁移率、场氧侧壁剂量饱和因子、场氧侧壁饱和速度、场氧侧壁宽度及弱反型系数中的一种或多种。Optionally, in the step S3, the upper corner equivalent transistor parameters include upper corner gate oxide thickness, upper corner threshold voltage, upper corner threshold voltage offset, upper corner mobility, upper corner dose saturation factor, upper corner One or more of angular saturation velocity and upper corner width; the field oxygen sidewall equivalent transistor parameters include field oxygen sidewall gate oxide thickness, field oxygen sidewall threshold voltage, field oxygen sidewall threshold voltage offset, One or more of field oxygen sidewall mobility, field oxygen sidewall dose saturation factor, field oxygen sidewall saturation velocity, field oxygen sidewall width and weak inversion coefficient.

可选地,于所述步骤S4中,导出至少四种不同尺寸的SOI MOSFET的单点模型。Optionally, in the step S4, at least four single-point models of SOI MOSFETs of different sizes are derived.

可选地,还包括步骤S6,采用总剂量物理模型描述文件、电路网表文件及所述总剂量Bin模型卡文件进行器件转移特性仿真。Optionally, step S6 is also included, using the total dose physical model description file, the circuit netlist file and the total dose Bin model card file to simulate the device transfer characteristics.

可选地,于所述步骤S6中,仿真不同剂量辐照下,SOI MOSFET的漏电流随前栅电压的变化曲线。Optionally, in the step S6, the variation curve of the leakage current of the SOI MOSFET with the front gate voltage is simulated under the irradiation of different doses.

如上所述,本发明的SOI MOSFET总剂量模型参数确定方法,具有以下有益效果:(1)与传统的参数提取方法相比,本发明采用了与主晶体管分离的方式进行参数提取(主晶体管的参数提取可以采用工业标准流程进行参数提取,总剂量模型参数提取不会对主晶体管模型参数产生影响,两者是独立的),细化了物理模型中各个区域的敏感参数,提高了参数拟合的准确度;(2)本发明可以准确地拟合出SOI MOSFET受总剂量辐射效应影响时在亚阈值区产生的hump效应;(3)模型以Bin模型卡的形式存在,可以仿真全区域尺寸器件(即各个尺寸的器件)总剂量效应。As mentioned above, the SOI MOSFET total dose model parameter determination method of the present invention has the following beneficial effects: (1) Compared with the traditional parameter extraction method, the present invention adopts the method of separating the parameters from the main transistor (the main transistor Parameter extraction can use industry standard process for parameter extraction, the total dose model parameter extraction will not affect the main transistor model parameters, the two are independent), refine the sensitive parameters of each area in the physical model, and improve parameter fitting (2) The present invention can accurately fit the bump effect generated in the sub-threshold region when SOI MOSFET is affected by the total dose radiation effect; (3) The model exists in the form of a Bin model card, which can simulate the size of the whole area Device (ie, devices of various sizes) total dose effect.

附图说明Description of drawings

图1显示为本发明的SOI MOSFET总剂量模型参数确定方法的流程图。FIG. 1 shows a flow chart of the method for determining the parameters of the SOI MOSFET total dose model of the present invention.

图2显示为浅槽隔离栅氧区的参数调整与曲线拟合图。FIG. 2 shows the parameter adjustment and curve fitting diagram of the shallow trench isolation gate oxide region.

图3显示为上边角区的参数调整与曲线拟合图。Figure 3 shows the parameter adjustment and curve fitting diagram for the upper corner area.

图4显示为器件转移特性仿真结果与测试结果对比。Figure 4 shows a comparison of the simulation results of the device transfer characteristics with the test results.

元件标号说明Component label description

S1~S5 步骤S1~S5 steps

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.

请参阅图1至图4。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 4. It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.

如图1所示,显示为本发明的SOI MOSFET总剂量模型参数确定方法的流程图,包括如下步骤:As shown in FIG. 1 , it is a flowchart of the method for determining the parameters of the SOI MOSFET total dose model of the present invention, including the following steps:

步骤S1:获取SOI MOSFET在不同剂量辐照下开、关两种工作状态下的转移特性数据与传输特性数据。Step S1: Acquire transfer characteristic data and transfer characteristic data of the SOI MOSFET under two operating states of ON and OFF under irradiation with different doses.

具体的,所述MOSFET为PMOS或NMOS。其中,转移特性数据包括前栅电压与源漏电流关系,传输特性数据包括源漏电压与源漏电流关系。Specifically, the MOSFET is PMOS or NMOS. The transfer characteristic data includes the relationship between the front gate voltage and the source-drain current, and the transfer characteristic data includes the relationship between the source-drain voltage and the source-drain current.

具体的,可选用至少四种尺寸的MOSFET进行测试。尺寸参数包括宽度W及长度L,其中,宽度W指的是栅垂直于沟道方向长度,长度L指的是沟道长度。Specifically, at least four sizes of MOSFETs can be selected for testing. The dimension parameters include a width W and a length L, wherein the width W refers to the length of the gate perpendicular to the channel direction, and the length L refers to the channel length.

本步骤中,选用多种尺寸的SOI MOSFET进行测试,可以得到全区域的总剂量模型。对于每种尺寸的MOSFET,至少采用两种辐射剂量进行辐照测试,辐射剂量范围是0~1000krad/SiO2。此处,每单位物质质量所接受的辐射能量称为剂量,常用拉德(rad)或者戈瑞(Gray)作为计量单位,它们与其它常用能量单位之间的关系为:1rad=100erg/g=6.24×1013eV/g,1Gray=1J/kg=100rad。在辐射强度一定的情况下,所接受到的辐射剂量与材料本身的原子密度有关;密度大者,接受的剂量大,密度小者,接受的剂量小。例如,对于常见的几种微电子材料,其剂量之间的关系为:1rad/Si=0.58rad/SiO2=0.94rad/GaAs。整个材料或者器件所接受到的辐射剂量的总和,即称为总剂量(TID)。本实施例中,器件接受的总辐射剂量以rad/SiO2为单位。In this step, SOI MOSFETs of various sizes are selected for testing, and the total dose model of the whole area can be obtained. For each size of MOSFET, at least two radiation doses are used for the radiation test, the radiation dose range is 0 ~ 1000krad/SiO 2 . Here, the radiation energy received per unit mass of matter is called dose, and rad or Gray is commonly used as a unit of measurement. The relationship between them and other commonly used energy units is: 1rad=100erg/g= 6.24×1013eV/g, 1Gray=1J/kg=100rad. In the case of a certain radiation intensity, the received radiation dose is related to the atomic density of the material itself; the higher the density, the higher the dose, and the lower the density, the lower the dose. For example, for several common microelectronic materials, the relationship between the doses is: 1rad/Si=0.58rad/SiO 2 =0.94rad/GaAs. The sum of the radiation doses received by the entire material or device is called the total dose (TID). In this embodiment, the total radiation dose received by the device is in units of rad/SiO 2 .

步骤S2:筛选步骤S1得到的数据,并导入测试数据到参数提取软件。Step S2: Screen the data obtained in Step S1, and import the test data into the parameter extraction software.

具体的,筛选步骤S1得到的数据包括如下步骤:Specifically, the data obtained in the screening step S1 includes the following steps:

1)采用行业通用方法计算每组测试数据各个剂量点的阈值电压;1) Calculate the threshold voltage of each dose point of each group of test data by using the industry general method;

2)如果该组数据的阈值电压变化随剂量增大而单调减小,则选取该组数据。2) If the threshold voltage variation of this group of data decreases monotonically with increasing dose, select this group of data.

所述参数提取软件包括但不限于TIDFit等软件。其中,TIDFit为专用于SOIMOSFET总剂量建模而开发的参数提取软件。The parameter extraction software includes but is not limited to software such as TIDFit. Among them, TIDFit is a parameter extraction software specially developed for SOIMOSFET total dose modeling.

本步骤中,还包括设置器件的工艺参数、几何参数及类型参数的步骤。In this step, the step of setting process parameters, geometric parameters and type parameters of the device is also included.

进一步的,本步骤还包括仿真没有辐照前的器件转移特性,并根据得到的亚阈值斜率值对所述工艺参数中的亚阈值斜率参数进行修正的步骤,修正之后重新仿真本底电流。Further, this step also includes the steps of simulating the transfer characteristics of the device before no irradiation, and revising the sub-threshold slope parameter in the process parameters according to the obtained sub-threshold slope value, and re-simulating the background current after the modification.

步骤S3:提取上边角等效晶体管参数及场氧侧壁等效晶体管参数。Step S3: Extracting the equivalent transistor parameters of the upper corner and the equivalent transistor parameters of the field oxygen sidewalls.

具体的,所述上边角等效晶体管参数包括上边角栅氧厚度、上边角阈值电压、上边角阈值电压偏移、上边角迁移率、上边角剂量饱和因子、上边角饱和速度及上边角宽度中的一种或多种;所述场氧侧壁等效晶体管参数包括场氧侧壁栅氧厚度、场氧侧壁阈值电压、场氧侧壁阈值电压偏移、场氧侧壁迁移率、场氧侧壁剂量饱和因子、场氧侧壁饱和速度、场氧侧壁宽度及弱反型系数中的一种或多种。Specifically, the upper corner equivalent transistor parameters include upper corner gate oxide thickness, upper corner threshold voltage, upper corner threshold voltage offset, upper corner mobility, upper corner dose saturation factor, upper corner saturation velocity and upper corner width One or more of the field oxygen sidewall equivalent transistor parameters include the field oxygen sidewall gate oxide thickness, the field oxygen sidewall threshold voltage, the field oxygen sidewall threshold voltage offset, the field oxygen sidewall mobility, the field oxygen sidewall threshold voltage One or more of oxygen sidewall dose saturation factor, field oxygen sidewall saturation velocity, field oxygen sidewall width and weak inversion coefficient.

步骤S4:导出总剂量集约模型卡文件。Step S4: Export the total dose intensive model card file.

具体的,分别导出不同尺寸的SOI MOSFET的单点模型。此处,单点模型是指对应单一一种尺寸的模型。Specifically, single-point models of SOI MOSFETs of different sizes are derived respectively. Here, the single-point model refers to a model corresponding to a single size.

步骤S5:导入各个单点的总剂量模型到所述参数提取软件,生成全区域的总剂量Bin模型卡文件。Step S5: Import the total dose model of each single point into the parameter extraction software, and generate the total dose Bin model card file of the whole area.

具体的,Bin模型卡使用工业标准模型BSIM3.3中的Bin模型生成方法得到。Specifically, the Bin model card is obtained by using the Bin model generation method in the industry standard model BSIM3.3.

本发明解决了现有总剂量模型存在参数提取过程复杂的现状,提供了一种简化的参数提取流程,并保证了模型的准确度。模型以Bin模型卡的形式存在,可以仿真全区域尺寸器件总剂量效应。The invention solves the current situation that the existing total dose model has a complicated parameter extraction process, provides a simplified parameter extraction process, and ensures the accuracy of the model. The model exists in the form of a Bin model card, which can simulate the total dose effect of a full-area-sized device.

进一步的,本发明的的SOI MOSFET总剂量模型参数确定方法还包括步骤S6:采用总剂量物理模型描述文件、电路网表文件及所述总剂量Bin模型卡文件进行器件转移特性仿真。Further, the SOI MOSFET total dose model parameter determination method of the present invention further includes step S6: using the total dose physical model description file, the circuit netlist file and the total dose Bin model card file to simulate device transfer characteristics.

具体的,仿真不同剂量辐照下,SOI MOSFET的漏电流IDrain随前栅电压VFrontGate的变化曲线。其中,总剂量物理模型描述文件是通过verilog-A语言表述的,是根据物理模型编写的,这个文件在提取参数的整个流程中并不需要修改,是一个给定的文件,与参数提取无关,但最终将参数提取完成后进行电路仿真是需要这个文件的。电路网表文件是电路设计者编写的文件,这个文件用SPICE语言编写,包含了要仿真的电路的全部信息,该文件与参数提取也没有关系,但电路仿真需要用到。Specifically, the variation curve of the leakage current I Drain of the SOI MOSFET with the front gate voltage V FrontGate under different doses of irradiation is simulated. Among them, the description file of the total dose physical model is expressed in verilog-A language and is written according to the physical model. This file does not need to be modified in the whole process of extracting parameters. It is a given file and has nothing to do with parameter extraction. However, this file is required for circuit simulation after the parameter extraction is completed. The circuit netlist file is a file written by a circuit designer. This file is written in SPICE language and contains all the information of the circuit to be simulated. This file has nothing to do with parameter extraction, but is needed for circuit simulation.

作为示例,以0.13微米SOI CMOS工艺中1.2V NMOS为例,进行SOI MOSFET总剂量模型参数提取,包括如下过程:As an example, taking 1.2V NMOS in the 0.13-micron SOI CMOS process as an example, the extraction of SOI MOSFET total dose model parameters includes the following processes:

1)选取宽长比W/L=10/10、10/0.13、0.15/10、0.15/0.13(单位均为微米)四种尺寸的NMOS器件进行封装,将Drain(漏极)、Gate(栅极)、Source(源极)、Body(体区)、Substrate(基底)六端全部用金线引出。1) Select four sizes of NMOS devices with a width-to-length ratio W/L=10/10, 10/0.13, 0.15/10, 0.15/0.13 (units are all microns) for packaging, and the Drain (drain), Gate (gate) Electrode), Source (source), Body (body region), Substrate (substrate) are all drawn out with gold wires.

本实施例中,选用了四种尺寸的NMOS器件进行测试,在其它实施例中,也可以根据需要选用更多种尺寸的器件进行测试。In this embodiment, four sizes of NMOS devices are selected for testing. In other embodiments, devices with more sizes can also be selected for testing as required.

2)采用钴60辐照源进行辐照测试,全部器件使用ON(开)、OFF(关)两种测试偏置状态。ON偏置时,各端口电压为V_drain=V_source=V_body=V_substrate=0V,V_gate=1.2V(工作电压),OFF偏置时,各端口电压为V_drain=V_source=V_body=V_substrate=V_gate=0V,辐射的时间根据不同的剂量率而确定,保证器件接受的总辐射剂量为100k、400k、700k、1000k(单位均为rad/SiO2)。2) The irradiation test is carried out with a cobalt 60 irradiation source, and all devices use two test bias states of ON (on) and OFF (off). When biased ON, the voltage of each port is V_drain=V_source=V_body=V_substrate=0V, V_gate=1.2V (operating voltage), and when biased OFF, the voltage of each port is V_drain=V_source=V_body=V_substrate=V_gate=0V, radiation The time is determined according to different dose rates, to ensure that the total radiation dose received by the device is 100k, 400k, 700k, 1000k (units are rad/SiO 2 ).

3)将辐照达到指定剂量的器件取下,使用半导体参数测试仪测量器件的转移特性与传输特性两组数据。其中,转移特性数据包括前栅电压与源漏电流关系,传输特性数据包括源漏电压与源漏电流关系。3) Remove the device that has reached the specified dose, and use a semiconductor parameter tester to measure two sets of data of the device's transfer characteristics and transmission characteristics. The transfer characteristic data includes the relationship between the front gate voltage and the source-drain current, and the transfer characteristic data includes the relationship between the source-drain voltage and the source-drain current.

4)重复步骤2)-3)采集下一个剂量点的数据,直至总剂量达到1000k rad/SiO24) Repeat steps 2)-3) to collect data at the next dose point until the total dose reaches 1000k rad/SiO 2 .

5)将筛选出来的数据导入参数提取软件TIDFit。然后设置器件的工艺参数、几何参数及类型参数,其中,器件的工艺参数包括体因子开关(isgammaset)、主晶体管栅氧厚度(toxref)、亚阈值斜率(ss)、体区掺杂浓度(Nsub)、有效源漏电压参数(delta)等参数中的一种或多种;所述几何参数包括栅垂直于沟道方向长度(W)及沟道长度(L);所述类型参数包括工作电压(VDD)。5) Import the filtered data into the parameter extraction software TIDFit. Then set the process parameters, geometric parameters and type parameters of the device, wherein the process parameters of the device include body factor switch (isgammaset), main transistor gate oxide thickness (toxref), sub-threshold slope (ss), body region doping concentration (Nsub ), effective source-drain voltage parameter (delta) and other parameters; the geometric parameters include gate perpendicular to the channel direction length (W) and channel length (L); the type parameters include operating voltage (VDD).

6)仿真没有辐照前的器件转移特性(前栅电压与源漏电流关系),并根据得到的亚阈值斜率值对ss参数进行修正,修正之后重新仿真本底电流。6) Simulate the transfer characteristics of the device before irradiation (the relationship between the front gate voltage and the source-drain current), and modify the ss parameter according to the obtained sub-threshold slope value, and re-simulate the background current after the modification.

7)调节场氧侧壁等效晶体管参数使得曲线(场氧侧壁区电流随电压的变化曲线)对场氧侧壁区(浅槽隔离栅氧区)测试数据拟合较好。作为示例,所述场氧侧壁等效晶体管参数包括场氧侧壁栅氧厚度(toxsti2)、场氧侧壁阈值电压(vth0sti2)、场氧侧壁阈值电压偏移(voffsti2)、场氧侧壁迁移率(usti2)、场氧侧壁剂量饱和因子(taosti2)、场氧侧壁饱和速度(SATsti2)、场氧侧壁宽度(wsti2)及弱反型系数(MINV)。7) Adjust the equivalent transistor parameters of the field oxygen sidewall so that the curve (the change curve of the current in the field oxygen sidewall region with the voltage) fits the test data of the field oxygen sidewall region (shallow trench isolation gate oxide region) better. As an example, the field oxygen sidewall equivalent transistor parameters include the field oxygen sidewall gate oxide thickness (toxsti2), the field oxygen sidewall threshold voltage (vth0sti2), the field oxygen sidewall threshold voltage offset (voffsti2), the field oxygen sidewall threshold voltage (voffsti2), the field oxygen sidewall threshold voltage Wall mobility (usti2), field oxygen sidewall dose saturation factor (taosti2), field oxygen sidewall saturation velocity (SATsti2), field oxygen sidewall width (wsti2) and weak inversion coefficient (MINV).

如图2所示,显示为场氧侧壁区的参数调整与曲线拟合图,其中,纵坐标为对数电流(A)、横坐标为电压(V),实心点表示测试数据,实心线表示拟合曲线。场氧侧壁区的参数会影响器件的关态漏电流。As shown in Figure 2, it shows the parameter adjustment and curve fitting diagram of the field oxygen sidewall area, in which the ordinate is the logarithmic current (A), the abscissa is the voltage (V), the solid dots represent the test data, and the solid line represents the fitted curve. The parameters of the field oxygen sidewall region can affect the off-state leakage current of the device.

8)调节上边角等效晶体管参数使得曲线(上边角区电流随电压的变化曲线)对上边角区测试数据拟合较好。作为示例,所述上边角等效晶体管参数包括上边角栅氧厚度(toxsti1)、上边角阈值电压(vth0sti1)、上边角阈值电压偏移(voffsti1)、上边角迁移率(usti1)、上边角剂量饱和因子(taosti1)、上边角饱和速度(SATsti1)及上边角宽度(wsti1)。8) Adjust the equivalent transistor parameters of the upper corner so that the curve (the change curve of the current in the upper corner region with the voltage) fits the test data of the upper corner region better. As an example, the upper corner equivalent transistor parameters include upper corner gate oxide thickness (toxsti1), upper corner threshold voltage (vth0sti1), upper corner threshold voltage offset (voffsti1), upper corner mobility (usti1), upper corner dose Saturation factor (taosti1), upper corner saturation velocity (SATsti1) and upper corner width (wsti1).

如图3所示,显示为上边角区的参数调整与曲线拟合图,其中,实心点表示测试数据,实心线表示拟合曲线。此处,上边角区指的是主晶体管与场氧侧壁区交界的拐角,这个区域的参数影响hump效应。其中,hump效应指的是MOSFET在辐照之后除了关态漏电流变大之外,亚阈值区也会出现一个“鼓包”,现有的总剂量模型无法表述这个效应,只能表述关态漏电流变大。As shown in Figure 3, it is displayed as a graph of parameter adjustment and curve fitting in the upper corner area, wherein the solid dots represent the test data, and the solid lines represent the fitting curve. Here, the upper corner region refers to the corner of the interface between the main transistor and the field oxide sidewall region, and the parameters of this region affect the hump effect. Among them, the hump effect means that in addition to the increase of off-state leakage current of the MOSFET after irradiation, a "bulge" will also appear in the sub-threshold region. The existing total dose model cannot express this effect, but can only express off-state leakage. current increases.

9)重复步骤7)-8)以修正曲线的拟合细节。9) Repeat steps 7)-8) to correct the fitting details of the curve.

需要指出的是,在重复步骤7)-8)的过程中,不需要整个曲线都吻合得很好,只要最终叠加的总电流与测试结果吻合即可。其中步骤7)调整的是侧壁区的电流,步骤8)是边角区的,在分别调整这两个区域的电流时,可能一个区域的电流吻合精度提高了,但加上另一个区域的电流之后精度却下降了,所以要反复操作7)-8),使总电流精度提高,从而确定如下参数:(1)上边角等效晶体管参数,包括上边角栅氧厚度、上边角阈值电压、上边角阈值电压偏移、上边角迁移率、上边角剂量饱和因子、上边角饱和速度及上边角宽度等参数中的一种或多种;(2)场氧侧壁等效晶体管参数:包括场氧侧壁栅氧厚度、场氧侧壁阈值电压、场氧侧壁阈值电压偏移、场氧侧壁迁移率、场氧侧壁剂量饱和因子、场氧侧壁饱和速度、场氧侧壁宽度及弱反型系数等参数中的一种或多种。It should be pointed out that in the process of repeating steps 7)-8), the entire curve does not need to be in good agreement, as long as the final superimposed total current is in agreement with the test result. Among them, step 7) adjusts the current in the sidewall area, and step 8) adjusts the current in the corner area. When adjusting the currents of these two areas respectively, the accuracy of the current matching in one area may be improved, but the addition of the current in the other area After the current, the accuracy decreases, so repeat operations 7)-8) to improve the total current accuracy, so as to determine the following parameters: (1) The equivalent transistor parameters of the upper corner, including the upper corner gate oxide thickness, the upper corner threshold voltage, One or more of parameters such as upper corner threshold voltage shift, upper corner mobility, upper corner dose saturation factor, upper corner saturation velocity and upper corner width; (2) Field oxygen sidewall equivalent transistor parameters: including field Oxygen Sidewall Gate Oxide Thickness, Field Oxygen Sidewall Threshold Voltage, Field Oxygen Sidewall Threshold Voltage Offset, Field Oxygen Sidewall Mobility, Field Oxygen Sidewall Dose Saturation Factor, Field Oxygen Sidewall Saturation Velocity, Field Oxygen Sidewall Width and one or more of the parameters such as weak inversion coefficient.

10)导出经过以上步骤得到的各个尺寸SOI MOSFET的单点模型(总剂量集约模型卡文件),并导入软件生成全区域的总剂量Bin模型卡文件。其中,每个单点模型仅对应一种尺寸,而全区域的总剂量Bin模型可涵盖各个尺寸器件,可以仿真全区域尺寸器件总剂量效应。10) Export the single-point model (total dose intensive model card file) of SOI MOSFET of each size obtained through the above steps, and import the software to generate the total dose Bin model card file of the whole area. Among them, each single point model corresponds to only one size, and the total dose Bin model of the whole area can cover devices of various sizes, and can simulate the total dose effect of the size devices of the whole area.

11)调用经过以上步骤生成的总剂量模型卡Bin文件与已有的总剂量物理模型描述文件、电路网表文件进行器件转移特性仿真。11) Call the total dose model card Bin file generated through the above steps and the existing total dose physical model description file and circuit netlist file to simulate the device transfer characteristics.

作为示例,图4显示为尺寸为W/L=0.15/0.13的器件转移特性仿真结果(实线)与测试结果(实心点)的对比结果。可见,本发明的SOI MOSFET总剂量模型参数确定方法具有很高的参数拟合准确度。同时,从图4中-0.2V-0.1V区域可看出,本发明可以准确地拟合出SOI MOSFET受总剂量辐射效应影响时在亚阈值区产生的hump效应。As an example, Figure 4 shows a comparison of simulation results (solid lines) and test results (solid dots) for the transfer characteristics of a device with dimensions W/L=0.15/0.13. It can be seen that the SOI MOSFET total dose model parameter determination method of the present invention has high parameter fitting accuracy. At the same time, it can be seen from the -0.2V-0.1V region in Fig. 4 that the present invention can accurately fit the bump effect generated in the subthreshold region when the SOI MOSFET is affected by the total dose radiation effect.

综上所述,本发明的SOI MOSFET总剂量模型参数确定方法,采用了与主晶体管分离的方式进行参数提取,细化了物理模型中各个区域的敏感参数,提高了参数拟合的准确度;本发明可以准确地拟合出SOI MOSFET受总剂量辐射效应影响时在亚阈值区产生的hump效应;本发明中,模型以Bin模型卡的形式存在,可以仿真全区域尺寸器件总剂量效应。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the method for determining the parameters of the SOI MOSFET total dose model of the present invention adopts the method of separating the parameters from the main transistor to extract the parameters, refines the sensitive parameters of each area in the physical model, and improves the accuracy of parameter fitting; The invention can accurately fit the bump effect generated in the sub-threshold region when SOI MOSFET is affected by the total dose radiation effect; in the invention, the model exists in the form of a Bin model card, which can simulate the total dose effect of the full area size device. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Claims (14)

1. A method for determining total dose model parameters of SOIMOSFET is characterized by comprising the following steps:
s1: acquiring transfer characteristic data and transmission characteristic data of an SOI MOSFET under and under two working states of different doses of irradiation, wherein in the on working state, the voltage applied to each port is V _ drain-V _ source-V _ body-V _ substrate-0V and V _ gate-VDD, in the off working state, the voltage applied to each port is V _ drain-V _ source-V _ body-V _ substrate-V _ gate-0V, wherein V _ drain is a drain voltage, V _ source is a source voltage, V _ body is a bulk voltage, V _ substrate is a substrate voltage, V _ gate is a gate voltage and VDD is a working voltage;
s2: screening the data obtained in the step S1, and importing the test data into parameter extraction software;
s3: extracting equivalent transistor parameters of the upper edge angle and equivalent transistor parameters of the field oxide side wall;
s4: exporting a total dose intensive model card file;
s5: and importing the total dose model of each single point into the parameter extraction software to generate a total dose Bin model card file of the whole region.
2. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S1, the MOSFET is PMOS or NMOS.
3. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S1, an irradiation test is performed using a cobalt 60 irradiation source.
4. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in the step S1, the radiation dose is in the range of 0-1000 k rad/SiO2
5. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S1, at least two radiation doses are used for the irradiation test.
6. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S2, the data obtained in the screening step S1 includes the following steps: and calculating the threshold voltage of each dose point of each group of test data, and selecting the group of data if the threshold voltage change of the group of data is monotonously reduced along with the increase of the dose.
7. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S2, the parameter extraction software is tidbit.
8. The SOI MOSFET total dose model parameter determination method of claim 1, characterized by: in step S2, a step of setting process parameters, geometric parameters and type parameters of the device is further included.
9. The SOIMOSFET total dose model parameter determination method of claim 8, wherein: the method also comprises the steps of simulating the transfer characteristics of the device before irradiation, correcting the sub-threshold slope parameter in the process parameters according to the obtained sub-threshold slope value, and re-simulating the background current after correction.
10. The method for determining total SOIMOSFET dose model parameters of claim 1, wherein: in step S3, the method further includes adjusting the top corner equivalent transistor parameter and the field oxide sidewall equivalent transistor parameter to correct the fitting details of the curve.
11. The method for determining total SOIMOSFET dose model parameters of claim 1, wherein: in step S3, the upper corner equivalent transistor parameters include one or more of an upper corner gate oxide thickness, an upper corner threshold voltage offset, an upper corner mobility, an upper corner dose saturation factor, an upper corner saturation velocity, and an upper corner width; the field oxygen sidewall equivalent transistor parameters comprise one or more of field oxygen sidewall gate oxide thickness, field oxygen sidewall threshold voltage deviation, field oxygen sidewall mobility, field oxygen sidewall dose saturation factor, field oxygen sidewall saturation velocity, field oxygen sidewall width and weak inversion coefficient.
12. The method for determining total SOIMOSFET dose model parameters of claim 1, wherein: in step S4, a single-point model of at least four soi mosfets of different sizes is derived, where the single-point model is a model corresponding to a single size.
13. The method for determining total SOIMOSFET dose model parameters of claim 1, wherein: and step S6, performing device transfer characteristic simulation by using the total dose physical model description file, the circuit netlist file and the total dose Bin model card file.
14. The SOI MOSFET total dose model parameter determination method of claim 13, wherein: in step S6, a variation curve of the drain current of the soi mosfet with the front gate voltage under different dose irradiation is simulated.
CN201610038229.3A 2016-01-20 2016-01-20 Method for determining total dose model parameters of SOI MOSFET Expired - Fee Related CN106991201B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610038229.3A CN106991201B (en) 2016-01-20 2016-01-20 Method for determining total dose model parameters of SOI MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610038229.3A CN106991201B (en) 2016-01-20 2016-01-20 Method for determining total dose model parameters of SOI MOSFET

Publications (2)

Publication Number Publication Date
CN106991201A CN106991201A (en) 2017-07-28
CN106991201B true CN106991201B (en) 2020-08-28

Family

ID=59413843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610038229.3A Expired - Fee Related CN106991201B (en) 2016-01-20 2016-01-20 Method for determining total dose model parameters of SOI MOSFET

Country Status (1)

Country Link
CN (1) CN106991201B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106991201B (en) * 2016-01-20 2020-08-28 中国科学院上海微系统与信息技术研究所 Method for determining total dose model parameters of SOI MOSFET
CN108388721B (en) * 2018-02-08 2021-09-14 中国科学院上海微系统与信息技术研究所 SOI NMOS total dose radiation multi-bias point current model modeling method
CN109388895B (en) * 2018-10-22 2023-05-05 上海华虹宏力半导体制造有限公司 Angle model architecture of SONOS unit and debugging method thereof
CN109388911B (en) * 2018-11-05 2021-09-03 惠科股份有限公司 Equivalent model establishing method and device for semiconductor device and terminal equipment
CN111008506B (en) * 2019-11-30 2023-04-07 中国科学院新疆理化技术研究所 6-T storage unit total dose resistance reinforcing method based on threshold voltage type matching
CN111291480B (en) * 2020-01-21 2024-10-18 中国科学院微电子研究所 Modeling method and device for MOS device dose rate model
CN111460655B (en) * 2020-03-31 2023-10-20 湘潭大学 Analysis method and device for influence of heavy ion radiation on electrical parameters of SiC MOSFET
CN112214952B (en) * 2020-10-20 2022-08-30 中国科学院新疆理化技术研究所 Circuit simulation method for coupling total dose effect and process fluctuation
CN114169194A (en) * 2021-11-25 2022-03-11 中国科学院新疆理化技术研究所 Simulation analysis method for total ionization dose effect of multi-gate fin field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068682A (en) * 1992-08-27 2001-03-16 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
CN102184879A (en) * 2011-05-03 2011-09-14 中国科学院上海微系统与信息技术研究所 TCAD simulation calibration method of SOI field effect transistor
CN106991201A (en) * 2016-01-20 2017-07-28 中国科学院上海微系统与信息技术研究所 A kind of SOI MOSFET accumulated dose model parameters determine method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068682A (en) * 1992-08-27 2001-03-16 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
CN102184879A (en) * 2011-05-03 2011-09-14 中国科学院上海微系统与信息技术研究所 TCAD simulation calibration method of SOI field effect transistor
CN106991201A (en) * 2016-01-20 2017-07-28 中国科学院上海微系统与信息技术研究所 A kind of SOI MOSFET accumulated dose model parameters determine method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOI_CMOS器件建模研究与模型参数提取;滕浙乾;《中国优秀硕士学位论文全文数据库 信息科技辑》;20110615;I135-91 *

Also Published As

Publication number Publication date
CN106991201A (en) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106991201B (en) Method for determining total dose model parameters of SOI MOSFET
CN108027845B (en) Pre-silicon design rule evaluation
CN102176215B (en) Modeling method for SPICE model series of SOI (Silicon on Insulator) field effect transistor
US8112729B2 (en) Method and system for selective stress enablement in simulation modeling
CN102789530A (en) Modeling Method of SOI MOS Device
CN102968538B (en) The modeling method of PSP mismatch model of MOS transistor
CN101685478A (en) Circuit simulation based on gate spacing from adjacent mos transistors
CN107305593B (en) A Modeling Method of SOI MOSFET Total Dose Irradiation Model
CN101571884A (en) Modeling method for MOSFET BSIM3 hot carrier injection reliability model
McAndrew Compact models for MOS transistors: successes and challenges
Shi et al. A novel compact high-voltage LDMOS transistor model for circuit simulation
CN102214251A (en) A Method of Raising Reference Modeling for Total Dose Radiation of Semiconductor Devices
CN113341761B (en) Modeling method and system for total dose effect of CMOS digital integrated circuit
CN106649920A (en) IBIS-based integrated circuit total dose effect modeling method
WO2012126236A1 (en) Body-tied structure soi field-effect transistor equivalent electrical model and modeling method
US20050203719A1 (en) Method for simulating reliability of semiconductor device
CN108038322A (en) A kind of modeling method and system of SPICE lumped models
CN104951599B (en) Modeling method of SOIMOSFET device
CN106446476B (en) A kind of general domain approach effect characterization model and its extracting method
Chen et al. Fast statistical circuit analysis with finite-point based transistor model
US9996650B2 (en) Modeling the performance of a field effect transistor having a dynamically depleted channel region
US10706209B2 (en) Estimation of effective channel length for FinFETs and nano-wires
CN102915394B (en) PSP stress model applied to MOSFET (Metal Oxide Semiconductor Field Effect Transistor) electric emulation
Abebe et al. BSIM3v3. 1 model parameters extraction and optimization
CN102708230A (en) Equivalent width measuring method for annular gate device layout

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200828

CF01 Termination of patent right due to non-payment of annual fee