CN112214952B - Circuit simulation method for coupling total dose effect and process fluctuation - Google Patents
Circuit simulation method for coupling total dose effect and process fluctuation Download PDFInfo
- Publication number
- CN112214952B CN112214952B CN202011125363.XA CN202011125363A CN112214952B CN 112214952 B CN112214952 B CN 112214952B CN 202011125363 A CN202011125363 A CN 202011125363A CN 112214952 B CN112214952 B CN 112214952B
- Authority
- CN
- China
- Prior art keywords
- transistor
- total dose
- nch
- transistors
- threshold voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000008569 process Effects 0.000 title claims abstract description 76
- 230000000694 effects Effects 0.000 title claims abstract description 40
- 238000004088 simulation Methods 0.000 title claims abstract description 26
- 230000008878 coupling Effects 0.000 title claims abstract description 14
- 238000010168 coupling process Methods 0.000 title claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 14
- 230000005855 radiation Effects 0.000 claims abstract description 22
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 230000015556 catabolic process Effects 0.000 claims abstract description 16
- 238000006731 degradation reaction Methods 0.000 claims abstract description 16
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims description 15
- 235000013599 spices Nutrition 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims description 3
- 230000000191 radiation effect Effects 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 3
- 230000001808 coupling effect Effects 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005527 interface trap Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明涉及一种总剂量效应与工艺波动耦合的电路仿真方法,该方法包括总剂量效应关联工艺参数确定、晶体管总剂量辐照试验、晶体管电参数退化方程参数提取、不同工艺角晶体管总剂量效应模型生成、不同工艺角电路仿真。该方法的理论基础是晶体总剂量辐射损伤与工艺波动参数相关,总剂量辐射效应与工艺波动存在耦合效应。该方法的优势在于考虑总剂量效应与工艺波动耦合,准确仿真辐射环境工作集成电路特性。
The invention relates to a circuit simulation method for coupling total dose effect and process fluctuation. The method includes the determination of process parameters associated with the total dose effect, the irradiation test of the total dose of the transistor, the extraction of parameters from the degradation equation of the electrical parameters of the transistor, and the total dose effect of the transistor at different process angles. Model generation, circuit simulation at different process angles. The theoretical basis of this method is that the total dose radiation damage of the crystal is related to the process fluctuation parameters, and there is a coupling effect between the total dose radiation effect and the process fluctuation. The advantage of this method is that the coupling of the total dose effect and the process fluctuation is considered, and the characteristics of the integrated circuit working in the radiation environment are accurately simulated.
Description
技术领域technical field
本发明属于抗辐射集成电路设计技术领域,具体涉及一种总剂量效应与工艺波动耦合的电路仿真方法。The invention belongs to the technical field of radiation-resistant integrated circuit design, and in particular relates to a circuit simulation method for coupling total dose effect and process fluctuation.
背景技术Background technique
集成电路在生产过程中存在工艺波动,掺杂浓度、氧化物厚度、扩散深度等工艺参数在不同晶圆、同一晶圆不同位置存在波动。工艺参数波动导致器件电参数波动,如阈值电压、载流子迁移率等,影响集成电路性能。为了分析工艺波动对电路性能的影响,在电路仿真中设置多个工艺角(FF,SF,SS,FS,TT)的仿真,要求电路特性参数在多个工艺角下同时满足设计要求。There are process fluctuations in the production process of integrated circuits. Process parameters such as doping concentration, oxide thickness, and diffusion depth fluctuate between different wafers and different positions on the same wafer. Fluctuations in process parameters lead to fluctuations in electrical parameters of devices, such as threshold voltage, carrier mobility, etc., which affect the performance of integrated circuits. In order to analyze the influence of process fluctuations on circuit performance, the simulation of multiple process corners (FF, SF, SS, FS, TT) is set up in the circuit simulation, and the circuit characteristic parameters are required to meet the design requirements at the same time under multiple process corners.
工作在辐射环境的集成电路,受高能粒子影响产生辐射损伤,影响集成电路的可靠性。总剂量辐射效应是其中重要的辐射损伤效应之一,它是由质子和电子电离作用产生的永久性累积损伤,决定了器件在空间使用的最长期限,是高轨、长寿命卫星面临的重要问题。总剂量辐射效应在集成电路氧化物中产生氧化物陷阱电荷、界面陷阱电荷,使集成电路功耗电流上升、工作频率下降,甚至功能失效。Integrated circuits working in a radiation environment are affected by high-energy particles and cause radiation damage, which affects the reliability of integrated circuits. The total dose radiation effect is one of the important radiation damage effects. It is the permanent cumulative damage caused by the ionization of protons and electrons, which determines the longest period of use of the device in space, and is an important issue for high-orbit and long-life satellites. question. The total dose radiation effect produces oxide trap charges and interface trap charges in the oxide of the integrated circuit, which increases the power consumption and current of the integrated circuit, reduces the operating frequency, and even fails.
总剂量效应同样与掺杂浓度、氧化物厚度等工艺参数密切相关,进一步加剧工艺参数波动引入的器件电参数波动,总剂量效应与工艺波动存在耦合效应,为此需要研究总剂量效应与工艺波动耦合仿真模块。总剂量辐射使器件电参数漂移(阈值电压漂移等),而对于不同工艺角器件工艺参数的差异导致电参数的漂移量不同,进而使器件电参数波动的统计分布展宽,而分别进行总剂量效应及工艺波动仿真难以覆盖以上器件电参数统计分布展宽效应。The total dose effect is also closely related to process parameters such as doping concentration and oxide thickness, which further aggravates the fluctuation of electrical parameters of the device caused by the fluctuation of process parameters. There is a coupling effect between the total dose effect and process fluctuation. Therefore, it is necessary to study the total dose effect and process fluctuation. Coupling Simulation Module. The total dose radiation makes the electrical parameters of the device drift (threshold voltage drift, etc.), and the difference in the process parameters of the device at different process angles leads to different amounts of drift of the electrical parameters, thereby broadening the statistical distribution of the electrical parameter fluctuations of the device, and the total dose effect is carried out separately. And the simulation of process fluctuation is difficult to cover the broadening effect of the statistical distribution of the electrical parameters of the above devices.
本发明提出一种总剂量效应与工艺波动耦合的电路仿真方法,实现总剂量效应与工艺波动对电路特性影响的协同仿真,准确仿真工作于辐射环境集成电路特性。The invention provides a circuit simulation method of coupling total dose effect and process fluctuation, realizes the co-simulation of the influence of total dose effect and process fluctuation on circuit characteristics, and accurately simulates the characteristics of integrated circuits working in radiation environment.
发明内容SUMMARY OF THE INVENTION
本发明目的在于,提供一种总剂量效应与工艺波动耦合的电路仿真方法,该方法包括总剂量效应关联工艺参数确定、晶体管总剂量辐照试验、晶体管电参数退化方程参数提取、不同工艺角晶体管总剂量效应模型生成、不同工艺角电路仿真。该方法的理论基础是晶体总剂量辐射损伤与工艺波动参数相关,总剂量辐射效应与工艺波动存在耦合效应。该方法的优势在于考虑总剂量效应与工艺波动耦合,准确仿真辐射环境工作集成电路特性。The purpose of the present invention is to provide a circuit simulation method for coupling the total dose effect and process fluctuations, the method includes the determination of the process parameters associated with the total dose effect, the irradiation test of the total dose of the transistor, the extraction of the parameters of the electrical parameter degradation equation of the transistor, and the transistors with different process angles. Total dose effect model generation, circuit simulation at different process angles. The theoretical basis of this method is that the total dose radiation damage of the crystal is related to the process fluctuation parameters, and there is a coupling effect between the total dose radiation effect and the process fluctuation. The advantage of this method is that the coupling of the total dose effect and the process fluctuation is considered, and the characteristics of the integrated circuit working in the radiation environment are accurately simulated.
本发明所述的一种总剂量效应与工艺波动耦合的电路仿真方法,按下列步骤进行:A kind of circuit simulation method of coupling total dose effect and process fluctuation according to the present invention is carried out according to the following steps:
总剂量效应关联工艺参数确定:Determination of total dose effect related process parameters:
a、确定晶体管沟道掺杂浓度为总剂量效应关联工艺参数;a. Determine the doping concentration of the transistor channel as the process parameter associated with the total dose effect;
晶体管总剂量辐照试验:Transistor total dose irradiation test:
b、选取版图结构、阈值电压类型相同晶体管6-36支,测试晶体管的转移特性曲线、输出特性曲线,然后对所有晶体管进行剂量率、辐照偏置条件相同的总剂量辐照试验,辐照后测试晶体管的转移特性曲线、输出特性曲线;b. Select 6-36 transistors with the same layout structure and threshold voltage type, test the transfer characteristic curves and output characteristic curves of the transistors, and then conduct a total dose irradiation test with the same dose rate and irradiation bias conditions for all transistors. Transfer characteristic curve and output characteristic curve of the post-test transistor;
晶体管电参数退化方程参数提取:Parameter extraction of transistor electrical parameter degradation equation:
c、晶体管电参数退化方程为△Parameter=f(D,Nch),其中△Parameter表示总剂量辐射导致的晶体管电参数漂移量,D为辐照剂量,Nch为沟道掺杂浓度,函数f(D,Nch)的表达式与具体的晶体管电参数以及对应的辐射损伤机理相关,函数f(D,Nch)包含拟合参数,需要根据试验数据提取,根据辐照前晶体管转移特性曲线的测试结果,提取晶体管阈值电压,并进一步计算晶体管沟道掺杂浓度,具体计算公式:c. The degradation equation of transistor electrical parameters is △Parameter=f(D, Nch), where △Parameter represents the drift of transistor electrical parameters caused by total dose radiation, D is the radiation dose, Nch is the channel doping concentration, and the function f( The expression of D, Nch) is related to the specific electrical parameters of the transistor and the corresponding radiation damage mechanism. The function f(D, Nch) contains fitting parameters, which need to be extracted according to the experimental data. According to the test results of the transistor transfer characteristic curve before irradiation , extract the transistor threshold voltage, and further calculate the transistor channel doping concentration, the specific calculation formula:
式中Vth为阈值电压,VFB为平带电压,为本征费米能级与费米能级的电势差,εsi为硅材料的电容率,Cox为氧化物电容,q为电子电荷量。工艺波动导致版图结构、阈值电压类型相同晶体管阈值电压不同,进而沟道掺杂浓度不同,根据辐射剂量D后的晶体管转移特性曲线、输出特性曲线的测试结果,提取不同晶体管电参数退化△Parameter,获得△Parameter随Nch变化数据。依据△Parameter随Nch变化数据,提取函数f(D,Nch)中的拟合参数;where V th is the threshold voltage, V FB is the flat band voltage, is the potential difference between the intrinsic Fermi level and the Fermi level, ε si is the permittivity of the silicon material, C ox is the oxide capacitance, and q is the amount of electron charge. Process fluctuations lead to different threshold voltages of transistors of the same layout structure and threshold voltage type, and thus different channel doping concentrations. According to the test results of the transistor transfer characteristic curve and output characteristic curve after radiation dose D, the electrical parameter degradation △Parameter of different transistors is extracted, Obtain ΔParameter variation data with Nch. According to the data that △Parameter changes with Nch, extract the fitting parameters in the function f(D, Nch);
不同工艺角晶体管总剂量效应模型生成:Generation of the total dose effect model for transistors at different process angles:
d、调用工艺厂家提供器件SPICE模型,将步骤c中的晶体管进行FF,SF,SS,FS,TT工艺角的转移特性曲线仿真,提取晶体管阈值电压,根据阈值电压值,计算不同工艺角晶体管的Nch,计算公式与步骤c一致,将Nch的计算值更新至函数f(D,Nch),并将晶体管电参数退化方程添加至工艺厂家提供器件SPICE模型,生成不同工艺角的晶体管总剂量效应SPICE模型;d. Call the SPICE model of the device provided by the process manufacturer, simulate the transfer characteristic curves of the transistors in step c at FF, SF, SS, FS, TT process corners, extract the transistor threshold voltage, and calculate the transistors at different process corners according to the threshold voltage value. Nch, the calculation formula is consistent with step c, update the calculated value of Nch to the function f(D, Nch), add the transistor electrical parameter degradation equation to the SPICE model of the device provided by the process manufacturer, and generate the total dose effect SPICE of the transistor at different process angles Model;
不同工艺角电路仿真:Circuit simulation of different process corners:
e、将步骤d中生成的不同工艺角总剂量效应模型为SPICE模型,分别对待研究电路进行直流、瞬态、噪声和稳定性仿真,输出仿真结果。e. Take the total dose effect model of different process angles generated in step d as a SPICE model, perform DC, transient, noise and stability simulations on the circuit to be studied respectively, and output the simulation results.
本发明所述的一种总剂量效应与工艺波动耦合的电路仿真方法,与现有技术相比其优点为:Compared with the prior art, the circuit simulation method for coupling total dose effect and process fluctuation according to the present invention has the following advantages:
一、考虑总剂量辐射效应与工艺波动耦合对集成电路特性的影响。1. Consider the influence of the total dose radiation effect and the coupling of process fluctuations on the characteristics of the integrated circuit.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
附图说明Description of drawings
图1为本发明流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明130nm SOI工艺IO NMOSFET Nch提取结果;Fig. 2 is 130nm SOI process IO NMOSFET Nch extraction result of the present invention;
图3为本发明130nm SOI工艺IO NMOSFET电参数退化方程拟合参数提取结果。FIG. 3 is the extraction result of fitting parameters of the electrical parameter degradation equation of the 130nm SOI process IO NMOSFET of the present invention.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
实施例Example
本发明所述的一种总剂量效应与工艺波动耦合的电路仿真方法,具体操作按图1所列步骤进行:A circuit simulation method for coupling total dose effect and process fluctuation according to the present invention, the specific operation is carried out according to the steps listed in Fig. 1:
总剂量效应关联工艺参数确定:Determination of total dose effect related process parameters:
a、确定晶体管沟道掺杂浓度(Nch)为总剂量效应关联工艺参数;a. Determine the transistor channel doping concentration (Nch) as the process parameter associated with the total dose effect;
晶体管总剂量辐照试验:Transistor total dose irradiation test:
b、选取版图结构、阈值电压类型相同晶体管6-36支,测试晶体管的转移特性曲线、输出特性曲线,然后对所有晶体管进行剂量率,辐照偏置条件相同的总剂量辐照试验,辐照后测试晶体管的转移特性曲线、输出特性曲线;b. Select 6-36 transistors with the same layout structure and threshold voltage type, test the transfer characteristic curve and output characteristic curve of the transistor, and then conduct a dose rate and total dose irradiation test for all transistors with the same irradiation bias conditions. Transfer characteristic curve and output characteristic curve of the post-test transistor;
晶体管电参数退化方程参数提取:Parameter extraction of transistor electrical parameter degradation equation:
c、晶体管电参数退化方程为△Parameter=f(D,Nch),△Parameter表示总剂量辐射导致的晶体管电参数漂移量,D为辐照剂量,Nch为沟道掺杂浓度,函数f(D,Nch)的表达式与具体的晶体管电参数以及对应的辐射损伤机理相关,函数f(D,Nch)包含拟合参数,需要根据试验数据提取,根据辐照前晶体管转移特性曲线的测试结果,提取晶体管阈值电压,并进一步计算晶体管沟道掺杂浓度,具体计算公式如下:c. The degradation equation of transistor electrical parameters is △Parameter=f(D, Nch), △Parameter represents the drift of transistor electrical parameters caused by total dose radiation, D is the radiation dose, Nch is the channel doping concentration, and the function f(D ,Nch) expression is related to the specific transistor electrical parameters and the corresponding radiation damage mechanism. The function f(D,Nch) contains fitting parameters, which need to be extracted according to the experimental data. According to the test results of the transistor transfer characteristic curve before irradiation, The threshold voltage of the transistor is extracted, and the doping concentration of the transistor channel is further calculated. The specific calculation formula is as follows:
式中Vth为阈值电压,VFB为平带电压,为本征费米能级与费米能级的电势差,εsi为硅材料的电容率,Cox为氧化物电容,q为电子电荷量。工艺波动导致版图结构、阈值电压类型相同晶体管阈值电压不同,进而沟道掺杂浓度不同。根据辐射剂量D后的晶体管转移特性曲线、输出特性曲线的测试结果,提取不同晶体管电参数退化△Parameter,获得△Parameter随Nch变化数据,依据△Parameter随Nch变化数据,提取函数f(D,Nch)中的拟合参数;where V th is the threshold voltage, V FB is the flat band voltage, is the potential difference between the intrinsic Fermi level and the Fermi level, ε si is the permittivity of the silicon material, C ox is the oxide capacitance, and q is the amount of electron charge. Process fluctuations lead to different threshold voltages of transistors with the same layout structure and threshold voltage type, and thus different channel doping concentrations. According to the test results of the transistor transfer characteristic curve and output characteristic curve after the radiation dose D, the electrical parameter degradation △Parameter of different transistors is extracted, and the change data of △Parameter with Nch is obtained. According to the change data of △Parameter with Nch, the function f(D,Nch is extracted ) in the fitting parameters;
图2所示为130nm SOI工艺IO NMOSFET Nch提取结果,总剂量辐照导致130nm工艺IO NMOSFET关态漏电流(I_off)上升,且△Ioff=f(D,Nch)=a-b*Nch,其中a,b为拟合参数;图3所示为130nm SOI工艺IO NMOSFET电参数退化方程拟合参数提取结果;Figure 2 shows the extraction results of 130nm SOI process IO NMOSFET Nch. The total dose irradiation leads to an increase in off-state leakage current (I_off) of 130nm process IO NMOSFET, and △Ioff=f(D,Nch)=a-b*Nch, where a, b is the fitting parameter; Figure 3 shows the extraction result of the fitting parameter of the electrical parameter degradation equation of the 130nm SOI process IO NMOSFET;
不同工艺角晶体管总剂量效应模型生成:Generation of the total dose effect model for transistors at different process angles:
d、调用工艺厂家提供器件SPICE模型,将步骤c中的晶体管进行FF,SF,SS,FS,TT工艺角的转移特性曲线仿真,提取晶体管阈值电压,根据阈值电压值,计算不同工艺角晶体管的Nch,计算公式与步骤c一致,将Nch的计算值更新至函数f(D,Nch),并将晶体管电参数退化方程添加至工艺厂家提供器件SPICE模型,生成不同工艺角的晶体管总剂量效应SPICE模型;d. Call the SPICE model of the device provided by the process manufacturer, simulate the transfer characteristic curves of the transistors in step c at FF, SF, SS, FS, TT process corners, extract the transistor threshold voltage, and calculate the transistors at different process corners according to the threshold voltage value. Nch, the calculation formula is consistent with step c, update the calculated value of Nch to the function f(D, Nch), add the transistor electrical parameter degradation equation to the SPICE model of the device provided by the process manufacturer, and generate the total dose effect SPICE of the transistor at different process angles Model;
不同工艺角电路仿真:Circuit simulation of different process corners:
e、将步骤d中生成的不同工艺角总剂量效应模型为SPICE模型,分别对待研究电路进行直流、瞬态、噪声、稳定性仿真,输出仿真结果。e. Taking the total dose effect model of different process angles generated in step d as a SPICE model, and performing DC, transient, noise, and stability simulations on the circuit to be studied respectively, and outputting the simulation results.
本发明所述的一种总剂量效应与工艺波动耦合的电路仿真方法,该方法的效果为:准确仿真不同工艺角条件下的电路总剂量辐射响应特性。The circuit simulation method for coupling the total dose effect and the process fluctuation according to the present invention has the effect of accurately simulating the radiation response characteristics of the circuit total dose under different process angle conditions.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的认识皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone familiar with the art can modify or change the above-described embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011125363.XA CN112214952B (en) | 2020-10-20 | 2020-10-20 | Circuit simulation method for coupling total dose effect and process fluctuation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011125363.XA CN112214952B (en) | 2020-10-20 | 2020-10-20 | Circuit simulation method for coupling total dose effect and process fluctuation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112214952A CN112214952A (en) | 2021-01-12 |
CN112214952B true CN112214952B (en) | 2022-08-30 |
Family
ID=74056141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011125363.XA Active CN112214952B (en) | 2020-10-20 | 2020-10-20 | Circuit simulation method for coupling total dose effect and process fluctuation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112214952B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113129994B (en) * | 2021-03-29 | 2023-11-28 | 深圳市国微电子有限公司 | Storage system performance adjusting method and storage system |
CN113341761B (en) * | 2021-05-20 | 2024-04-05 | 西安电子科技大学 | Modeling method and system for total dose effect of CMOS digital integrated circuit |
CN113591320B (en) * | 2021-08-09 | 2022-09-06 | 西安电子科技大学 | A Coupling Simulation Method of Hot Carrier Effect and Total Dose Effect |
CN113945833A (en) * | 2021-09-29 | 2022-01-18 | 清华大学 | Method and platform for testing total ionizing radiation dose and electromagnetic radiation synergistic effect |
CN114169194A (en) * | 2021-11-25 | 2022-03-11 | 中国科学院新疆理化技术研究所 | Simulation analysis method for total ionization dose effect of multi-gate fin field effect transistor |
CN117252137B (en) * | 2023-09-14 | 2025-04-04 | 西北工业大学 | A total dose radiation induced leakage current modeling method for MOS transistors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6165821A (en) * | 1998-02-09 | 2000-12-26 | International Rectifier Corp. | P channel radhard device with boron diffused P-type polysilicon gate |
CN106446395A (en) * | 2016-09-20 | 2017-02-22 | 电子科技大学 | NMOS total-dose irradiation effect analytical modeling method |
CN106991201A (en) * | 2016-01-20 | 2017-07-28 | 中国科学院上海微系统与信息技术研究所 | A kind of SOI MOSFET accumulated dose model parameters determine method |
CN108037438A (en) * | 2017-12-13 | 2018-05-15 | 中国科学院新疆理化技术研究所 | The test method that a kind of total dose irradiation influences PMOSFET Negative Bias Temperature Instabilities |
CN108152705A (en) * | 2017-12-13 | 2018-06-12 | 中国工程物理研究院核物理与化学研究所 | A kind of radiation effect Online Transaction Processing and its test method based on transistor |
-
2020
- 2020-10-20 CN CN202011125363.XA patent/CN112214952B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6165821A (en) * | 1998-02-09 | 2000-12-26 | International Rectifier Corp. | P channel radhard device with boron diffused P-type polysilicon gate |
CN106991201A (en) * | 2016-01-20 | 2017-07-28 | 中国科学院上海微系统与信息技术研究所 | A kind of SOI MOSFET accumulated dose model parameters determine method |
CN106446395A (en) * | 2016-09-20 | 2017-02-22 | 电子科技大学 | NMOS total-dose irradiation effect analytical modeling method |
CN108037438A (en) * | 2017-12-13 | 2018-05-15 | 中国科学院新疆理化技术研究所 | The test method that a kind of total dose irradiation influences PMOSFET Negative Bias Temperature Instabilities |
CN108152705A (en) * | 2017-12-13 | 2018-06-12 | 中国工程物理研究院核物理与化学研究所 | A kind of radiation effect Online Transaction Processing and its test method based on transistor |
Non-Patent Citations (3)
Title |
---|
Total ionizing dose radiation effect on the threshold voltage for the uniaxial strained Si Nano NMOSFET;Minru Hao 等;《IEICE Electronics Express》;20170517;第14卷(第11期);第1-10页 * |
基于TCAD的绝缘体上硅器件总剂量效应仿真技术研究;彭超 等;《电子学报》;20190815;第47卷(第8期);第1755-1761页 * |
超深亚微米互补金属氧化物半导体器件的剂量率效应;郑齐文 等;《物理学报》;20160308;第65卷(第7期);第076102-1-076102-6页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112214952A (en) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112214952B (en) | Circuit simulation method for coupling total dose effect and process fluctuation | |
CN108875192B (en) | A Simulation Method for Extreme Low Temperature Characteristics of Typical CMOS Devices | |
Galup-Montoro | MOSFET modeling for circuit analysis and design | |
CN102081686B (en) | The modeling method of MOS transistor process corner SPICE model | |
CN108388721B (en) | SOI NMOS total dose radiation multi-bias point current model modeling method | |
CN106446395B (en) | An Analytical Modeling Method for the Radiation Effect of NMOS Total Dose | |
CN103955579B (en) | Simulation based on SPICE softwares/RF IC method for designing | |
Rios et al. | A physical compact MOSFET model, including quantum mechanical effects, for statistical circuit design applications | |
Chaudhuri et al. | 3D vs. 2D analysis of FinFET logic gates under process variations | |
CN108108536A (en) | Sti oxide trapped charge extracting method, device, medium and computer equipment | |
US20110153055A1 (en) | Wide-range quick tunable transistor model | |
Gildenblat et al. | Introduction to PSP MOSFET model | |
Xi et al. | Modeling of TID-induced leakage current in ultra-deep submicron SOI NMOSFETs | |
CN112214953B (en) | A circuit-level total dose radiation effect simulation method | |
Chaudhuri et al. | 3D vs. 2D device simulation of FinFET logic gates under PVT variations | |
CN117784874B (en) | A radiation-resistant subthreshold bandgap reference current source circuit | |
US20130054219A1 (en) | Equivalent Electrical Model of SOI FET of Body Leading-Out Structure, and Modeling Method Thereof | |
CN113591320A (en) | Coupling simulation method for hot carrier effect and total dose effect | |
Obrecht et al. | TRASIM: compact and efficient two-dimensional transient simulator for arbitrary planar semiconductor devices | |
Tataridou et al. | VERILOR: A verilog-a model of lorentzian spectra for simulating trap-related noise in CMOS circuits | |
Stampfer | Advanced electrical characterization of charge trapping in MOS transistors | |
CN109841613B (en) | Generating a model of a dynamically depleted transistor using a system with analog circuitry | |
Asenov et al. | Modeling and simulation of transistor and circuit variability and reliability | |
Yu | Charge injection and clock feedthrough | |
Tuinenga et al. | Circuit modeling of single-event transient pulse stretching in digital CMOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |