CN102933537A - 由链烷烃和二氧化碳能量有效地合成脂族醛的方法 - Google Patents
由链烷烃和二氧化碳能量有效地合成脂族醛的方法 Download PDFInfo
- Publication number
- CN102933537A CN102933537A CN2011800291317A CN201180029131A CN102933537A CN 102933537 A CN102933537 A CN 102933537A CN 2011800291317 A CN2011800291317 A CN 2011800291317A CN 201180029131 A CN201180029131 A CN 201180029131A CN 102933537 A CN102933537 A CN 102933537A
- Authority
- CN
- China
- Prior art keywords
- hydroformylation
- hydrogen
- water
- catalyzer
- carbonic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910002092 carbon dioxide Inorganic materials 0.000 title abstract description 9
- 150000001335 aliphatic alkanes Chemical class 0.000 title abstract description 5
- 239000001569 carbon dioxide Substances 0.000 title abstract description 4
- -1 aliphatic aldehydes Chemical class 0.000 title description 3
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000003786 synthesis reaction Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000007037 hydroformylation reaction Methods 0.000 claims abstract description 29
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 19
- 239000001257 hydrogen Chemical group 0.000 claims abstract description 19
- 229910052739 hydrogen Chemical group 0.000 claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000001699 photocatalysis Effects 0.000 claims abstract description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 14
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 150000001299 aldehydes Chemical class 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 150000001336 alkenes Chemical group 0.000 claims abstract description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 12
- 239000002608 ionic liquid Substances 0.000 claims description 11
- 235000011089 carbon dioxide Nutrition 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 abstract 6
- 238000006555 catalytic reaction Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 16
- 238000005984 hydrogenation reaction Methods 0.000 description 13
- 239000002815 homogeneous catalyst Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002638 heterogeneous catalyst Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 3
- 239000004913 cyclooctene Substances 0.000 description 3
- 230000022244 formylation Effects 0.000 description 3
- 238000006170 formylation reaction Methods 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 238000007172 homogeneous catalysis Methods 0.000 description 2
- 239000003317 industrial substance Substances 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- ANCPOSYESYPJGJ-BLPRJPCASA-N [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-(2-sulfanylethylamino)propyl]amino]butyl] hydrogen phosphate cyclooctane Chemical compound C1CCCCCCC1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ANCPOSYESYPJGJ-BLPRJPCASA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 210000000080 chela (arthropods) Anatomy 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- RKFLTKXKVVFHFH-UHFFFAOYSA-N formaldehyde;iron Chemical compound [Fe].O=C RKFLTKXKVVFHFH-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000005930 hydroaminomethylation reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- OFKBTNFPESAEHF-UHFFFAOYSA-N iridium phosphane Chemical compound P.[Ir] OFKBTNFPESAEHF-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 229940067739 octyl sulfate Drugs 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/02—Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C6/00—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
- C07C6/02—Metathesis reactions at an unsaturated carbon-to-carbon bond
- C07C6/04—Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明的任务在于提供制备醛的方法,借此方法能够相对于常规加氢甲酰基化方法削减CO2,这归因于替代的原料来源并能够省去提供一氧化碳。该任务通过如下方法解决,该方法包括下列步骤:a)提供至少一种链烷烃;b)将链烷烃光催化脱氢为含有至少一种烯烃和氢的混合物;c)向所述混合物添加二氧化碳和氢;d)将所述烯烃加氢甲酰基化为至少一种醛。特别地首先将正丁烷光催化脱氢和将所得到的1-丁烯用CO2以加氢甲酰基化反应转化为戊醛。示例性的基于正丁烷和CO2的整个方法如下:正丁烷→1-丁烯+H2(光催化脱氢)1-丁烯+CO2+2H2→戊醛+H2O(用CO2加氢甲酰基化)。
Description
醛例如戊醛是用途广泛的工业化学品。当今,戊醛在工业上通过烯烃1-丁烯或2-丁烯在添加合成气(一氧化碳和氢)的情况下加氢甲酰基化制备。丁烯源自石油化学方法,合成气同样由化石来源产生。
鉴于经济地利用化石原料来源受到限制和被视为对气候不利的大气中CO2浓度,长期需要能够节约资源和削减(einsparen)CO2来制备醛例如戊醛的替代途径。另外,对于加氢甲酰基化所需的一氧化碳由于其毋庸置疑的毒性而在公众中遭受越来越严重的接受度问题。
因此,本发明的任务在于提供制备醛的方法,借此方法能够相对于常规加氢甲酰基化方法削减CO2,这归因于替代的原料来源并能够省去提供一氧化碳。
该任务通过如下方法解决,该方法包括下列步骤:
a)提供至少一种链烷烃;
b)将链烷烃光催化脱氢为含有至少一种烯烃和氢的混合物;
c)向所述混合物添加二氧化碳和氢;
d)将所述烯烃加氢甲酰基化为至少一种醛。
本发明的第一基本理念在于将在链烷烃的光催化脱氢中释放的氢用于随后的通过脱氢产生的烯烃的加氢甲酰基化。因此,加氢甲酰基化的氢需求可以部分地能量有效地由CO2中性的光催化满足(gedeckt)。另外,光催化需要丁烷作为原料,其相对于现今使用的丁烯更易于获得。石化法得到的丁烷现今主要以热方式利用并释放CO2。
其次,本发明基于下面认知:源自催化脱氢的氢开辟了这样的可能性,也即利用CO2代替CO作为加氢甲酰基化的碳源。这例如以逆向水煤气变换反应途径得以成功,借助在大气中不合意的CO2和释放的氢能够原位产生加氢甲酰基化所需的CO。省去了分开地供给有毒的CO,另外,可以利用在其它的方法中产生的CO2作为原料,使得整体降低二氧化碳排放。
因此,本发明使得能够将CO2返回到化学价值创造链中,其中用CO2替代之前需要的由合成气获得的一氧化碳。在戊醛的情况下,每吨所制备的醛使用超过半吨CO2。在全球范围内每年生产340,000吨戊醛的情况下,每年能够循环利用大约200,000吨的CO2。如果此外还通过该方法制备其它醛,则预计该能力增加数倍。
这两个根据本发明组合的方法片段“光催化脱氢”和“用二氧化碳加氢甲酰基化”本身在文献中已经描述为可实行的:
例如,K. Nomura和Y. Saito, J. Chem. Soc., Chem. Commun, (1988), 161描述了在温和条件和辐照条件下在Rh催化剂上使链烷烃光催化脱氢:
此外,进行光催化的操作指导参见:
a) A. J. Esswein, D. G. Nocera, Hydrogen Production by Molecular Photocatalysis, Chem. Rev. 2007, 107, 4022–4047;
b) D. Morales-Morales, R- Redón, C. Yung C. M Jensen, Dehydrogenation of alkanes catalyzed by an iridium phosphinito PCP pincer complex, Inorg. Chim. Acta, 2004, 357, 2953–2956;
c) M. J. Burk, R. H. Crabtree, D. V. McGrath, J. Chem. Soc., Chem. Commun. 1985, 1829–1830;
d) M. J. Burk, R. H. Crabtree, J. Am. Chem. Soc. 1987, 109, 8025–8032;
e) T. Sakakura, T. Sodeyama, Y. Tokunaga, M. Tanaka, Chem. Lett. 1988, 263–264;
f) K. Nomura, Y. Saito, J. Chem. Soc., Chem. Commun. 1988, 161;
g) J. A. Maguire, W. T. Boese, A. S. Goldman, J. Am. Chem. Soc. 1989, 111, 7088–7093;
K. Tominaga和Y. Sasaki在Catal. Commun., 1, 2000, 1如下公开了用二氧化碳加氢甲酰基化:
多核钌配合物例如Ru3(CO)12优选用作用CO2加氢甲酰基化的催化剂。
此外,盐例如LiCl、LiBr、LiI、NaCl、KCl或它们的混合物可以被添加作为促进剂。它们出于下面原因看起来是有利的:由所述盐原位形成的氢卤酸(HCl, HBr, …)起到质子载体的作用,并因此促进逆向水煤气变换反应。
其它能用于实施用CO2加氢甲酰基化的操作指导包括:
a) K. Tominaga, Y. Sasaki, K. Hagihara, T. Watanabe, M. Saito, Chem. Lett. 1994, 1391–1394;
b) K. Tominaga, Y. Sasaki, J. Mol. Catal. A: Chem. 2004, 220, 159–165;
c) K. Tominaga, Catal. Today 2006, 115, 70-72;
d) S. Fujita, S. Okamura, Y. Akiyama, M. Arai, Int. J. Mol. Sci. 2007, 8, 749–759。
本发明的方法优选用于通过光催化脱氢将链烷烃正丁烷转化为烯烃1-丁烯和H2,和在添加CO2的情况下将该混合物加氢甲酰基化,在此过程中将1-丁烯转化为醛戊醛。
基于正丁烷和CO2的整个方法包括光催化脱氢和用CO2加氢甲酰基化的基础步骤:
正丁烷 → 1-丁烯 + H2 (光催化脱氢)
1-丁烯 + CO2 + 2 H2 → 戊醛 + H2O (用CO2加氢甲酰基化)
随后,戊醛可以按照现今在工业上已经确立的工艺以大规模用于制备工业化学品例如聚合物添加剂。
对于利用CO2作为原料,必须在加氢甲酰基化之前将二氧化碳和氢转化为水和一氧化碳的反应,其中该反应优选是逆向水煤气变换反应。
本发明的一个优选发展设想了,将二氧化碳和氢转化为水和一氧化碳以及加氢甲酰基化能够在共同的反应器中和/或在共同的催化剂上进行。
优选地,在光催化脱氢中和/或在加氢甲酰基化和/或在将二氧化碳和氢转化为水和一氧化碳的反应中使用固定化的催化剂。固定化的催化剂理解为均相催化剂体系,其连接在不溶性的载体材料上,以能够像多相催化剂一样从反应混合物中分离出均相作用的催化剂。所述固定化借助于离子液体成功地进行:
离子液体 – 下面称为IL–是低熔点盐(<100℃)和例如在萃取过程和催化中用作新型溶剂。IL在学术上和在工业上引起兴趣的主要原因在于其具有极低的蒸气压,由此基本上避免了溶剂损失。在将离子液体用于催化领域的范围内,最近以来特别遵循两个出发点:
IL不仅是供均相催化用的有吸引力的溶剂,对于多相催化反应也是如此。例如,Xu等人
(D.-Q. Xu, Z.-Y. Hu, W.-W. Li, S.-P. Luo, Z.-Y. Xu Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines, J. of Mol. Cat. A: Chem. 2005, 235, 137 - 142.)。
已经能够表明,IL是在阮内镍、碳负载的Pt和Pd触媒上将卤代硝基苯加氢得到相应的卤代苯胺的有吸引力的介质。如果使用IL作为溶剂,那么相对于有机溶剂避免了不合意的脱卤素。
同样,所谓的SILP概念(负载离子液体相)是很流行的。在此,将IL薄膜连同溶解在其中的均相催化剂例如通过物理吸收施加到多孔(惰性)固体表面上。在此情况下,避免了均匀两相催化的缺点,这是因为所需的IL量降低,并且通过薄膜避免了传质效应。为了涂覆多孔载体,将IL连同均相催化剂一起溶解在溶剂(例如二氯乙烷)中,和随后向其中添加固体载体。然后,在真空下缓慢除去溶液中的易挥发的二氯甲烷。借助这种制备方法可以确保离子液体完全渗入孔中。为了制备具有更高或更低的孔填充度或者层厚度的体系,可以提高或降低二氯甲烷溶液中的IL浓度。对于一些反应,SILP概念已经成功地得到验证。
关于SILP的其他实施方案及其在催化中的应用,本领域技术人员参考下面文献:
a) A. Riisager, P. Wasserscheid, R. v. Hal, R. Fehrmann, Continous fixed-bed gas-phase hydroformylation using supported ionic liquid phase (SILP) Rh catalysts, J. Catal. 2003, 219, 452–455;
b) Riisager, K. M. Eriksen, P. Wasserscheid和R. Fehrmann, Propene and 1-Octene Hydroformylation with Silica-Supported, Ionic Liquid-Phase (SILP) Rh-Phosphine Catalysts in Continuous Fixed-Bed Mode, Catal. Letters 2003, 90, 149–153;
c) C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki, Supported Ionic Liquid Catalysis - A New Concept for Homogeneous Hydroformylation Catalysis, J. Am. Chem. Soc. 1998, 120, 12289–12296;
d) C. P. Mehnert, E. J. Molzeleski, R. A. Cook, Supported ionic liquid catalysis investigated for hydrogenation reactions, Chem. Comm. 2002, 24, 3010–3011;
e) A. Wolfson, I. F. J. Vankelecom, P. A. Jacobs, Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations, Tetrahedron Lett. 2003, 44, 1195–1198;
f) C. M. Gordon, New developments in catalysis using ionic liquids, Appl. Catal. A: General 2001, 222, 101–117;
g) P. J. Dyson, Transition metal chemistry in ionic liquids, Trans. Met. Chem. 2002, 27, 353–358;
h) D. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis, Cat. Today 2002, 74, 157–189;
i) J. Dupont, R. F. de Souza, P. A. Z. Suarez, Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev. 2002, 102, 3667–3692;
j) H. Olivier-Bourbigou,Catalysis in Nonaqueous Ionic Liquids in Multiphase Homogeneous Catalysis (B. Cornils et al. Eds.), Wiley VCH, Weinheim, Germany, 2006, 407–603;
k) M. J. Earle, P. B. McCormac, K. R. Seddon, The first high yield green route to a pharmaceutical in a room temperature ionic liquid, Green Chem. 2000, 2, 261;
l) B. Hamers, P. S. B?uerlein, C. Müller, D. Vogt, Hydroaminomethylation of n-Alkenes in a Biphasic Ionic Liquid System, Adv. Synth. Catal. 2008, 350, 332-342;
m) H. Wong, S. Han, A.G. Livingston, The effect of ionic liquids on product yield and catalyst stability, Chem. Eng. Sci. 2006, 61, 1338-1341.
n) K. Anderson, P. Goodrich, C. Hardacre. D.W. Rooney, Heterogeneously catalysed selective hydrogenation reactions in ionic liquids, Green Chem. 2003, 5, 448 - 453. k) D.-Q. Xu, Z.-Y. Hu, W.-W. Li, S.-P. Luo, Z.-Y. Xu Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding halo-anilines, J. of Mol. Cat. A: Chem. 2005, 235, 137 – 142。
另一个概念是用于改善多相催化剂的选择性的所谓SCILL概念(带有离子液体层的固体催化剂)。SCILL概念—参见
a) U. Kernchen, B. Etzold, W. Korth, A. Jess, Solid Catalyst with Ionic Liquid Layer (SCILL) - A New Concept to Improve the Selectivity Investigated for the Example of Hydrogenation of Cyclooctadiene. Chem. Eng. Technol. 2007, 30, 985–994.
b) N. W?rz, J. Arras, P. Claus, Einfluss ionischer Flüssigkeiten auf die kontinuierliche Hydrierung von Citral im Rieselbettreaktor, Jahrestreffen Reaktionstechnik, Würzburg, 10. - 12.5.2010, 会议卷第34/35页—
以某种方式结合和拓宽了上述两种策略:类似于SILP技术,用离子液体涂覆多孔固体,但是该固体现在是多相催化剂而不仅是溶解在IL中的均相催化剂打算固定于其上的惰性载体。由此,均相催化剂不参与SCILL概念,尽管与SILP概念的结合表现为对于整合均相和多相催化的一个选项。IL层是稳定的和不会发生IL洗出到有机相中。
除了能够通过离子液体将均相催化剂固定到多孔载体上的优点之外,离子液体还能够直接影响反应动力学。在反应物或中间产物的溶解性有区别时,这尤其成立。例如,在环辛二烯(COD)连续多相催化氢化成为环辛烯(COE)和环辛烷(COA)情况下,通过用离子液体(丁基甲基咪唑鎓-辛基硫酸盐)涂覆显著提高了中间产物COE的选择性。在中间产物溶解性差的情况下尤其如此。对于根据本发明重要的逆向水煤气变换反应 (H2 + CO2 → CO + H2O)尤其预期类似的效果,因为在所有四种涉及的反应参与物中,CO2能够最好地溶解在IL中,这对于在相对低温度时平衡受限制的反应具有积极的影响。
均相催化的显著问题(从反应物料中分离出催化剂)根据本发明也通过将所开发的均相催化剂借助离子液体通过上述SILP和/或SCILL概念固定化而解决。
在此情况下,该概念还可以转用到链烷烃的光催化反应。作为载体材料可以使用多孔玻璃,以确保尽可能高的光透入深度。烷烃的光催化脱氢所用的催化剂也优选负载在多孔玻璃上。
实施例
例如,现在由正丁烷制备戊醛来详细描述本发明:
根据本发明,首先将正丁烷光催化脱氢,和所得到的1-丁烯与CO2在加氢甲酰基化反应中转化形成戊醛。
整个方法如下:
1) 正丁烷 → 1-丁烯 + H2 (光催化脱氢)
2a) H2 + CO2 → CO + H2O
2b) 1-丁烯 + CO + H2 → 戊醛
-----------------------------------------------------------
Σ:正丁烷 + CO2 → 戊醛 + ? O2
步骤2a和2b可以在一个反应器或者尽可能在一种催化剂上进行,并因此能够如下理解为CO2加氢甲酰基化反应。
2a/b) 1-丁烯 + CO2 + 2 H2 → 戊醛 + H2O
即使没有丁烷的光催化脱氢,也即基于丁烯,该方法相对于“常规”的基于CO的加氢甲酰基化而言仍然是有利的,只要能够以CO2中性的方式提供氢即可:
1) 2 H2O → 2 H2 + O2 (尽可能CO2中性,在此未详述)
2a) H2 + CO2 → CO + H2O
2b) 1-丁烯 + CO + H2 → 戊醛
-----------------------------------------------------------
Σ:1-丁烯 + CO2 + H2O → 戊醛 + O2
对于光催化合适的催化剂有基于铱和铑的有机和金属有机光敏化剂或者由光敏化剂组分和基于Pd、Ru、Ir或Fe的质子还原组分组成的组合催化剂。
对于加氢甲酰基化合适的催化剂有铱-膦配合物,钌基配合物,特别是多核钌基配合物以及铁羰基氢化物配合物。作为促进剂还可以另外添加盐例如LiCl、LiBr、LiI、NaCl、KCl,单独地或者以它们的混合物形式。
均相催化剂可以通过离子液体固定在具有不同孔大小的多孔固体载体上。为了提高透光性,可以使用多孔玻璃作为载体。
Claims (10)
1.用于由链烷烃制备醛的方法,
其特征在于下面步骤:
a) 提供至少一种链烷烃;
b) 将所述链烷烃光催化脱氢为包含氢和至少一种烯烃的混合物;
c) 向该混合物添加二氧化碳和氢;
d) 将该烯烃加氢甲酰基化为至少一种醛。
2.根据权利要求1的方法,
其特征在于
·所述链烷烃是正丁烷,
·所述烯烃是1-丁烯,
·和所述醛是戊醛。
3.根据权利要求1或2的方法,其特征在于在所述加氢甲酰基化之前将二氧化碳和氢转化为水和一氧化碳。
4.根据权利要求3的方法,
其特征在于
二氧化碳和氢转化为水和一氧化碳的反应是逆向水煤气变换反应。
5.根据权利要求3或4的方法,
其特征在于
二氧化碳和氢转化为水和一氧化碳以及加氢甲酰基化在共同的反应器中和/或在共同的催化剂上进行。
6.根据前述任一权利要求的方法,其特征在于在光催化脱氢和/或在加氢甲酰基化和/或在二氧化碳和水转化为水和一氧化碳时使用固定化的催化剂。
7.根据权利要求6的方法,
其特征在于
所述催化剂借助离子液体固定化。
8.根据权利要求7的方法,
其特征在于
将用于所述链烷烃的光催化脱氢的催化剂负载在多孔玻璃上。
9.根据前述任一权利要求的方法,
其特征在于
用于加氢甲酰基化的催化剂是多核钌配合物,特别是Ru3(CO)12。
10.根据前述任一权利要求的方法,
其特征在于
向加氢甲酰基化中添加至少一种盐,特别是选自包括LiCl、LiBr、LiI、NaCl、KCl的组中的盐。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010030209.0 | 2010-06-17 | ||
DE102010030209A DE102010030209A1 (de) | 2010-06-17 | 2010-06-17 | Energieeffiziente Synthese von aliphatischen Adelhyden aus Alkanen und Kohlendioxid |
PCT/EP2011/060021 WO2011157788A1 (de) | 2010-06-17 | 2011-06-16 | Energieeffiziente synthese von aliphatischen aldehyden aus alkanen und kohlendioxid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102933537A true CN102933537A (zh) | 2013-02-13 |
CN102933537B CN102933537B (zh) | 2015-02-18 |
Family
ID=44454549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180029131.7A Expired - Fee Related CN102933537B (zh) | 2010-06-17 | 2011-06-16 | 由链烷烃和二氧化碳能量有效地合成脂族醛的方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8884070B2 (zh) |
EP (1) | EP2582651B1 (zh) |
KR (1) | KR101790374B1 (zh) |
CN (1) | CN102933537B (zh) |
AR (1) | AR082013A1 (zh) |
DE (1) | DE102010030209A1 (zh) |
ES (1) | ES2717906T3 (zh) |
SG (1) | SG185764A1 (zh) |
WO (1) | WO2011157788A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115403507A (zh) * | 2022-09-02 | 2022-11-29 | 中钢集团南京新材料研究院有限公司 | 一种咔唑-3-甲醛的合成方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012202779A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches |
DE102012205258A1 (de) | 2012-03-30 | 2013-10-02 | Evonik Industries Ag | Photoelektrochemische Zelle, System und Verfahren zur lichtgetriebenen Erzeugung von Wasserstoff und Sauerstoff mit einer photoelektrochemischen Zelle und Verfahren zur Herstellung der photoelektrochemischen Zelle |
EP2906572B1 (de) | 2012-10-12 | 2016-11-23 | Evonik Degussa GmbH | Gemische konstitutionsisomerer bisphosphite |
DE102013225883A1 (de) | 2013-12-13 | 2015-06-18 | Evonik Industries Ag | Zweistufige Hydroformylierung mit Kreisgas- und SILP-Technologie |
DE102014203960A1 (de) * | 2014-03-05 | 2015-09-10 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Aldehyden aus Alkanen und Synthesegas |
ES2607692T3 (es) | 2014-08-14 | 2017-04-03 | Evonik Degussa Gmbh | Hidroformilación con CO2 catalizada por SILP |
KR102379397B1 (ko) * | 2016-06-30 | 2022-03-28 | 다우 글로벌 테크놀로지스 엘엘씨 | 메탄을 프로판알로 전환하기 위한 방법 |
US11420916B2 (en) * | 2018-06-08 | 2022-08-23 | Board Of Regents, The University Of Texas System | Systems and methods for separation of olefins from mixtures that contain reducing agents |
CN110028403B (zh) * | 2019-04-19 | 2020-08-11 | 四川大学 | 一种合成丁二酸类化合物的方法 |
JP7291387B2 (ja) * | 2019-07-05 | 2023-06-15 | 国立研究開発法人産業技術総合研究所 | 二酸化炭素を原料とするヒドロホルミル化反応用触媒 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1735579A (zh) * | 2002-11-04 | 2006-02-15 | 巴斯福股份公司 | 从烷烃制备醛 |
WO2009041192A1 (ja) * | 2007-09-25 | 2009-04-02 | Hitachi Chemical Company, Ltd. | 二酸化炭素を原料とするアルコールの製造方法 |
CN101405246A (zh) * | 2006-03-28 | 2009-04-08 | 日立化成工业株式会社 | 以二氧化碳为原料的醇的制造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3343585B2 (ja) * | 2000-02-23 | 2002-11-11 | 独立行政法人産業技術総合研究所 | 二酸化炭素を利用したヒドロホルミル化法 |
DE10031517A1 (de) | 2000-06-28 | 2002-01-10 | Basf Ag | Verfahren zur Herstellung von Hydroformylierungspordukten von Olefinen mit 2 bis 8 Kohlenstoffatomen |
DE102004041850A1 (de) | 2004-08-27 | 2006-03-02 | Basf Ag | Verfahren zur Herstellung von C5-Aldehyden und Propen aus einem 1-Buten- und 2-Buten-haltigen C4-Strom |
DE102005061642A1 (de) | 2004-12-23 | 2006-07-06 | Basf Ag | Phosphorchelatverbindungen |
DE102008002187A1 (de) | 2008-06-03 | 2009-12-10 | Evonik Oxeno Gmbh | Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil |
DE102009001594A1 (de) | 2009-03-17 | 2010-09-30 | Evonik Oxeno Gmbh | Verfahren zur Herstellung von alpha, beta-ungesättigten C10-Aldehyden |
DE102009045139A1 (de) | 2009-09-30 | 2011-03-31 | Evonik Oxeno Gmbh | Herstellung von alpha,beta-ungesättigten Aldehyden mittels einer Reaktionsmischpumpe |
DE102010041821A1 (de) | 2010-09-30 | 2012-04-05 | Evonik Oxeno Gmbh | Einsatz von Supported Ionic Liquid Phase (SILP) Katalysatorsystemen in der Hydroformylierung von olefinhaltigen Gemischen zu Aldehydgemischen mit hohem Anteil von in 2-Stellung unverzweigten Aldehyden |
DE102010043558A1 (de) | 2010-11-08 | 2012-05-10 | Evonik Oxeno Gmbh | Verfahren zur Hydroformylierung von ungesättigten Verbindungen |
DE102010044155A1 (de) | 2010-11-19 | 2012-05-24 | Evonik Degussa Gmbh | Photosensibilisatoren und deren Einsatz zur Wasserstofferzeugung aus Wasser |
-
2010
- 2010-06-17 DE DE102010030209A patent/DE102010030209A1/de not_active Ceased
-
2011
- 2011-06-16 SG SG2012086971A patent/SG185764A1/en unknown
- 2011-06-16 WO PCT/EP2011/060021 patent/WO2011157788A1/de active Application Filing
- 2011-06-16 KR KR1020127032710A patent/KR101790374B1/ko active IP Right Grant
- 2011-06-16 ES ES11725111T patent/ES2717906T3/es active Active
- 2011-06-16 EP EP11725111.6A patent/EP2582651B1/de not_active Not-in-force
- 2011-06-16 CN CN201180029131.7A patent/CN102933537B/zh not_active Expired - Fee Related
- 2011-06-16 US US13/703,925 patent/US8884070B2/en not_active Expired - Fee Related
- 2011-06-17 AR ARP110102118A patent/AR082013A1/es active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1735579A (zh) * | 2002-11-04 | 2006-02-15 | 巴斯福股份公司 | 从烷烃制备醛 |
CN101405246A (zh) * | 2006-03-28 | 2009-04-08 | 日立化成工业株式会社 | 以二氧化碳为原料的醇的制造方法 |
WO2009041192A1 (ja) * | 2007-09-25 | 2009-04-02 | Hitachi Chemical Company, Ltd. | 二酸化炭素を原料とするアルコールの製造方法 |
Non-Patent Citations (2)
Title |
---|
KOTOHIRO NOMURA AND YASUKAZU SAITO: "n-Alkene and Dihydrogen Formation from n-Alkanes by Photocatalysis using Carbonyl(chloro)phosphine-Rhodium Complexes", 《J.CHEM.SOC.,CHEM.COMMUN.》 * |
TOSHIYASU SAKAKURA ET AL: "Transformation of Carbon Dioxide", 《CHEMICAL REVIEWS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115403507A (zh) * | 2022-09-02 | 2022-11-29 | 中钢集团南京新材料研究院有限公司 | 一种咔唑-3-甲醛的合成方法 |
CN115403507B (zh) * | 2022-09-02 | 2023-09-26 | 中钢集团南京新材料研究院有限公司 | 一种咔唑-3-甲醛的合成方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2011157788A1 (de) | 2011-12-22 |
US8884070B2 (en) | 2014-11-11 |
EP2582651A1 (de) | 2013-04-24 |
DE102010030209A1 (de) | 2011-12-22 |
KR20130086150A (ko) | 2013-07-31 |
SG185764A1 (en) | 2013-01-30 |
ES2717906T3 (es) | 2019-06-26 |
CN102933537B (zh) | 2015-02-18 |
EP2582651B1 (de) | 2018-12-26 |
US20130178657A1 (en) | 2013-07-11 |
AR082013A1 (es) | 2012-11-07 |
KR101790374B1 (ko) | 2017-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102933537B (zh) | 由链烷烃和二氧化碳能量有效地合成脂族醛的方法 | |
Zhang et al. | Single-atom catalyst: a rising star for green synthesis of fine chemicals | |
Ra et al. | Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives | |
Weinstock et al. | Dioxygen in polyoxometalate mediated reactions | |
Leitch et al. | Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation | |
Kanega et al. | Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas–solid phase reaction | |
Shimizu | Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology | |
Furukawa et al. | Selective hydrogenation of functionalized alkynes to (E)-alkenes, using ordered alloys as catalysts | |
Chen et al. | New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals | |
Ho et al. | Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable catalyst for cis-dihydroxylation and oxidative cleavage of alkenes | |
Chen et al. | Metal–organic-framework-based catalysts for hydrogenation reactions | |
Tan et al. | Homogeneous Light‐Driven Catalytic Direct Carboxylation with CO2 | |
Gómez-Suárez et al. | Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones | |
Liu et al. | Chelating Bis (N‐Heterocyclic Carbene) Palladium‐Catalyzed Reactions | |
Hayashi et al. | Asymmetric 1, 4-Addition of Arylboronic Acids to α, β-Unsaturated Aldehydes Catalyzed by a Chiral Diene–Rhodium Complex | |
Ouyang et al. | Green photocatalytic syntheses using water as solvent/hydrogen source/oxygen source | |
EP3101000B1 (en) | Hydrogenation reaction method | |
Breysse et al. | Use of heterogenized dialdimine ligands in asymmetric transfer hydrogenation | |
Uchida et al. | Construction of a new type of chiral bidentate NHC ligands: copper-catalyzed asymmetric conjugate alkylation | |
Patil et al. | Ruthenium (II)-Catalyzed Hydrogenation and Tandem (De) Hydrogenation via Metal–Ligand Cooperation: Base-and Solvent-Assisted Switchable Selectivity | |
Dupont et al. | Organo-zincate molten salts as immobilising agents for organometallic catalysis | |
Lazar et al. | Ru (II)-functionalized SBA-15 as highly chemoselective, acid free and sustainable heterogeneous catalyst for acetalization of aldehydes and ketones | |
Jun et al. | Chelation-assisted carbon–carbon bond activation by Rh (I) catalysts | |
Li et al. | Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions | |
Sarkar et al. | Multistep Cascade Catalytic Reactions Employing Bifunctional Framework Compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: EVONIK DEGUSSA GMBH Free format text: FORMER OWNER: OXENO OLEFINCHEMIE GMBH Effective date: 20140704 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20140704 Address after: essen Applicant after: Evonik Degussa GmbH Address before: mAhR Applicant before: Oxeno Olefinchemie GmbH |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150218 Termination date: 20190616 |
|
CF01 | Termination of patent right due to non-payment of annual fee |