CN102932644A - 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法 - Google Patents

一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法 Download PDF

Info

Publication number
CN102932644A
CN102932644A CN2012104654833A CN201210465483A CN102932644A CN 102932644 A CN102932644 A CN 102932644A CN 2012104654833 A CN2012104654833 A CN 2012104654833A CN 201210465483 A CN201210465483 A CN 201210465483A CN 102932644 A CN102932644 A CN 102932644A
Authority
CN
China
Prior art keywords
watermark
medical image
image
dft
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104654833A
Other languages
English (en)
Inventor
李京兵
杜文才
隋淼
涂蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN2012104654833A priority Critical patent/CN102932644A/zh
Publication of CN102932644A publication Critical patent/CN102932644A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种基于Arnold置乱变换和DFT的医学图像鲁棒水印技术,属于多媒体信号处理领域。本发明的步骤是先进行水印的嵌入,包括:(1)对要嵌入的水印进行Arnold变换,实现预处理;(2)对医学图像进行全图DFT变换,在变换域提取一个特征的向量;(3)利用该特征向量和经过预处理的水印通过Hash函数得到一个二值逻辑序列;然后进行水印提取,包括:(4)对待测医学图像进行全图DFT变换,提取一个特征向量;(5)利用Hash函数性质和存在第三方的二值逻辑序列来提取出水印;(6)经Arnold置乱的逆变换得到原始水印。实验证明本发明具有很好信息隐藏能力。在远程医疗中,对保护患者的信息意义重大。

Description

一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法
技术领域
本发明属于多媒体信号处理领域,涉及一种基于Arnold置乱变换、离散傅里叶变换(DFT)和图像视觉特征的医学图像数字水印技术,具体是一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法。
背景技术
近年来,随着计算机科学技术和多媒体通信技术的迅速发展,远程医疗日益普及,但在互联网上进行医学图像传输时,病人的个人信息容易泄漏,利用数字水印的不可见性和鲁棒性可以较好的解决这个问题,即把病人的个人信息作为数字水印嵌入在医学图像中。
目前对医学图像数字水印领域的研究主要集中在空间域和变换域(DFT、DFT和DWT)两个方面,它们分别通过改变空间域的某些象素的灰度或变换域的一些系数的值来嵌入水印。
鉴于对医学图像病灶区保护的特殊性要求,一般的医学数字水印方法常选择将水印信息嵌入到图像的非感兴趣区域(Region ofNon-interest,RONI)。医学图像中的感兴趣区域ROI(Region of Interest)指的是那些包含重要病理特征或诊疗信息的病灶区,若在该区域嵌入水印,则有可能造成错误的诊断。但往往人们在寻找ROI时,要花费很长的时间与精力,并且一旦选择有误,则有可能干扰医生的诊断。
在医学数字水印研究领域,至今为止抗击几何攻击和水印的嵌入仍是一个比较难以解决的课题,至于同时能有效抵抗常规攻击和几何攻击的水印嵌入方法研究,目前尚未见报道,尚属空白。而实际应用中,医学图像数字水印常常同时受到这两种攻击。
不仅如此,对于医学图像的研究,考虑到病患信息和一些特殊的隐私性,一旦水印被提取后,可能遭受泄露或篡改的危险。故要采取一些预处理的方式,对要嵌入的水印先进行置乱,进行二次保护,从而加强对水印信息的安全性保护。
发明内容
本发明的目的是提供一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法,该方法将Arnold置乱变换、医学图像的视觉特征向量、加密技术和第三方的概念有机结合起来,不但能够对要嵌入的水印信息进行二次加密保护,而且不需要进行感兴趣区域的选取,也没有容量大小的限制性问题,具有很理想的鲁棒性和不可见性,有效地解决了水印嵌入的问题,同时解决了医学图像应用中出现的抗击几何攻击和抗击常规攻击问题,以保护医学图像的版权和病患信息的隐秘性。
为实现上述目的,本发明思路如下:首先进行预处理,利用置乱变换对水印信息进行加密,然后对医学图像再进行全图DFT变换,在DFT变换系数中,提取一个抗几何攻击的医学图像视觉特征向量,将置乱技术、图像特征、零水印技术和第三方概念有机结合起来,实现了数字水印的抗几何和常规攻击。本发明所采用的方法包括水印嵌入和水印提取两大部分,第一部分为水印嵌入方法,包括:(1)通过对二值图像W(i,j)进行Arnold置乱得到BW(i,j);(2)再对原始图像进行全图DFT变换,得到图像的一个视觉特征向量V(j);(3)将经过置乱的水印信息BW(i,j),和在医学图像中提取的特征向量V(j),通过Hash函数运算,生成二值逻辑序列Key(i,j),将生成的二值逻辑序列Key(i,j)存在第三方。第二部分为水印的提取,包括:(4)求出待测图像的视觉特征向量V’(j);(5)利用已存在第三方的二值逻辑序列Key(i,j)和待测医学图像的特征向量V’(j),提取出水印BW’(i,j);(6)根据置乱变换的周期和迭代次数,利用Arnold置乱逆变换将提取的水印BW’(i,j)进行还原,得到待测图像的水印W’(i,j)。
现对本发明的方法进行详细说明如下:
首先用一幅有意义的二值图像来作为水印,用W表示,F代表原始医学图像。则W={w(i,j)|w(i,j)=0,1;1≤i≤M1,1≤j≤M2}作为数字水印,而原始医学图像记为F={f(i,j)|f(i,j)∈R;1≤i≤N1,1≤j≤N2},w((i,j))和f(i,j)分别表示水印图像及原始医学图像的像素灰度值,设M1=M2=M,N1=N2=N。
第一部分:水印的嵌入
1)对二值图像W(i,j)进行Arnold置乱得到BW(i,j)。
BW(i,j)=AT(W(i,j))
2)对宿主图像的原图进行全图DFT变换,得到图像的视觉特征向量V(j)。
先对原图F(i,j)进行全图DFT变换,得到DFT系数矩阵FF(i,j),在低频系数中,取前L个值,并通过DFT系数符号运算得到该图像的视觉特征向量V(j),方便起见,这里一个复数看成实部、虚部(虚部只看系数)两个系数,当系数值为“正”时我们用“1”表示(含系数值为“0”的情况),系数为负时用“0”表示,主要过程描述如下:
FF(i,j)=DFT2(F(i,j))
V(j)=-Sign(FF(i,j))
3)利用预处理过的水印BW(i,j)和图像的视觉特征向量V(j)进行Hash运算,生成一个二值逻辑序列Key(i,j)。
Key ( i , j ) = V ( j ) ⊕ BW ( i , j )
Key(i,j)是由图像的视觉特征向量V(j)和置乱预处理后的水印BW(i,j),通过密码学常用的Hash函数生成。保存Key(i,j),在以后提取水印时需用。通过将Key(i,j)作为密钥向第三方申请,以获得原图像的查看和所有权,从而达到保护医学图像的目的。
第二部分:水印的提取
4)求出待测图像F’(i,j)的视觉特征向量V’(j)。
设待测图像为F’(i,j),经过全图DFT变换后得到DFT系数矩阵为FF’(i,j),按上述Step1方法,求得待测图像的视觉特征向量V’(j);
FF’(i,j)=DFT2(F’(i,j))
V’(j)=-Sign(FF’(i,j))
5)在待测图像中提取出水印BW’(i,j)。
根据在嵌入水印时生成的Key(i,j)和待测图像的视觉特征向量V’(j),利用Hash性质可以提取出待测图像的水印BW’(i,j)。
BW , ( i , j ) = Key ( i , j ) ⊕ V , ( j )
6)利用Arnold置乱逆变换将提取的水印BW’(i,j)进行还原,得到待测图像的水印W’(i,j)。
再根据嵌入的水印W(i,j)和提取的水印W’(i,j)的相关程度来判别待测图像的所有权和病人的隐藏信息。
本发明与现有的医学水印技术比较有以下优点:
由于本发明是基于Arnold置乱变换和DFT的医学图像数字水印技术,不仅能够对水印信息实现二次加密的保护,进一步提高了其安全可靠性,也有较强的抗几何攻击能力和抗常规攻击能力;不需要人为的进行感兴趣区域的选取,从而解决了水印嵌入的快捷性问题;并且嵌入的水印是一种零水印,不会影响原始医学图像的质量,在医疗方面具有很高的实用价值。
以下从理论基础和试验数据说明:
1)Arnold置乱变换
鉴于医学图像的用途,嵌入图像中的通常是病人序列号、住院号、姓名和医师姓名、诊断报告等文本字段或其他一些有意义的信息。考虑到这些病患信息隐私性,一旦水印被提取后,可能遭受泄露或篡改的危险。故要先进行预处理,即俗称的加密,进行二次保护。
置乱变换技术通常作为加密的一种手段应用在水印的预处理阶段。一幅有意义的水印图像经过置乱变换以后,就变成一幅毫无意义、杂乱无章的图像。如果不知道置乱算法和密钥,即使攻击者从嵌有水印的图像中提取出水印,也不能从中恢复原始水印,从而对数字产品起到了二次加密的作用。另外,一幅图像经过置乱变换后,就打乱了像素空间位置间的关联关系,能使其均匀地分布在载体图像的所有空间,提高了算法的鲁棒性,二维Arnold置乱变换定义如下:
x ′ y ′ = 1 1 1 2 x y mod / N x,y∈{0,1,2,…,N-1}
其中,x、y为原始空间像素点的坐标;x’、y’为经过迭代运算置乱后像素点的坐标;N为方形图像的大小,也称为阶数。
由上式可以得到相应的逆变换公式(当k+1时):
x y = ( 2 - 1 - 1 1 x ′ y ′ + N N ) mod N x′,y′∈{0,1,2,…,N-1}
此逆变换公式经过相应的迭代次数就可以还原出原始图像。Arnold变换具有周期性,即当迭代到某一步时,将重新得到原始图像。所以不知道其周期和迭代的次数也就无法对图像进行恢复。因此,在置乱变换中,周期和迭代次数可以作为私钥存在。与此同时,不同的图像,因为所需要的置乱效果不同,所以迭代次数也应根据需要相应的改变。
2)离散傅里叶变换
二维离散傅里叶正变换(DFT)公式如下:
F ( u , v ) = 1 MN Σ x = 0 M - 1 Σ y = 0 N - 1 f ( x , y ) e - j 2 π ( ux M + vy N )
u=0,1,…,M-1;v=0,1,…,N-1;
二维离散傅里叶反变换(IDFT)公式如下:
f ( x , y ) = 1 MN Σ u = 0 M - 1 Σ v = 0 N - 1 F ( u , v ) e j 2 π ( ux M + vy N )
x=0,1,…,M-1;y=0,1,…,N-1
其中x,y为空间域采样值;u,v为频率域采样值,通常数字图像用像素方阵表示,即M=N
从上面的公式可知,DFT的系数符号是和分量的相位有关的。
3)医学图像视觉主要特征向量的选取方法
目前大部分医学图像水印算法抗几何攻击能力差的主要原因是:人们将数字水印嵌入在像素或变换系数中,医学图像的轻微几何变换,常常导致像素值或变换系数值的有较大变化。这样便会使嵌入的水印很轻易的就受到攻击。如果能够找到反映图像几何特点的视觉特征向量,那么当图像发生小的几何变换时,该图像的视觉特征值不会发生明显的突变。Hayes研究表明对图像特征而言,相位比幅度更重要。我们对大量的全图DFT数据(低中频)经过观察发现,当对一个医学图像进行常见的几何变换时,低中频系数大小可能发生一些变化,但其系数符号基本保持不变,我们选取一些实验数据见表1所示。表1中用作测试一个切片图像(128x128)。表中第1列显示的是医学图像受到攻击的类型,受到常规攻击后的医学图像见图1(b)-(d),受到几何攻击后的医学图像见图2(a)-(d)。表1的第3列到第6列,这是在DFT系数矩阵中取的FF(1,1)-FF(1,5),共5x2=10个低中频系数(这里把一个复数,看成实部和虚部两个系数)。其中系数F(1,1)表示医学图像的直流分量值。从表1中可以看出对于常规攻击,这些低中频系数值FF(1,1)-FF(1,5)基本保持不变,和原始医学图像值近似相等;对于几何攻击,部分系数有较大变化,但是我们可以发现,医学图像在受到几何攻击时,部分DFT低中频系数的大小发生了变化但其符号基本没有发生变化。我们将傅里叶系数(这里复数看成实部和虚部两个系数值),正值和零用“1”表示,负值用“0”表示,那么对于原始医学图像来说,DFT系数矩阵中的FF(1,1)-FF(1,5)系数,对应的系数符号序列为:“1100001111”,见表1的第7列,观察该列可以发现,无论常规攻击还是几何攻击该符号序列和原始医学图像能保持相似,与原始医学图像归一化相关系数都较大(见表1第8列),(方便起见这里取了5个DFT系数符号)。
为了进一步证明全图的DFT变换系数符号序列是属于该图的一个视觉重要特征,又把不同的测试图像,见图3(a)-(g),进行全图DFT变换,得到对应的DFT系数FF(1,1)-FF(4,8);并且求出与原图的DFT系数符号序列的相关系数,计算结果如表2。从表2可以看出,不同医学图像之间,符号序列相差较大,相关度较小,小于0.5。
这更加说明DFT系数的符号序列可以反映该医学图像的主要视觉特征。当水印图像受到一定程度的常规攻击和几何攻击后,该向量基本不变,这也符合DFT“有很强的提取图像特征”能力。
表1图像全图DFT变换低中频部分系数及受不同攻击后的变化值
Figure BSA00000806999400081
*DFT变换系数单位1.00e+003
表2不同医学图像特征向量的相关系数(向量长度32bit)
Pa Pb Pc Pd Pe Pf Pg
Pa 1.00 0.38 0.25 -0.18 0.12 -0.26 0.00
Pb 0.38 1.00 0.38 -0.11 -0.12 0.14 -0.13
Pc 0.25 0.38 1.00 -0.01 -0.25 0.24 0.13
Pd -0.18 -0.11 -0.01 1.00 0.25 0.09 0.27
Pe 0.12 -0.12 -0.25 0.25 1.00 -0.01 0.38
Pf -0.26 0.14 0.24 0.09 -0.01 1.00 0.26
Pg 0.00 -0.13 0.13 0.27 0.38 0.26 1.00
4)水印嵌入的位置和一次性嵌入的长度
根据人类视觉特性(HVS),低中频信号对人的视觉影响较大,代表着医学图像的主要特征。因此所选取的医学图像的视觉特征向量是低中频系数的符号,低中频系数的个数选择与进行全图DFT变换的原始医学图像的大小、以及一次性嵌入的信息量和要求的鲁棒性有关,L值越小,一次性嵌入的信息量越少,但鲁棒性越高。在后面的试验中,选取L的长度为32(4x8=32)。
综上所述,通过对医学图像的全局DFT系数的分析,利用DFT低中频系数的符号序列得到一种取得医学图像的一个抗几何攻击的特征向量的方法,利用该特征向量和Hash函数、“第三方”概念实现了在医学图像中嵌入多水印的方法。经过实验证明,该方法实现了多水印的嵌入,并且水印的嵌入不影响医学图像的内容,并且有较好的鲁棒性。
附图说明
图1(a)是原始医学图像。
图1(b)是经过高斯干扰的图像。
图1(c)是经过JPEG攻击的图像。
图1(d)是经过中值滤波的图像。
图2(a)是经过旋转变换的图像。
图2(b)是经过缩放2.0的图像。
图2(c)是经过缩放0.5的图像。
图2(d)是经过垂直移动的图像。
图3(a)是标准测试图MRI_1。
图3(b)是标准测试图MRI_2。
图3(c)是标准测试图MRI_3。
图3(d)是标准测试图Engine。
图3(e)是标准测试图Head。
图3(f)是标准测试图Teddy bear。
图3(g)是标准测试图Mri_1back。
图4(a)原始的水印。
图4(b)经过n次置乱变换之后的水印。
图4(c)经过置乱反变换之后恢复的水印。
图5(a)没有受到任何攻击时的水印图像。
图5(b)没有受到任何攻击时提取出的水印。
图6(a)有高斯干扰时的水印图像(高斯干扰强度为3%)。
图6(b)有高斯干扰时提取出的水印。
图7(a)JPEG压缩后的水印图像(压缩质量为4%)。
图7(b)JPEG压缩后提取出的水印。
图8(a)中值滤波后的水印图像(经过[3x3]的20次滤波)。
图8(b)中值滤波后提取出的水印。
图9(a)顺时针旋转15度后的水印图像。
图9(b)顺时针旋转15度后提取出的水印。
图10(a)缩放因子为0.5的水印图像。
图10(b)缩放因子为0.5时提取出的水印。
图11(a)缩放因子为4.0的水印图像。
图11(b)缩放因子为4.0时提取出的水印。
图12(a)垂直下移3%后的水印图像。
图12(b)垂直下移3%后提取出的水印。
图13(a)剪切6%的水印图像。
图13(b)剪切6%后提取出的水印。
具体实施方式
下面结合附图对本发明作进一步说明。用一幅有意义的二值图像来作为水印,见图4(a),大小为32×32。实验所用的原始医学图像,是一幅经过CT扫描后的大脑三维成像,选取其第十个切片的图像(128x128)见图1(a)。首先利用置乱变换对水印进行置乱加密(置乱的次数依据所需要的效果而定,此处置乱次数n=10,置乱的周期T=24;见图4(b),当然,被置乱后的图像经过相应的迭代次数即可恢复为原图,见图4(c)。我们将置乱后的水印记为BW(i,j)。设原图表示为F(i,j),其中1≤i≤128,1≤j≤128,对应的全图DFT系数矩阵为FF(i,j),选择低中频系数Y(j),1≤j≤L,第一个值Y(1)代表图像的直流分量,然后由低到高的频率顺序排列。考虑到鲁棒性和一次性嵌入水印的容量,我们选择中低频的4x4=16个复数系数做特征向量(这里把一个复数,看成实部和虚部两个系数),则共有16x2=32个低中频系数,即L=32。嵌入的水印BW(i,j),是由W(i,j)经Arnold变换得到;选取的DFT系数矩阵为FF(i,j),1≤i≤4,1≤j≤4。通过水印提取算法提取出BW’(i,j)后,再通过Arnold置乱逆变换得到待测图像的水印图像W’(i,j)。通过算W(i,j)和W’(i,j)的归一化相关系数NC(NormalizedCross Correlation),来判断是否有水印嵌入。NC的值越大,表明经过处理后提取的水印W’(i,j)和原始水印W(i,j)越逼近。
图5(a)是没有受到任何攻击时的水印图像;
图5(b)是没有受到任何攻击时提取出的水印,经计算,NC1=1.00,明显证明出水印的存在。
下面我们通过具体试验来判断该数字水印方法的抗常规攻击能力和抗几何攻击能力鲁棒性。
先测试该水印算法抗常规攻击的能力。
(1)加入高斯噪声
使用imnoise()函数在水印图像中加入高斯噪音。
图6(a)为当高斯噪声强度为3%时的水印图像,在视觉上已很模糊;
图6(b)是提取出来的水印,通过计算NC值,NC=0.88,说明与原始的水印图像非常相似。
表3是水印抗高斯干扰时的数据。从实验数据可以看到,当含水印的医学图像在受到高斯噪声的不同强度的攻击时,它的图像质量通过计算PSNR发现已经干扰的非常严重,但是提取出的水印图像通过计算NC值,发现都大于0.5,说明与原始的水印非常相似,可以看出该算法具有一定的抗高斯噪声干扰的能力。
表3水印抗高斯噪声干扰数据
噪声强度(%) 1 3 5 10 15 20 25
PSNR(dB) 12.35 7.89 5.79 3.19 1.68 0.72 0.10
NC 0.94 0.88 0.86 0.81 0.74 0.69 0.69
(2)JPEG压缩处理
采用图像压缩质量百分数作为参数对水印图像进行JPEG压缩;
图7(a)是压缩质量为4%的图像,该图已经出现方块效应;
图7(b)是提取出的水印,NC=0.88,与原始的水印非常相似。
表4为水印图像抗JPEG的试验数据。当压缩质量很差,压缩质量仅为2%时,仍然可以测得水印的存在,NC=0.62。
表4水印抗JPEG压缩的实验数据
压缩质量(%) 2 4 8 10 20 40 60 80
PSNR(dB) 16.32 17.61 19.99 20.98 23.04 25.06 26.52 29.27
NC 0.62 0.88 1.00 1.00 0.94 1.00 1.00 1.00
(3)中值滤波处理
图8(a)是中值滤波参数为[3x3],滤波重复次数为20的医学图像,
图像已出现模糊;
图8(b)是提取出的水印,NC=0.81,与原始的水印非常相似。
表5为水印图像抗中值滤波能力,从表中看出,当中值滤波参数
为[7x7],滤波重复次数为20时,仍然可以测得水印的存在,NC=0.64.
表5水印抗中值滤波实验数据
Figure BSA00000806999400141
水印抗几何攻击能力:
(1)旋转变换
图9(a)是对含水印的医学图像进行顺时针旋转15°的图像,这时水印图像的PSNR=12.70dB,信噪比很低,可以看出旋转带来的倾斜已经很严重,图像已经受旋转干扰比较严重。
图9(b)是提取出的水印,可以计算出NC=0.82,与原始的水印非常相似。
表6为受旋转干扰的含水印的医学图像在其他旋转度数下的PSNR和NC的值。当含水印的医学图像在受到不同度数的旋转攻击时,它的图像质量通过计算PSNR发现已经受到严重的干扰,但是提取出的水印通过计算NC值,发现都大于0.5,说明与原始的水印非常相似,可以看出该算法具有一定的抗旋转攻击的能力。Pitas等人提出的抗几何攻击算法,把水印嵌入DFT幅度谱的圆环中,只能抵抗不大于3度的旋转。
表.6水印抗旋转攻击实验数据
Figure BSA00000806999400151
(2)缩放变换
图10(a)是当缩放因子为0.5时的水印图像;
图10(b)为提取出的水印,可以计算出,NC=0.87.与原水印非常相似。
图11(a)是缩放因子为4.0的水印图像;
图11(b)为提取出的水印,可以计算出,NC=1.00.与原水印非常相似。
表7为水印缩放攻击试验数据,从表8可以看到当水印图像缩放因子小至0.2时,相关系数NC=0.69,仍可测得水印。Pereira等采用的在DFT中置入模板的方法,只能抵御缩放因子不小于0.65的缩放,说明该发明有较强的抗缩放能力。
表7水印缩放攻击实验数据
缩放因子 0.2 0.5 0.8 1.00 1.2 2.0 4.0
NC 0.69 0.87 0.94 1.00 0.94 1.00 1.00
(3)平移变换
图12(a)为图像垂直下移3%的情况,这时PSNR=13.82dB,信噪比很低;
图12(b)是提取出的水印,可以计算出,NC=0.82,与原水印很相似。
表8列出了受平移干扰的含水印的医学图像在其它移动距离下的PSNR和NC的值。从表中得知当垂直移动6%,NC值仍大于0.5,说明与原始的水印图像非常相似,可以看出该算法具有一定的抗平移攻击的能力。
表8水印抗平移攻击实验数据
(4)剪切试验
图13(a)为对水印图像按Y轴方向进行剪切6%的情况,这时加有水印的医学图像的面积已损失一部分;
图13(b)是提取出的水印,可以计算出,NC=0.88,与原水印很相似。
表9列出了受剪切干扰的含水印的医学图像在Y轴方向其他剪切比例下的NC的值,从表中试验数据可以得知,当含水印的医学图像在受到不剪切比例的剪切攻击时,它的图像像素已经发生了改变,但是提取出的水印图像通过计算NC值,发现都大于0.5,说明与原始的水印非常相似,可以看出该算法具有一定的抗剪切攻击的能力。
表9水印抗剪切攻击实验数据(按Y轴方向剪切)
通过以上的实验说明,该水印的嵌入方法,有较强的抗常规攻击能力和几何攻击能力,并且水印的嵌入不影响医学图像的值,是一种零水印。

Claims (1)

1.一种基于Arnold置乱变换和DFT的医学图像鲁棒水印实现方法,其特征在于:基于Arnold置乱变换、傅里叶变换及抗常规和几何攻击的特征向量的提取,并将置乱算法、水印技术、密码学中的Hash函数特性和“第三方”概念有机结合起来,实现了在医学图像中嵌入数字水印的方法,该方法共分两个部分,共计六个步骤:
第一部分是水印嵌入:通过对水印的嵌入操作,得到相应的二值逻辑序列Key(i,j);
1)通过对作为水印的二值图像W(i,j)经Arnold置乱变换得到BW(i,j);
2)对原始医学图像进行全局DFT,在变换系数中,利用低中频系数的符号序列来得到该图的抗几何攻击的向量V(j);
3)利用Hash函数和要嵌入的已经过预处理的水印BW(i,j),得到二值逻辑序列Key(i,j), Key ( i , j ) = V ( j ) ⊕ BW ( i , j ) ;
保存Key(i,j),下面提取水印时要用到,通过把Key(i,j)作为密钥向第三方申请,以获得对原始医学图像的所有权;
第二部分是水印的提取:通过二值逻辑序列Key(i,j)和待测医学图像的抗常规和几何攻击的特征向量V’(j),提取出水印BW’(i,j);
4)对待测医学图像进行全局DFT;在变换系数中,根据低中频系数的符号提取出待测图像的视觉特征向量V’(j);
5)利用Hash函数性质,和存在第三方的Key(i,j),提取出水印, BW , ( i , j ) = Key ( i , j ) ⊕ V , ( j ) ;
6)利用Arnold置乱逆变换将提取的水印BW’(i,j)进行还原,得到待测图像的水印W’(i,j),W’(i,j)=IAT(BW’(i,j));
将W(i,j)和W’(i,j)进行归一化相关系数计算,来确定医学图像的所有权和隐藏的信息。
CN2012104654833A 2012-11-19 2012-11-19 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法 Pending CN102932644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104654833A CN102932644A (zh) 2012-11-19 2012-11-19 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104654833A CN102932644A (zh) 2012-11-19 2012-11-19 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法

Publications (1)

Publication Number Publication Date
CN102932644A true CN102932644A (zh) 2013-02-13

Family

ID=47647329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104654833A Pending CN102932644A (zh) 2012-11-19 2012-11-19 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法

Country Status (1)

Country Link
CN (1) CN102932644A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106462973A (zh) * 2014-06-24 2017-02-22 皇家飞利浦有限公司 医学数据集相对于3d体积绘制的视觉匿名化

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156660A2 (en) * 2000-01-28 2001-11-21 M. Ken Co. Ltd. Device and method for detecting digital watermark information
CN101038771A (zh) * 2006-03-18 2007-09-19 辽宁师范大学 用于音乐作品版权保护的数字水印新方法
CN101364300A (zh) * 2008-05-30 2009-02-11 西安电子科技大学 基于灰色理论的数字水印方法
CN102129657A (zh) * 2011-02-28 2011-07-20 海南大学 一种基于三维dft在体数据中嵌入多重水印的方法
CN102129656A (zh) * 2011-02-28 2011-07-20 海南大学 一种基于三维dwt和dft在医学图像中嵌入大水印的方法
CN102360487A (zh) * 2011-09-13 2012-02-22 海南大学 一种基于dft可抗几何攻击的医学图像多重水印方法
CN102360486A (zh) * 2011-09-13 2012-02-22 海南大学 一种基于dwt和dct的医学图像鲁棒多水印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156660A2 (en) * 2000-01-28 2001-11-21 M. Ken Co. Ltd. Device and method for detecting digital watermark information
CN101038771A (zh) * 2006-03-18 2007-09-19 辽宁师范大学 用于音乐作品版权保护的数字水印新方法
CN101364300A (zh) * 2008-05-30 2009-02-11 西安电子科技大学 基于灰色理论的数字水印方法
CN102129657A (zh) * 2011-02-28 2011-07-20 海南大学 一种基于三维dft在体数据中嵌入多重水印的方法
CN102129656A (zh) * 2011-02-28 2011-07-20 海南大学 一种基于三维dwt和dft在医学图像中嵌入大水印的方法
CN102360487A (zh) * 2011-09-13 2012-02-22 海南大学 一种基于dft可抗几何攻击的医学图像多重水印方法
CN102360486A (zh) * 2011-09-13 2012-02-22 海南大学 一种基于dwt和dct的医学图像鲁棒多水印方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106462973A (zh) * 2014-06-24 2017-02-22 皇家飞利浦有限公司 医学数据集相对于3d体积绘制的视觉匿名化
CN106462973B (zh) * 2014-06-24 2021-01-22 皇家飞利浦有限公司 医学数据集相对于3d体积绘制的视觉匿名化

Similar Documents

Publication Publication Date Title
Parah et al. Hiding clinical information in medical images: a new high capacity and reversible data hiding technique
CN106023056B (zh) 基于dwt和主成分分析压缩的零水印嵌入、提取方法及装置
CN102930500A (zh) 一种基于Arnold置乱变换和DCT的医学图像鲁棒水印方法
Zhang et al. Affine Legendre moment invariants for image watermarking robust to geometric distortions
CN102945543A (zh) 一种基于DWT-DCT和Logistic Map的医学图像鲁棒水印方法
CN102938132A (zh) 一种基于DFT和LogisticMap的医学图像水印方法
CN113160029B (zh) 一种基于感知哈希和数据增强的医学图像数字水印方法
CN110517182B (zh) 一种基于nsct组合变换的医学图像零水印嵌入方法
CN104867102A (zh) 一种基于dct密文域的加密医学图像鲁棒水印方法
Dong et al. Robust zero-watermarking for medical image based on DCT
CN103279918A (zh) 一种基于三维dct和混沌置乱的体数据水印实现方法
Kumar et al. High capacity spread-spectrum watermarking for telemedicine applications
CN104851072A (zh) 云环境下一种基于dft加密医学图像鲁棒水印方法
CN102938133A (zh) 一种基于Arnold置乱变换和DWT-DFT的医学图像鲁棒水印方法
CN102360486A (zh) 一种基于dwt和dct的医学图像鲁棒多水印方法
CN103345725A (zh) 基于三维dwt-dft和混沌置乱的体数据水印方法
Thanki et al. Medical imaging and its security in telemedicine applications
CN102314669A (zh) 一种基于dct抗几何攻击的医学图像零数字水印方法
CN103996161A (zh) 基于三维dwt-dft感知哈希和混沌的体数据多水印
Hoshi et al. A robust watermark algorithm for copyright protection by using 5-level DWT and two logos
CN102510491A (zh) 一种基于dwt可抗几何攻击的医学图像多重水印方法
CN103854251A (zh) 基于三维dwt-dct感知哈希的体数据多水印方法
CN102360487A (zh) 一种基于dft可抗几何攻击的医学图像多重水印方法
CN103971318A (zh) 基于三维dwt-dft感知哈希的体数据数字水印方法
CN102932644A (zh) 一种基于Arnold置乱变换和DFT的医学图像鲁棒水印方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130213