CN102930102A - 一种微波部件二次电子倍增仿真中粒子合并方法 - Google Patents

一种微波部件二次电子倍增仿真中粒子合并方法 Download PDF

Info

Publication number
CN102930102A
CN102930102A CN2012104336050A CN201210433605A CN102930102A CN 102930102 A CN102930102 A CN 102930102A CN 2012104336050 A CN2012104336050 A CN 2012104336050A CN 201210433605 A CN201210433605 A CN 201210433605A CN 102930102 A CN102930102 A CN 102930102A
Authority
CN
China
Prior art keywords
particle
particles
simulation
displacement
chained list
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104336050A
Other languages
English (en)
Other versions
CN102930102B (zh
Inventor
崔万照
李韵
王新波
王洪广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Institute of Space Radio Technology
Original Assignee
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Institute of Space Radio Technology filed Critical Xian Institute of Space Radio Technology
Priority to CN201210433605.0A priority Critical patent/CN102930102B/zh
Publication of CN102930102A publication Critical patent/CN102930102A/zh
Application granted granted Critical
Publication of CN102930102B publication Critical patent/CN102930102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种微波部件二次电子倍增仿真中粒子合并方法,首先建立微波部件的三维几何模型并建立粒子模拟区域进行二次电子倍增效应数值模拟,然后设置粒子合并阈值并在粒子模拟区域的总粒子数目大于粒子合并阈值后进行粒子合并,通过将粒子按照速度相空间进行分类并按能量大小每四个粒子分为一个集合,在每个集合中将四个粒子合并为两个,并对剩余粒子进行补偿实现粒子模拟区域所有粒子的合并。本发明方法保证了合并前后粒子能量守恒与相空间分布一致,可在微波部件二次电子倍增仿真中多次应用,实现计算效率的成倍提高,非常适用于在一定硬件条件下大幅度提高大功率微波部件微放电、低气压放电数值分析效率。

Description

一种微波部件二次电子倍增仿真中粒子合并方法
技术领域
本发明涉及空间特殊效应应用领域,尤其涉及一种微波部件二次电子倍增仿真中粒子合并方法。
背景技术
在真空或低气压工作环境下,电子在微波部件电磁场作用下获得加速,对于大功率微波部件而言,若电子获得的能量足以发生二次电子发射且二次电子在微波部件内表面之间的渡越时间等于电磁场射频周期的奇数倍,电子数目呈雪崩式增长,导致二次电子倍增效应,使得微波部件信号恶化,甚至造成部件永久性损坏。
为了克服微波部件二次电子倍增三维仿真过程中由于粒子(电子的数值模型)数目雪崩式增长导致的计算量急剧增加对数值模拟精度与二次电子倍增完整物理过程的数值模拟造成限制,亟需进行粒子合并,使得粒子数目减少、计算规模降低、有效提高仿真效率。为保证合并前后粒子模拟结果的准确性,在合并过程中应当尽量保证以下条件:合并前后相关粒子对于网格节点的贡献一致(合并前后两组粒子分配节点的电荷守恒、合并前后两组粒子的总动量守恒、合并前后两组粒子的总动能守恒)与合并前后相关粒子具有相同的相空间分布。
最早的粒子合并方法russian roulette方法基于蒙特卡洛数值模拟进行。先定义一个存活率ps(ps=N’/N),当粒子数达到一个阈值N时,遍历这N个粒子,对于每个粒子,生成一个随机数R,比较R和ps,当R<ps时,保留该粒子,否则删除该粒子。然后将所得的N’个粒子,质量mp′和电荷量qp′变为原来的2倍,mp′=2mp,qp′=2qp。该方法具有很大的随机性,当粒子数目较少时,合并前后误差较大。
Lapenta提出选取在相空间中状态相近的粒子进行合并。选取两个在相空间中位置接近的粒子,qp
Figure BSA00000799477200021
Figure BSA00000799477200022
p={1,2}。然后将这两个粒子合并为一个粒子A,使A的电荷qA=q1+q2,位置
Figure BSA00000799477200023
速度
Figure BSA00000799477200024
该方法合并后的粒子呈现在合并前的粒子的重心的位置,多次合并后粒子向网格中心聚拢,在合并前后相空间分布一致性的要求上的没有很好地满足,对网格节点的电荷贡献误差较大。
之后,Grasso和Frignani等人提出了一种命名为分层聚合的粒子合并方法,这种方法能够精确的保证网格节点电荷守恒,但是合并方法过于繁琐和复杂,难以扩展到3维粒子模拟过程中。
发明内容
本发明的目的在于克服现有技术的不足,提供一种粒子合并方法,有效降低微波部件二次电子倍增效应三维数值仿真的计算规模,并在保证合并前后相关粒子对于网格节点的贡献一致和相空间分布一致的前提下,大幅度提高计算效率。
本发明的上述目的是通过如下技术方案予以实现的:
1、一种微波部件二次电子倍增仿真中粒子合并方法,其特征在于包括下列步骤:
(1)建立微波部件的三维几何模型,建立粒子模拟区域,所述粒子模拟区域为微波部件内部中空部分,将微波部件三维几何模型与粒子模拟区域剖分成若干个六面体网格,粒子随机分布在粒子模拟区域对应的六面体网格中,对应每一个六面体网格分别建立粒子链表,存储位于其中的粒子的质量、电荷量、位移与速度;
(2)确定进行粒子合并的阈值,所述阈值包括粒子模拟区域中总粒子数目的阈值N1
(3)当粒子模拟区域中总粒子数目大于阈值N1时进行粒子合并,每一个六面体网格内粒子合并的方法为:
(3.1)将六面体网格的三维速度相空间按照直角坐标系分为多个象限,对每个象限建立临时链表;
(3.2)遍历六面体网格中的每个粒子,将六面体网格中的粒子划分到步骤(3.1)所形成的多个象限中,在相应的临时链表内存储粒子的质量、电荷量、位移与速度;
(3.3)每个临时链表中的粒子按照能量从大到小排序,每四个粒子分为一个集合;
(3.4)将集合内的四个粒子合并为两个粒子;
(3.5)临时链表中按四个粒子分配后剩余的粒子形成一个剩余集合,若剩余集合中余一个粒子,则直接将该粒子删掉;若余三个粒子则补一个与剩余集合中最后一个粒子质量、电荷量、位移与速度完全相同的粒子,形成补偿后的四个粒子,再将所述补偿后的四个粒子按步骤(3.4)合并为两个粒子;若剩余集合中余两个粒子,则将两个粒子合并为一个粒子,合并后粒子质量和电荷量加倍,速度为合并前两个粒子的平均速度,位移为合并前两个粒子的平均位移;
(3.6)采用合并后的粒子更新临时链表,采用临时链表更新其所对应的六面体网格的粒子链表,完成粒子合并。
所述步骤(2)中粒子模拟区域中总粒子数目的阈值N1设为107
所述步骤(3.4)中四个粒子合并为两个粒子后,合并后两个粒子的质量、电荷量、速度与位移的确定方法如下:
设合并前四个粒子的速度分量分别为V1x、V1y、V1z,V2X、V2y、V2z,V3x、V3y、V3z,V4x、V4y、V4z,质量为m,电荷量为q,
则四个粒子速度的平均值为:
Vcmx=(V1x+V2x+V3x+V4x)/4,
Vcmy=(V1y+V2y+V3y+V4y)/4,
Vcmz=(V1z+V2a+V3z+V4z)/4,
合并后两个粒子中每一个粒子质量变为2m,电荷量变为2q;
合并后两个粒子的速度分量分别为V5x、V5y、V5z,V6x、V6y、V6z
算户V5x=Vcmx-a、V6x=Vcmx+a、V5y=Vcmy-b、V6y=Vcmy+b、V5z=Vcmz-c、V6z=Vcmz+c,
a = 1 4 × ( V 1 x 2 + V 2 x 2 + V 3 x 2 + V 4 x 2 ) - V 2 cmx , b = 1 4 × ( V 1 y 2 + V 2 y 2 + V 3 y 2 + V 4 y 2 ) - V 2 cmy ,
c = 1 4 × ( V 1 z 2 + V 2 z 2 + V 3 z 2 + V 4 z 2 ) - V 2 cmz ;
合并后两个粒子的位移分别设置为合并前集合中奇数位或偶数位的两个粒子的位移。
所述步骤(3.1)中多个象限为八个象限,分别对应于(Vx>0,Vy>0,Vz>0)、(Vx<0,Vy>0,Vz>0)、(Vx>0,Vy<0,Vz>0)、(Vx<0,Vy<0,Vz>0)、(Vx>0,Vy>0,Vz<0)、(Vx<0,Vy>0,Vz<0)、(Vx>0,Vy<0,Vz<0)、(Vx<0,Vy<0,Vz<0),其中Vx、Vy、Vz为速度分量。
所述多个象限替换为8*R个象限;将所述八个象限中的每个象限分别再划分为R个象限,R为大于等于2的整数。
本发明与现有技术相比具有如下有益效果:
(1)本发明方法采用在速度相空间对粒子进行分类,选取将四个粒子分为一个集合,合并后保留两个粒子的方法进行粒子合并,既提高了数值模拟效率,又保证了合并前后粒子具有与合并前粒子相同的相空间分布,同时保证了合并前后粒子整体上的能量守恒。
(2)与现有技术相比,本方法更易于扩展至三维粒子模拟中,由此导致的额外计算量较小。
(3)采用本方法可以克服二次电子倍增效应三维数值模拟过程中计算量急剧增加对数值模拟精度与数值模拟完整性的限制,实现二次电子倍增饱和阶段物理过程的准确数值模拟。
(4)本发明的方法能够有效提高粒子模拟计算效率,尤其适合于微放电三维电磁粒子数值模拟中对微放电电子演变至饱和状态的模拟,对于模拟完整的微放电效应形成与建立过程,进行物理机理研究与抗微放电大功率微波部件设计等应用具有重要意义。
附图说明
图1本发明粒子合并方法流程图;
图2粒子合并前后x方向粒子速度分布对比图;
图3粒子合并前后x方向粒子位移分布对比图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
采用本发明方法对金属波导二次电子倍增效应粒子模拟进行粒子合并,流程图如图1所示,具体实施过程如下:
(1)采用CAD软件建立金属波导的三维几何模型,建立粒子模拟区域,所述粒子模拟区域为微波部件内部中空部分,将金属波导三维几何模型与粒子模拟区域剖分成若干个六面体网格,粒子随机分布在若干个六面体网格中,对应每一个六面体网格分别建立粒子链表,存储位于其中的粒子的质量m、电荷量q、位移与速度;位移与速度按三维直角坐标系划分包括三个方向的分量Sx,Sy,Sz,Vx,Vy,Vz
(2)确定粒子模拟区域中总粒子数目的阈值N1为107
(3)基于上述模型进行二次电子倍增效应粒子模拟,即二次电子倍增仿真;当粒子模拟区域中总粒子数目大于N1时进行粒子合并,粒子合并的方法为:
(3.1)将每一个六面体网格的三维速度相空间按照直角坐标系分为八个象限,分别为(Vx>0,Vy>0,Vz>0)、(Vx<0,Vy>0,Vz>0)、(Vx>0,Vy<0,Vz>0)、(Vx<0,Vy<0,Vz>0)、(Vx>0,Vy>0,Vz<0)、(Vx<0,Vy>0,Vz<0)、(Vx>0,Vy<0,Vz<0)、(Vx<0,Vy<0,Vz<0)。也可以在八个象限的基础上,将八个象限中的每个象限分别再划分为R个象限,R为大于等于2的整数。对每个象限建立临时链表。
按照三维速度相空间将粒子进行分类,使得将进行合并的粒子具有速度方向上的相似性,同时位移具有空间离散性,既保证了合并前后粒子能量守恒,又保证了相空间分布的一致性。三维速度相空间划分越细,能量守恒与相空间分布一致性越好。
(3.2)遍历六面体网格中的每个粒子,将六面体网格中的粒子划分到步骤(3.1)所形成的多个象限中,在相应的临时链表内存储粒子的质量、电荷量、位移与速度。
(3.3)每个临时链表中的粒子按照能量从大到小排序,每四个粒子分为一个集合。
(3.4)每个集合内的四个粒子合并为两个粒子。
假设合并前四个粒子的速度分别为V1x、V1y、V1z,V2x、V2y、V2z,V3x、V3y、V3z,V4x、V4y、V4z,质量为m,电荷量为q,四个粒子速度的平均值为:
Vcmx=(V1x+V2x+V3x+V4x)/4,
Vcmy=(V1y+V2y+V3y+V4y)/4,
Vcmz=(V1z+V2z+V3z+V4z)/4,
合并后两个粒子的质量为2m,电荷量为2q,速度分别为V5x、V5y、V5z,V6x、V6y、V6z,算户V5x=Vcmx-a、V6x=Vcmx+a、V5y=Vcmy-b、V6y=Vcmy+b、V5z=Vcmz-c、V6z=Vcmz+c,
a = 1 4 × ( V 1 x 2 + V 2 x 2 + V 3 x 2 + V 4 x 2 ) - V 2 cmx , b = 1 4 × ( V 1 y 2 + V 2 y 2 + V 3 y 2 + V 4 y 2 ) - V 2 cmy ,
c = 1 4 × ( V 1 z 2 + V 2 z 2 + V 3 z 2 + V 4 z 2 ) - V 2 cmz .
上述合并后两个粒子速度的设置使得合并前和粒子的能量与动量守恒。
每个集合中合并后两个粒子的位移分别设置为合并前集合中偶数位或奇数位的两个粒子的位移。
(3.5)临时链表中按四个粒子分配后剩余的粒子形成一个剩余集合,若剩余集合中余一个粒子,则直接将该粒子删掉;若余三个粒子则补一个与剩余集合中最后一个粒子质量、电荷量、位移与速度完全相同的粒子,形成补偿后的四个粒子,再将所所述补偿后的四个粒子按步骤(3.4)合并为两个;若剩余集合中余两个粒子,则合并为一个粒子,合并后的粒子质量和电荷量加倍,速度为合并前两个粒子的平均速度,位移为合并前两个粒子的平均位移。
(3.6)采用合并后的粒子更新临时链表,采用临时链表更新每一个六面体网格对应的粒子链表,完成粒子合并。
定义本实施例中二次电子倍增粒子合并方法为四合二方法,记录合并前后粒子速度与位移分布的概率密度分布如图2和图3所示,与现有的Lapenta算法相比,采用本发明的粒子合并方法可保证合并前后粒子动量守恒、能量守恒,相空间分布一致。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (5)

1.一种微波部件二次电子倍增仿真中粒子合并方法,其特征在于包括下列步骤:
(1)建立微波部件的三维几何模型,建立粒子模拟区域,所述粒子模拟区域为微波部件内部中空部分,将微波部件三维几何模型与粒子模拟区域剖分成若干个六面体网格,粒子随机分布在粒子模拟区域对应的六面体网格中,对应每一个六面体网格分别建立粒子链表,存储位于其中的粒子的质量、电荷量、位移与速度;
(2)确定进行粒子合并的阈值,所述阈值包括粒子模拟区域中总粒子数目的阈值N1
(3)当粒子模拟区域中总粒子数目大于阈值N1时进行粒子合并,每一个六面体网格内粒子合并的方法为:
(3.1)将六面体网格的三维速度相空间按照直角坐标系分为多个象限,对每个象限建立临时链表;
(3.2)遍历六面体网格中的每个粒子,将六面体网格中的粒子划分到步骤(3.1)所形成的多个象限中,在相应的临时链表内存储粒子的质量、电荷量、位移与速度;
(3.3)每个临时链表中的粒子按照能量从大到小排序,每四个粒子分为一个集合;
(3.4)将集合内的四个粒子合并为两个粒子;
(3.5)临时链表中按四个粒子分配后剩余的粒子形成一个剩余集合,若剩余集合中余一个粒子,则直接将该粒子删掉;若余三个粒子则补一个与剩余集合中最后一个粒子质量、电荷量、位移与速度完全相同的粒子,形成补偿后的四个粒子,再将所述补偿后的四个粒子按步骤(3.4)合并为两个粒子;若剩余集合中余两个粒子,则将两个粒子合并为一个粒子,合并后粒子质量和电荷量加倍,速度为合并前两个粒子的平均速度,位移为合并前两个粒子的平均位移;
(3.6)采用合并后的粒子更新临时链表,采用临时链表更新其所对应的六面体网格的粒子链表,完成粒子合并。
2.根据权利要求1所述的方法,其特征在于:所述步骤(2)中粒子模拟区域中总粒子数目的阈值N1设为107
3.根据权利要求1所述的方法,其特征在于:所述步骤(3.4)中四个粒子合并为两个粒子后,合并后两个粒子的质量、电荷量、速度与位移的确定方法如下:
设合并前四个粒子的速度分量分别为V1x、V1y、V1z,V2x、V2y、V2z,V3x、V3y、V3z,V4x、V4y、V4z,质量为m,电荷量为q,
则四个粒子速度的平均值为:
Vcmx=(V1x+V2x+V3x+V4x)/4,
Vcmy=(V1y+V2y+V3y+V4y)/4,
Vcmz=(V1z+V2z+V3z+V4z)/4,
合并后两个粒子中每一个粒子质量变为2m,电荷量变为2q;
合并后两个粒子的速度分量分别为V5x、V5y、V5z,V6x、V6y、V6z
其中V5x=Vcmx-a、V6x=Vcmx+a、V5y=Vcmy-b、V6y=Vcmy+b、V5z=Vcmz-c、V6z=Vcmz+c,
a = 1 4 × ( V 1 x 2 + V 2 x 2 + V 3 x 2 + V 4 x 2 ) - V 2 cmx , b = 1 4 × ( V 1 y 2 + V 2 y 2 + V 3 y 2 + V 4 y 2 ) - V 2 cmy ,
c = 1 4 × ( V 1 z 2 + V 2 z 2 + V 3 z 2 + V 4 z 2 ) - V 2 cmz ;
合并后两个粒子的位移分别设置为合并前集合中奇数位或偶数位的两个粒子的位移。
4.根据权利要求1所述的方法,其特征在于:所述步骤(3.1)中多个象限为八个象限,分别对应于(Vx>0,Vy>0,Vz>0)、(Vx<0,Vy>0,Vz>0)、(Vx>0,Vy<0,Vz>0)、(Vx<0,Vy<0,Vz>0)、(Vx>0,Vy>0,Vz<0)、(Vx<0,Vy>0,Vz<0)、(Vx>0,Vy<0,Vz<0)、(Vx<0,Vy<0,Vz<0),其中Vx、Vy、Vz为速度分量。
5.根据权利要求4所述的方法,其特征在于:所述多个象限替换为8*R个象限;将所述八个象限中的每个象限分别再划分为R个象限,R为大于等于2的整数。
CN201210433605.0A 2012-10-31 2012-10-31 一种微波部件二次电子倍增仿真中粒子合并方法 Active CN102930102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210433605.0A CN102930102B (zh) 2012-10-31 2012-10-31 一种微波部件二次电子倍增仿真中粒子合并方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210433605.0A CN102930102B (zh) 2012-10-31 2012-10-31 一种微波部件二次电子倍增仿真中粒子合并方法

Publications (2)

Publication Number Publication Date
CN102930102A true CN102930102A (zh) 2013-02-13
CN102930102B CN102930102B (zh) 2015-04-22

Family

ID=47644899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210433605.0A Active CN102930102B (zh) 2012-10-31 2012-10-31 一种微波部件二次电子倍增仿真中粒子合并方法

Country Status (1)

Country Link
CN (1) CN102930102B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665531A (zh) * 2018-05-08 2018-10-16 阿里巴巴集团控股有限公司 3d粒子模型的变换方法及装置
CN111008489A (zh) * 2020-03-10 2020-04-14 上海索辰信息科技有限公司 稀薄气流数值模拟中网格单元粒子数优化方法
CN111563345A (zh) * 2020-05-12 2020-08-21 电子科技大学 一种基于k-d树数据结构的用于微放电数值模拟的粒子合并方法
CN113919191A (zh) * 2021-08-26 2022-01-11 西安空间无线电技术研究所 一种微波低气压放电的分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.H.SHON等: "Method to increase the simulation speed of particle-in-cell(PIC) code", 《COMPUTER PHYSICS COMMUNICATIONS》 *
GIACOMO GRASSO等: "Hierarchical agglomerative sub-clustering technique for particles management in PIC simulations", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A》 *
GIOVANNI LAPENTA: "Particle Rezoning for Multidimensional Kinetic Particle-in-Cell Simulations", 《JOURNAL OF COMPUTATIONAL PHYSICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665531A (zh) * 2018-05-08 2018-10-16 阿里巴巴集团控股有限公司 3d粒子模型的变换方法及装置
CN111008489A (zh) * 2020-03-10 2020-04-14 上海索辰信息科技有限公司 稀薄气流数值模拟中网格单元粒子数优化方法
CN111563345A (zh) * 2020-05-12 2020-08-21 电子科技大学 一种基于k-d树数据结构的用于微放电数值模拟的粒子合并方法
CN111563345B (zh) * 2020-05-12 2023-04-07 电子科技大学 一种基于k-d树数据结构的用于微放电数值模拟的粒子合并方法
CN113919191A (zh) * 2021-08-26 2022-01-11 西安空间无线电技术研究所 一种微波低气压放电的分析方法

Also Published As

Publication number Publication date
CN102930102B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN106970375B (zh) 一种机载激光雷达点云中自动提取建筑物信息的方法
Tao et al. KD-tree based fast ray tracing for RCS prediction
CN102033985A (zh) 基于*-矩阵算法的高效时域电磁仿真方法
CN107392875A (zh) 一种基于k近邻域划分的点云数据去噪方法
CN102567780B (zh) 一种空间微波部件低气压放电数值模拟方法
CN104318622B (zh) 一种室内场景非均匀三维点云数据的三角网格建模方法
CN102930102B (zh) 一种微波部件二次电子倍增仿真中粒子合并方法
CN103699714B (zh) 一种基于有限元和无网格耦合的柔性物体实时切割仿真方法
CN104063903A (zh) 三维实体模型的四面体网格生成方法和装置
CN103701466A (zh) 基于特征保留的散乱点云压缩算法
CN102819647B (zh) 一种非均质材料随机微观结构有限元建模方法
CN107085629A (zh) 一种基于视频重建与欧拉模型耦合的流体仿真方法
CN104317772A (zh) 一种基于空间网格分割的蒙特卡罗粒子输运快速几何处理方法
CN104182571A (zh) 基于Delaunay和GPU的Kriging插值方法
Liu et al. Recovery of high frequency wave fields from phase space–based measurements
CN104657442A (zh) 基于局部搜索的多目标社区发现方法
Liang et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set
CN104778286B (zh) 掠海飞行器电磁散射特性快速仿真方法
CN108710715A (zh) 基于任意抛分网格下粒子搜索技术的飞行器气动特性确定方法
CN104951752A (zh) 一种从机载激光点云数据提取房屋的方法
CN103279612A (zh) 复杂目标雷达回波快速获取的多重网格预条件方法
CN112541279B (zh) 一种飞机近场散射特征构造方法
CN104156268A (zh) 一种GPU上MapReduce负载分配和线程结构优化方法
CN105095546A (zh) 分析多尺度导体目标电磁散射特性的混合阶Nystrom方法
Lotova et al. Numerical statistical modelling algorithms for electron avalanches in gases

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant