CN102893165A - 通过采用离子簇源沉积纳米粒子修改原子力显微镜探针 - Google Patents
通过采用离子簇源沉积纳米粒子修改原子力显微镜探针 Download PDFInfo
- Publication number
- CN102893165A CN102893165A CN2011800233684A CN201180023368A CN102893165A CN 102893165 A CN102893165 A CN 102893165A CN 2011800233684 A CN2011800233684 A CN 2011800233684A CN 201180023368 A CN201180023368 A CN 201180023368A CN 102893165 A CN102893165 A CN 102893165A
- Authority
- CN
- China
- Prior art keywords
- probe
- afm
- nano particle
- deposition
- ion cluster
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 32
- 230000008021 deposition Effects 0.000 title claims description 12
- 238000004630 atomic force microscopy Methods 0.000 title abstract 3
- 230000004048 modification Effects 0.000 title description 7
- 238000012986 modification Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000000523 sample Substances 0.000 claims description 58
- 238000005516 engineering process Methods 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 239000000696 magnetic material Substances 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical group [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- -1 piezoelectric Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000002465 magnetic force microscopy Methods 0.000 description 4
- 238000004621 scanning probe microscopy Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 230000005477 standard model Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
- G01Q60/42—Functionalisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/50—MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
- G01Q60/54—Probes, their manufacture, or their related instrumentation, e.g. holders
- G01Q60/56—Probes with magnetic coating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physical Vapour Deposition (AREA)
- Sampling And Sample Adjustment (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种用于通过采用聚集源沉积纳米粒子形式的材料来覆盖原子力显微镜(AFM)探针的方法。
Description
技术领域
本发明涉及一种用于通过采用离子簇源沉积纳米粒子形式的材料涂覆AFM(原子力显微镜)探针的方法。
背景技术
当前的原子力显微镜(AFM)的分辨率极限受到用于测量过程的探针的几何形状的制约。一般而言,可以看出纳米对象(例如在平面硅表面上沉积的钴纳米粒子)的形貌:由所述球形纳米粒子组成的轮廓显示了远大于高度的宽度。这是扫描探针显微镜(SPM)用户之间所周知的事实并且是由于探针形状随着对象(在该情况下是特性将被测量的粒子)的形态卷曲。具有较高高宽比(探针长度和半径之间的差别)的探针允许将探针移动得更近以扫描孔和裂缝,从而改善SPM测量的分辨率。一般而言,AFM探针通常是平均半径为7nm的方形锥。虽然具有高高宽比和较低曲率半径的探针也是能在市面上买到的,但是它们的使用离子铣削技术的个性化生产过程导致很高的成本,此外它们的固有的脆弱性导致了比更传统的探针更低的平均寿命。
探针修改在高端SPM用户之间相当普遍,使得能够修改商用探针以用于磁力显微镜(MFM)的测量、压电响应测量等等。该功能化并不试图修改探针的高宽比,但是试图通过修改它的化学成分实现特定的性质(磁性质、压电性质等)[G.Macedo、D.Ananias,P.S.André、R.A.Sa Ferreira、A.L.Kholkin、L.D.Carlos和J.Rocha,Nanotechnology,19 5(2008)295702]。此外,使用的生产过程有时涉及减少高宽比,如A.Geissler等的文章[A.Geissler、M.-F.Vallat、L.Vidal、J.-C.Voegel、J.Hemmerle、P.Schaaf和V.Roucoules,Langmuir,24(2008)4874-4880]中所描述的,以及在Quy K.Ong等的文章[Quy K.Ong、IgorSokolov,Journal of Colloid and Interface Science,310(2007)385-390]中所描述的。
另一方面,在高宽比改善上的进步旨在采用碳纳米管来功能化探针,如S.S.Wong等在文章[S.S.Wong、A.T.Woolley、E.Joselevich、C.M.Lieber,Chemical Physics Letters,306(1999)219–225]中所描述的(一种昂贵的新近销售的探针)。必须强调的是,此类修改不允许简单的方式修改探针的化学性质以用于特定应用。
发明内容
本发明提供了一种用于通过采用离子簇源(ICS)沉积纳米粒子来涂覆原子力显微镜(AFM)探针的方法。
本发明的第一方面涉及一种用于通过离子簇源技术利用用于以纳米粒子形式涂覆的材料涂覆至少一个AFM探针的方法。
在优选的实施例中,用于涂覆AFM探针的材料选自包括下列材料的列表:金属材料、磁性材料、压电材料、导电材料、绝缘材料、介电材料和它们的任何组合。在一个更优选的实施例中,该材料选自金属材料、磁性材料或半导体材料。该材料位于被称为离子簇源的第一腔中。
在优选的实施例中,离子簇源技术是在真空或超高真空条件下在第一腔中和在连接至离子簇源的附加腔中执行的,将被涂覆的AFM探针位于该离子簇源处。
本发明的方法提出通过沉积具有受控尺寸的纳米粒子修改AFM探针的高宽比。这进一步需要沉积所需特定材料(金属材料、磁性材料、压电材料、导电材料、绝缘材料,…)的纳米粒子的可能性,使得一旦获得高宽比改善,将获得探针的化学组成的修改;换句话说,实现允许获得更好分辨率和功能化的AFM探针。
本发明的方法通过包括通过在真空或超高真空(UHV)的条件下的离子簇源的沉积的离子簇源技术实现。该设备的操作包括在气体控制的气氛中生成所需材料的离子的等离子。所述气体优选选自氩气、氦气、氮气、氧气或它们的任何组合,以及更优选为氩气或氦气,考虑到它们有利于用于生成纳米粒子的材料的离子的簇。
采用这样的ICS获得纳米粒子涂覆的精确的尺寸和密度控制。
由于ICS是真空或UHV过程,ICS的使用确保了簇的化学纯度。它进一步允许在任何类型的表面(任何销售的探针或者本领域技术人员已知的探针)上从任何类型的材料生产具有受控尺寸的簇。不像其他生产方法,由于在沉积过程中纳米粒子的温和的动能吸附、软着陆,它是一种能够防止损坏原始探针的技术。
采用该技术通过调整确定它的不同变量(气流量、磁控管功率、簇距离、时间,...)来获得纳米粒子生产过程的精确控制,以及获得将被涂覆的表面(AFM探针)的纳米粒子尺寸分布和涂层密度的精确控制。通过该方法产生的纳米粒子在AFM探针的小表面上是均匀随机分布的。
操作条件通常是:涂覆时间、簇距离、磁控管功率和气流量,所有这些都是根据所要使用的材料的类型相互依存的参数和变量。
在第二方面中,本发明涉及一种可通过本发明的方法获得的经涂覆的AFM探针。
需要指出的重要一点是,由于在真空腔中的溅射过程已在工业上普遍使用,因此本发明的修改AFM探针的方法在工业范围上容易实现。通过将ICS联接至这些已经存在的腔将允许AFM探针的连续修改。
本发明的第三方面涉及使用如上所述的AFM探针用于对象和纳米粒子沉积的表面形态表征、磁或压电性质的确定。另一方面,通过具有受控化学成分的纳米粒子的沉积的AFM探针的功能化允许从它们的物理化学性质观点表征纳米对象。例如,可采用压电或磁性材料的纳米粒子涂覆AFM探针以研究纳米对象的压电或磁性性质。
在整个说明书和权利要求书中,单词“包括”和其变型不旨在排除其他技术特征、增补、组件或步骤。对于本领域技术人员,本发明的其他目的、优点和特征将从说明书部分地和从本发明的实践部分地推导。以下示例和附图通过举例的方式提供并且不意味着限制本发明。
附图说明
图1-左侧的图像示出了通过AFM获得的钴纳米粒子的形貌,(右侧)纳米粒子轮廓。从由所述球形纳米粒子组成的轮廓可以看出其宽度远大于其高度。
图2示出了通过离子铣削获得的商用探针(纳米传感器)的SEM(扫描电子显微镜)图像的示例。
图3示出了a)硅基底(100)上的2-3nm的纳米粒子的AFM图像;b)纳米粒子轮廓;c)具有纳米粒子的AFM探针的图。
图4-左侧:采用未修改的商用探针获得的AFM图像;右侧:采用通过纳米粒子沉积修改的商用探针获得的相同样品的图像;底部:上部图像的特定区域的轮廓。
具体实施方式
本发明以下将通过发明人所进行的多个测试来说明,清楚地示出用于涂覆或修改AFM探针的表面的本发明的方法的特征和效果。
进行测试的重点在于将采用未修改的商用AFM探针获得的AFM图像与采用通过沉积由离子簇源生成的纳米粒子修改的商用探针获得的AFM图像进行比较。
在超高真空条件下使用由Oxford Applied Research生产的离子簇源和Co95Au5合金坯进行沉积。
优化纳米粒子生产过程,以借助于ICS生产2-3nm球形纳米粒子。为此,相关参数如下:施加至磁控管的功率:20W;簇长度:50mm;氩气流量:60sccm;氦气流量:50sccm;离子簇源和AFM探针之间的距离:190mm;沉积时间:2分钟。图3a至3b示出了这些直径约为2-3nm的纳米粒子的沉积的示例;在图3a至3b中纳米粒子沉积在平面硅基底上。在商用AFM探针上的这些纳米粒子的沉积导致获得具有更好高宽比和受控化学成分的探针(图3c)。
采用未修改的商用AFM探针和采用2-3nm直径的纳米粒子的沉积的经修改商用AFM探针测量标准样品。图4示出了采用两种探针在标准样品的完全相同的区域所得到测量值的比较。图像对应于450×450nm2的区域。没有出现在采用商用探针记录的图像中的一系列结构可在采用经修改的AFM探针记录的图像中清楚地看到。这是由于采用纳米粒子的经修改的探针比商用探针具有更好的分辨率,因为经修改的探针具有较低程度的不确定性,允许以更好的分辨率来分辨结构。在图4的底部所示出的轮廓更精确地示出了经修改的探针的改善的分辨率。由于更好的分辨率,可以在这些轮廓中看到在测量结构(峰宽)中的有系统的减少。
图4示出了在商用探针上沉积纳米粒子的形态学效应。在例如沉积磁性材料的每种情况下,该形态学效应必须与化学效应结合,磁性材料将允许使用这些探针用于MFM(磁力显微镜)测量。
Claims (8)
1.一种用于通过离子簇源技术利用用于以纳米粒子形式涂覆的材料来涂覆至少一个AFM探针的方法。
2.根据权利要求1所述的方法,其中,所述材料选自包括下列材料的列表:金属材料、磁性材料、压电材料、导电材料、绝缘材料、介电材料、半导体材料和它们的任何组合。
3.根据权利要求2所述的方法,其中,所述材料选自金属材料、磁性材料或半导体材料。
4.如权利要求1至3中的任一项所述的方法,其中,在离子簇源技术的簇区域中使用选自氦气、氩气、氧气、氮气或它们的任何组合的气体。
5.根据权利要求4所述的方法,其中,所述气体选自氩气或氦气。
6.根据权利要求1至5中的任一项所述的方法,其中,在真空或超高真空的条件下在连接至离子簇源技术的簇区域的腔中执行所述技术。
7.一种能够通过根据权利要求1至6中的任一项所述的方法获得的经涂覆的AFM探针。
8.根据权利要求7的AFM探针用于对象和纳米粒子沉积的表面形态表征、磁或压电性质的确定的用途。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201030712 | 2010-05-13 | ||
ES201030712A ES2369943B1 (es) | 2010-05-13 | 2010-05-13 | Modificación de puntas de microscopía de fuerzas atómicas mediante depósito de nanopartículas con una fuente de agregados. |
PCT/ES2011/070319 WO2011141602A1 (es) | 2010-05-13 | 2011-05-04 | Modificación de puntas de microscopía de fuerzas atómicas mediante depósito de nanopartículas con una fuente de agregados |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102893165A true CN102893165A (zh) | 2013-01-23 |
Family
ID=44913989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011800233684A Pending CN102893165A (zh) | 2010-05-13 | 2011-05-04 | 通过采用离子簇源沉积纳米粒子修改原子力显微镜探针 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9015861B2 (zh) |
EP (1) | EP2570815B1 (zh) |
JP (1) | JP6044786B2 (zh) |
KR (1) | KR101806389B1 (zh) |
CN (1) | CN102893165A (zh) |
ES (1) | ES2369943B1 (zh) |
RU (1) | RU2568069C2 (zh) |
WO (1) | WO2011141602A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102407818B1 (ko) | 2016-01-26 | 2022-06-10 | 삼성전자주식회사 | 원자힘 현미경용 캔틸레버 세트, 이를 포함하는 기판 표면 검사 장치, 이를 이용한 반도체 기판의 표면 분석 방법 및 이를 이용한 미세 패턴 형성 방법 |
RU2631529C2 (ru) * | 2016-03-18 | 2017-09-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" | Способ исследования поверхности на атомно-силовом микроскопе с помощью флуоресцентных квантовых точек |
EP4154022A2 (en) | 2020-05-18 | 2023-03-29 | Next-Tip, S.L. | Scanning probe microscope (spm) tip |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217855A (en) * | 1974-10-23 | 1980-08-19 | Futaba Denshi Kogyo K.K. | Vaporized-metal cluster ion source and ionized-cluster beam deposition device |
CN1397012A (zh) * | 2000-11-26 | 2003-02-12 | 大研化学工业株式会社 | 根据聚焦离子束加工制作的扫描型显微镜用探针 |
EP1666866A1 (en) * | 2003-09-03 | 2006-06-07 | Hitachi Kenki Finetech Co., Ltd. | Probe manufacturing method, probe, and scanning probe microscope |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04120270A (ja) * | 1990-09-10 | 1992-04-21 | Matsushita Electric Ind Co Ltd | クラスタイオンビーム発生方法およびクラスタイオンビーム発生装置 |
JPH05325274A (ja) * | 1992-05-15 | 1993-12-10 | Canon Inc | 圧電変位素子、微小プローブ、及びこれらの製造方法、及びこれらを用いた走査型トンネル顕微鏡並びに情報処理装置 |
DE19752202C1 (de) * | 1997-11-25 | 1999-04-15 | Hans Dr Hofsaes | Herstellungsverfahren für eine mikromechanische Vorrichtung |
US7282710B1 (en) | 2002-01-02 | 2007-10-16 | International Business Machines Corporation | Scanning probe microscopy tips composed of nanoparticles and methods to form same |
WO2005006347A1 (en) * | 2003-07-10 | 2005-01-20 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Nanoparticles functionalized probes and methods for preparing such probes |
WO2007078316A2 (en) * | 2005-05-10 | 2007-07-12 | The Regents Of The University Of California | Tapered probe structures and fabrication |
US8273407B2 (en) * | 2006-01-30 | 2012-09-25 | Bergendahl Albert S | Systems and methods for forming magnetic nanocomposite materials |
-
2010
- 2010-05-13 ES ES201030712A patent/ES2369943B1/es not_active Expired - Fee Related
-
2011
- 2011-05-04 WO PCT/ES2011/070319 patent/WO2011141602A1/es active Application Filing
- 2011-05-04 RU RU2012149415/28A patent/RU2568069C2/ru active
- 2011-05-04 JP JP2013509581A patent/JP6044786B2/ja not_active Expired - Fee Related
- 2011-05-04 KR KR1020127032264A patent/KR101806389B1/ko active IP Right Grant
- 2011-05-04 US US13/697,598 patent/US9015861B2/en active Active
- 2011-05-04 CN CN2011800233684A patent/CN102893165A/zh active Pending
- 2011-05-04 EP EP11780248.8A patent/EP2570815B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217855A (en) * | 1974-10-23 | 1980-08-19 | Futaba Denshi Kogyo K.K. | Vaporized-metal cluster ion source and ionized-cluster beam deposition device |
CN1397012A (zh) * | 2000-11-26 | 2003-02-12 | 大研化学工业株式会社 | 根据聚焦离子束加工制作的扫描型显微镜用探针 |
EP1666866A1 (en) * | 2003-09-03 | 2006-06-07 | Hitachi Kenki Finetech Co., Ltd. | Probe manufacturing method, probe, and scanning probe microscope |
Non-Patent Citations (3)
Title |
---|
C.BINNS: "nanoclusters deposited on surfaces", 《SURFACE SCIENCE REPORTS》 * |
S.A.KOCH: "magnetic structural properties of Co nanocluster thin film", 《PHYSICAL REVIEW B》 * |
尤大伟: "制备光学薄膜的离子源技术概述", 《真空科学与技术学报》 * |
Also Published As
Publication number | Publication date |
---|---|
RU2568069C2 (ru) | 2015-11-10 |
RU2012149415A (ru) | 2014-06-20 |
EP2570815A1 (en) | 2013-03-20 |
ES2369943A1 (es) | 2011-12-09 |
KR101806389B1 (ko) | 2017-12-07 |
EP2570815B1 (en) | 2021-02-17 |
JP6044786B2 (ja) | 2016-12-14 |
JP2013530390A (ja) | 2013-07-25 |
US9015861B2 (en) | 2015-04-21 |
KR20130079430A (ko) | 2013-07-10 |
US20130111637A1 (en) | 2013-05-02 |
EP2570815A4 (en) | 2015-04-01 |
ES2369943B1 (es) | 2012-10-15 |
WO2011141602A1 (es) | 2011-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dougherty et al. | Tunneling spectroscopy of Stark-shifted image potential states on Cu and Au surfaces | |
US8115921B2 (en) | Probe for near-field light scattering and process for production thereof | |
CN102893165A (zh) | 通过采用离子簇源沉积纳米粒子修改原子力显微镜探针 | |
Vitali et al. | Inelastic electron tunneling spectroscopy: A route to the identification of the tip-apex structure | |
Gacka et al. | Focused ion beam-based microfabrication of boron-doped diamond single-crystal tip cantilevers for electrical and mechanical scanning probe microscopy | |
Dagata et al. | Method for measuring the diameter of polystyrene latex reference spheres by atomic force microscopy | |
CN1801399A (zh) | 用于扫描磁力显微镜的探针及其制备方法和在碳纳米管上形成铁磁合金膜的方法 | |
Merkulov et al. | Field emission properties of different forms of carbon | |
Pastewka et al. | The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations | |
Zheng et al. | Vertically aligned boron-doped diamond hollow nanoneedle arrays for enhanced field emission | |
Baer et al. | Challenges in applying surface analysis methods to nanoparticles and nanostructured materials | |
Li et al. | Height measurement of dsDNA and antibodies adsorbed on solid substrates in air by vibrating mode scanning polarization force microscopy | |
Youn et al. | Generation of charged nanoparticles and their deposition behavior under alternating electric bias during chemical vapor deposition of silicon | |
Kosukegawa et al. | Structure and electrical properties of molybdenum-containing diamond-like carbon coatings for use as fatigue sensors | |
Bogana et al. | Simulation of atomic force microscopy of fractal nanostructured carbon films | |
Gacka et al. | Fabrication of focused ion beam-deposited nanowire probes for conductive atomic force microscopy | |
TW201317580A (zh) | 探針針尖修飾方法 | |
Nakabayashi et al. | Inexpensive two-tip nanomanipulator for a SEM | |
Jiang et al. | Nanoscale scratching of platinum thin films using atomic force microscopy with DLC tips | |
Chen et al. | Scanning electron beam induced deposition for conductive tip modification | |
Chumak et al. | Fabrication and complex investigation of LAFE based on CNT by PECVD with island catalyst | |
Herbig et al. | Surface track formation on mica surfaces due to grazing incidence 20.2 MeV C60 ions: a comparative study employing shadow-replica electron microscopy, tapping-mode and phase-imaging scanning force microscopy | |
Hirata et al. | The plasma for material processing | |
KR100829578B1 (ko) | 미세한 직경의 메탈 나노팁 및 그 제조방법 | |
Ahmadirad et al. | Effect of magnetic field on Ni nanoclusters prepared via a combined plasma-enhanced chemical vapor deposition and radio frequency sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130123 |