CN102876325B - 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法 - Google Patents

光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法 Download PDF

Info

Publication number
CN102876325B
CN102876325B CN201210390134.XA CN201210390134A CN102876325B CN 102876325 B CN102876325 B CN 102876325B CN 201210390134 A CN201210390134 A CN 201210390134A CN 102876325 B CN102876325 B CN 102876325B
Authority
CN
China
Prior art keywords
preparation
altogether
ion
trivalent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210390134.XA
Other languages
English (en)
Other versions
CN102876325A (zh
Inventor
潘跃晓
卢静
王稼国
叶欣涵
黄少铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201210390134.XA priority Critical patent/CN102876325B/zh
Publication of CN102876325A publication Critical patent/CN102876325A/zh
Application granted granted Critical
Publication of CN102876325B publication Critical patent/CN102876325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

本发明公开了光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法。该材料的化学组成为Ca1-jAl12O19:iMnx+,jLn3+,其中Ln为La3+、Bi3+、Sm3+、Nd3+和Tm3+中的一种,0.01%≤i≤1.0%,1%<j≤7.0%,x=2或4。其制备方法为高温固相法,将固体原料按化学计量比充分研磨混匀,利用高温固相法分两步烧结,冷却即得产品。本发明通过电荷补偿在空气中自动还原锰离子。材料在紫外照射下可发红光、绿光、及同时发红光与绿光。材料的光色可通过三价掺杂离子的浓度及锰离子的价态调控,可适合于二基色与三基色白光LED。

Description

光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法
技术领域
本发明涉及发光材料,特别是涉及一种可在空气中合成的光色可调的变价锰离子掺杂铝酸盐及制备方法。具体涉及一种能有效被近紫外与蓝光LED芯片激发,通过共掺与电荷补偿的方法,调控锰离子价态,实现材料光色可调的变价锰离子掺杂铝酸盐发光材料以及材料的制备方法。
背景技术
白光LED以具有节能、环保、美观和长寿命等这些传统光源无法比拟的优点而深受人们的重视。目前,实现白光LED新光源主要的三种途径中,最早是将红蓝绿三种不同的颜色的芯片安装在一起,用三个驱动电源,实现三基色白光,这种方式的缺点是,难以实现色温与显色指数的可调,而且当其中一种芯片坏掉,白光的效果将受到严重影响;第二种也是现在市场上的主导白光LED产品的封装方式,是将蓝光GaN芯片与黄色荧光粉(如YAG:Ce3+)组合而成的黄蓝二基色白光LEDs,这种方案由于蓝光芯片效率高,stokes位移小(即能量损失小),使白光LED的效率远高于传统照明,但是由于是二基色白光中缺少红色成份,使这种白光显色指数不高,尤其在低色温区难以实现高显色性,现在成功应用于二基色LED的红光材料是由Eu2+离子掺杂的氮化物(H.T.Hintzen,J.W.H.Van Krevel,G.Ir Botty,“Red emitting Iuminescent material,”EuropeanPatent EP 1104799 A1,1999;R.Mueller-Mach,“Highly efficient all-nitride phosphor-converted white lightemitting diode,”Phys.Status.Solidi.(a)202,2005,1727.)。由于原料价格高,制备过程避水避氧,使得此类红光材料的价格远高于黄粉YAG:Ce3+;第三种方式是由近紫外光LED芯片激发的红、绿、蓝三基色荧光粉,该方式类似于传统的荧光灯,可得到高显色指数、色温稳定的白光LED,随着近紫外LED芯片的发光效率进一步提高,这种白光LED将来有可能全面取代传统照明。
据目前研究报道,在空气条件下,用高温固相法、溶胶凝胶法及燃烧法合成的锰掺杂的CaAl12O19,都只发红光,即为四价锰特征发射,如果用二价锰为原料,则在空气中被还原成四价,如果以四价的锰(如二氧化锰)为原料,则在空气中保持四价(T.Murata,T.Tanoue,M.Iwasaki,K.Morinaga,T.Hase,“Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor forwhite LED,”J.Lumin.114,2005,207-212;J.H.Park,M.S.Kwon,“Sol-gel synthesis of CaAl12O19:Mn phosphor andred Iuminescence by near-ultraviolet/blue excitation,”Elec.Mater.Lett.6(1),2010,13-15-;J.Wang,W.H.Nei,and P.B.Xie,“Properties and synthesis of morphology-controllable CaAl12O19:Mn4+ by combustion synthesis,”Proc.Eng.27,2012,698-704.),尽管文献在讨论发光机理的时候,证实该材料中有Mn2+存在,但是,在文献及我们样品发光光谱中没有检测到Mn2+的发射峰。在还原气氛中,也只得到很弱的绿光(4配位Mn2+发光)与红光(6配位Mn4+),整体发光强度远弱于空气中合成的样品。
近年来,单组份多光色的发光材料引起人们极大的兴趣,是由于这种材料相对于多组份多光色而言,不存在自吸收效应(即蓝光被红光与绿光吸收,使效率降低),也免去应用过程中复杂的混料工艺。大多数单组份多光色的发光材料是由Mn2+与Eu2+共掺的,通过基质材料中不同的阳离子格位取代及Mn2+与Eu2+之间的能量传递,实现光色可调。(C.K.Chang,T.M.Chena,“White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mnthrough energy transfer,”Appl.Phys.Lett.90,2007,161901;Y.H.Won,H.S.Jang,W.B.Im,D.Y.Jeong,and J.S.Lee,“Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+,Mn2+ for application to warm white-light-emitting diodes,”Appl.Phys.Lett.89(23),2006,231909(1-3);N.Guo,Y.J.Huang,M.Yang,Y.H.Song,Y.H.Zheng,and H.P.You,“A tunable single-component warm white-light Sr3Y(PO4)3:Eu2+,Mn2+ phosphor for white-light emitting diodes,”Phys.Chem.Chem.Phys.13,2011,15077-15082.)此类材料均要求在还原气氛中合成,才可得到低价的Mn2+与Eu2+,而其中的Eu2+原料非常昂贵。使得成本非常高,不利于大规模的工艺生产。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种在空气中直接合成的光色可调的变价锰离子掺杂铝酸盐发光材料,该材料可用于白光LED。
本发明另一目的在于提供光色可调的变价锰离子掺杂铝酸盐发光材料的制备方法,该方法利用原料廉价、充足的过渡金属作为激活剂,钨钛矿型铝酸钙作为基质,利用最易实现大规模应用的高温固相法,该方法利用激活离子的价态可调,使得材料的光色可调。
本发明的目的通过如下技术方案实现:
光色可调的变价锰离子掺杂铝酸盐发光材料:其化学组成为Ca1-jAl12O19:iMnx+,jLn3+,其中Ln为La3+、Bi3+、Sm3+、Nd3+和Tm3+中的一种;0.01%≤i≤1.0%,1≤j≤7.0%,x=2或4;该材料以铝酸钙CaAl12O19为基质,以Mn4+与Mn2+变价锰离子为激活离子,材料的光色通过共掺的三价离子的浓度实现调控。
进一步地,对于共掺La3+的材料,当1%<J<3%时,材料同时发红光与绿光;当3%≤J≤7%时,材料发绿光。
对于共掺Bi3+的样品,当1≤J≤7%时,材料同时发红光与绿光。
所述光色可调的变价锰离子掺杂铝酸盐发光材料的制备方法:将固体原料碳酸钙、氧化铝、二氧化锰与三价共掺离子氧化物或硝酸盐按化学计量比准确称量并充分研磨混匀,分别在800~1000℃与1300~1500℃空气中各烧结3~5小时,冷却即得产品;三价共掺离子氧化物或硝酸盐是指Ln3+的氧化物或硝酸盐,Ln为La3+、Bi3+、Sm3+、Nd3+和Tm3+中的一种。
进一步地,所述三价共掺离子氧化物为La2O3、Sm2O3、Gd2O3、Nd2O3或Tm2O3
三价共掺硝酸盐为Bi(NO3)3.5H2O。
相对于Ca2+的摩尔百分数,三价共掺离子氧化物用量为2%~5.0%;相对于Al3+的摩尔百分数,锰离子掺杂浓度为0.05%≤i≤1.0%。
所述充分研磨的时间为10~40分钟。
本发明发光材料以铝酸钙CaAl12O19为基质,以变价锰离子(即Mn4+与Mn2+)为激活离子,材料的光色可通过共掺的三价离子的浓度来实现调控。
对于共掺La3+的样品,当共掺的浓度为1<J<3%时,同时出现红光与绿光,分别为六配位Mn4+与四配位的Mn2+发光;当共掺的浓度为3%≤J≤7%时,材料只发绿光,属于四配位的Mn2+发光,即Mn4+在空气中自动还原为Mn2+,原因是由于电荷补偿的作用。
对于共掺Bi3+的样品,当1<J≤7%时,材料同时发红光与绿光,分别为六配位Mn4+与四配位的Mn2+发光;材料的绿光,也属于四配位的Mn2+发光,也是由于电荷补偿的作用将Mn4+在空气中自动还原为Mn2+
对于共掺Sm3+、Nd3+、Tm3+的样品,也是随着共掺离子浓度的增加,分别出现同时发红光与绿光、只发绿光的现象。材料发光的颜色(波长)取决于共掺三价离子的种类与浓度。
该材料所发红光与绿光,分别属于Mn4+与Mn2+的d-d跃迁发射,均为宽谱带。材料在蓝光与近紫外光区域有强的宽带吸收,该材料可吸收到蓝光LED芯片(波长为430~480nm)与近紫外光LED芯片(380~410nm)的光。因此该材料可用于白光LED。
在该材料中,在空气中将Mn4+还原为Mn2+的共掺的三价离子,如La3+、Bi3+、Sm3+、Nd3+、Tm3+的取代半径相似的Ca2+,产生一个正电荷的缺陷LnCa ·与一个负电荷的电子,而且当Mn4+取代半径相似的Al3+,也产生一个正电荷的缺陷MnAl ·与一个负电荷的电子,由于共掺离子Ln3+不容易还原,而当缺陷MnAl ·与两个电子在高温复合时,Mn4+就自动还原为Mn2+
与现有技术相比,本发明具有以下优点和效果:
(1)本发明提供一种新型的以CaAl12O19为基质能在空气中就可得绿光(4配位Mn2+发光)、红光(6配位Mn4+发光)、及同时发绿光与红光。
(2)本产品利用高温固相法,使得制备方法简单、易操作,制备过程中无毒害气体产生从而无污染,而且在空气中合成,使得对设备的要求降低更有利于大规模的工业生产。
(3)本发明采用的原料价格低廉并易得,且本发明的产品不掺杂昂贵的稀土元素(如氧化铕,氧化铽等),不仅可缓解市场上稀土供不应求的压力,又可大大的降低生产成本,为工业生产带来更大的经济效益。
附图说明
图1为XRD谱图;图中a为已知红光材料CaAl12O19:0.5%Mn的XRD谱图;b为实施例1中绿光材料的XRD。
图2为实施例中的不同Bi3+掺杂浓度下(Ca1-jBij)Al12O19:0.5%Mn在396nm激发下的发射光谱图,图中的a、b、c对应Bi3+的浓度为1%、3%、7%。
图3为实施例3中所得的绿光材料的激发光谱图,监测波长分别为(a)655nm、(b)517nm。
图4为本发明实施例4所得在空气中合成的(Ca0.95La0.05)Al12O19:0.5%Mn的发射光谱。
具体实施方式
下面结合实施例和附图对本发明作进一步的描述,但本发明要求保护的范围并不局限于实施例表示的范围。
实施例1
按照CaCO3∶Al2O3∶MnO2∶Bi(NO3)3·5H2O=0.99∶12∶0.5%∶0.01摩尔比,用电子天平分别准确称量0.9900g(0.0099mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0043g(0.00005mol)固体二氧化锰MnO2(分析纯),及0.0485g(0.0001mol)硝酸铋Bi(NO3)3·5H2O(分析纯),于玛瑙研钵中充分研磨40分钟,使混合均匀得混合物。在空气条件下,将混合物置于800℃的马弗炉中熔融5小时,冷却后取出,再次研磨10分钟,得前驱物,将前驱物放入1500℃的空气中烧结3小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,观察到该产品在396nm氙灯的激发下,发射出Mn2+的波段为500~550nm的绿光及Mn4+的620~700nm的红光(如图2中的a)。而现有的产品红光材料CaAl12O19:0.5%Mn只能发光,而无法做到光可调。利用XRD粉末衍射仪(Bruker D8 Advance)在室温条件下检测产品的物相。将该产品的XRD(图1b)与已知红光材料CaAl12O19:0.5%Mn的XRD谱(图1a)均与CaAl12O19相的标准卡片数据相符。本发明通过电荷补偿在空气中自动还原锰离子。材料在紫外照射下可发红光、绿光。且本产品利用高温固相法,使得制备方法简单、易操作,制备过程中无毒害气体产生从而无污染,而且在空气中合成,使得对设备的要求降低更有利于大规模的工业生产。
实施例2
按照CaCO3∶Al2O3∶MnO2∶Bi(NO3)3·5H2O=0.97∶12∶0.5%∶0.03摩尔比,用电子天平分别准确称量0.9700g(0.0097mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0043g(0.00005mol)固体二氧化锰MnO2(分析纯),及0.1454g(0.0003mol)硝酸铋Bi(NO3)3·5H2O(分析纯),于玛瑙研钵中充分研磨30分钟,使混合均匀得混合物。在空气条件下,将混合物置于900℃的马弗炉中熔融5小时,冷却后取出,再次研磨10分钟,得前驱物,将前驱物放入1300℃的空气中烧结3小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,观察到该产品在396nm氙灯的激发下,发射出Mn2+的波段为500~550nm的绿光及Mn4+的620~700nm的红光。(如图2中的b)。
实施例3
按照CaCO3∶Al2O3∶MnO2∶Bi(NO3)3·5H2O=0.93∶12∶0.5%∶0.07摩尔比,用电子天平分别准确称量0.9300g(0.0093mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0043g(0.00005mol)固体二氧化锰MnO2(分析纯),及0.33915g(0.0007mol)硝酸铋Bi(NO3)3·5H2O(分析纯),于玛瑙研钵中充分研磨10分钟,使混合均匀得混合物。在空气条件下,将混合物置于1000℃的马弗炉中熔融5小时,冷却后取出,再次研磨20分钟,得前驱物,将前驱物放入1300℃的空气中烧结3小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,用396nm氙灯的激发下,该产品发射500~550nm的强绿光及620~700nm的弱红光(如图2中的c)。该产品在绿光517nm及红光655nm的监测下,得到的两个激发光谱显示该产品在紫光区域和蓝光区域都有较强的吸收(如图3中a、b),从而本发明可应用于近紫外LED用荧光粉,同时发射红光与绿光。材料在紫外照射下可发绿光,本发明利用通过电荷补偿在空气中自动还原锰离子得到高效能的绿光材料。本发明利用高温固相法在空气中就可合成二价锰离子掺杂的以CaAl12O19为基质的绿色发光材料,不仅制备工艺简单,而且大大的降低的设备的要求,况且原料廉价且来源充足,从而更有利于实现大规模生产,并为企业创造更大的经济效益。
实施例4
按照CaCO3∶Al2O3∶MnO2∶La2O3=0.95∶12∶0.5%∶0.025摩尔比,用电子天平分别准确称量0.9500g(0.0095mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0043g(0.00005mol)固体二氧化锰MnO2(分析纯),及0.0814g(0.00025mol)氧化镧La2O3(分析纯),于玛瑙研钵中充分研磨20分钟,使混合均匀得混合物。在空气条件下,将混合物置于900℃的马弗炉中熔融3小时,冷却后取出,再次研磨20分钟,得前驱物,将前驱物放入1400℃的空气中烧结5小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,用396nm氙灯的激发下,该产品只发射Mn2+在500~550nm的强绿光(如图4所示)。材料在紫外照射下可发绿光,说明本发明利用通过电荷补偿在空气中将所有锰离子还原。
实施例5
按照CaCO3∶Al2O3∶MnO2∶Sm2O3=0.95∶12∶1.0%∶0.25摩尔比,用电子天平分别准确称量0.9500g(0.0095mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0086g(0.0001mol)固体二氧化锰MnO2(分析纯),及0.0872g(0.00025mol)氧化钐Sm2O3(分析纯),于玛瑙研钵中充分研磨20分钟,使混合均匀得混合物。在空气条件下,将混合物置于800℃的马弗炉中熔融4小时,冷却后取出,再次研磨30分钟,得前驱物,将前驱物放入1500℃的空气中烧结4小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,用396nm氙灯的激发下,该产品发射Mn2+在波段为500~550nm的绿光,Mn4+在620~700nm的红光,Sm3+在610nm左右的绿光。
实施例6
按照CaCO3∶Al2O3∶MnO2∶Tm2O3=0.95∶12∶0.1%∶0.25摩尔比,用电子天平分别准确称量0.9500g(0.0095mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0008g(0.00001mol)固体二氧化锰MnO2(分析纯),及0.0965g(0.00025mol)氧化铥Tm2O3(分析纯),于玛瑙研钵中充分研磨30分钟,使混合均匀得混合物。在空气条件下,将混合物置于800℃的马弗炉中熔融5小时,冷却后取出,再次研磨20分钟,得前驱物,将前驱物放入1400℃的空气中烧结5小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,用396nm氙灯的激发下,该产品发射Mn2+在波段为500~550nm的绿光,Mn4+在620~700nm的红光,Sm3+在410nm左右的绿光。
实施例7
按照CaCO3∶Al2O3∶MnO2∶Nd2O3=0.95∶12∶0.1%∶0.25摩尔比,用电子天平分别准确称量0.9500g(0.0095mol)固体碳酸钙CaCO3(分析纯)、6.1176g(0.06mol)固体氧化铝Al2O3(分析纯)、0.0008g(0.00001mol)固体二氧化锰MnO2(分析纯),及0.0841g(0.00025mol)氧化钕Nd2O3(分析纯),于玛瑙研钵中充分研磨30分钟,使混合均匀得混合物。在空气条件下,将混合物置于1000℃的马弗炉中熔融5小时,冷却后取出,再次研磨20分钟,得前驱物,将前驱物放入1500℃的空气中烧结5小时,冷却取出,即得产品。利用Fluoromax-4荧光光谱仪(HORIBA Jobin Yvon Inc.)研究其发光性能,用396nm氙灯的激发下,该产品发射Mn2+在波段为500~550nm的绿光与Mn4+在620~700nm的红光。

Claims (6)

1.光色可调的变价锰离子掺杂铝酸盐发光材料,其特征在于:该材料的化学组成为Ca1‐jAl12O19:iMnx+,jLn3+,其中Ln为La3+或Bi3+;0.01%≤i≤1.0%,1≤j≤7.0%,x=2或4;该材料以铝酸钙CaAl12O19为基质,以Mn4+与Mn2+变价锰离子为激活离子,材料的光色通过共掺的三价离子的浓度实现调控;对于共掺La3+的材料,当1%<j<3%时,材料同时发红光与绿光;当3%≤j≤7%时,材料发绿光;对于共掺Bi3+的样品,当1≤j≤7%时,材料同时发红光与绿光;
制备时,将固体原料碳酸钙、氧化铝、二氧化锰与三价共掺离子氧化物或硝酸盐按化学计量比准确称量并充分研磨混匀,分别在800~1000℃与1300~1500℃空气中各烧结3~5小时,冷却即得产品。
2.权利要求1所述光色可调的变价锰离子掺杂铝酸盐发光材料的制备方法,其特征在于:将固体原料碳酸钙、氧化铝、二氧化锰与三价共掺离子氧化物或硝酸盐按化学计量比准确称量并充分研磨混匀,分别在800~1000℃与1300~1500℃空气中各烧结3~5小时,冷却即得产品;三价共掺离子氧化物或硝酸盐是指Ln3+的氧化物或硝酸盐,Ln为La3+或Bi3+
3.根据权利2所述的制备方法,其特征在于:所述三价共掺离子氧化物为La2O3
4.根据权利2所述的制备方法,其特征在于:三价共掺硝酸盐为Bi(NO3)3 .5H2O。
5.根据权利2所述的制备方法,其特征在于:相对于Ca2+的摩尔百分数,三价共掺离子氧化物用量为2%~5.0%;相对于Al3+的摩尔百分数,锰离子掺杂浓度为0.05%≤i≤1.0%。
6.根据权利2所述的制备方法,其特征在于:所述充分研磨的时间为10~40分钟。
CN201210390134.XA 2012-10-15 2012-10-15 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法 Expired - Fee Related CN102876325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210390134.XA CN102876325B (zh) 2012-10-15 2012-10-15 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210390134.XA CN102876325B (zh) 2012-10-15 2012-10-15 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102876325A CN102876325A (zh) 2013-01-16
CN102876325B true CN102876325B (zh) 2015-05-27

Family

ID=47477850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210390134.XA Expired - Fee Related CN102876325B (zh) 2012-10-15 2012-10-15 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102876325B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468257B (zh) * 2013-10-11 2014-08-13 电子科技大学 一种蓝光紫外连续可调的铝酸盐荧光粉及其制备方法
CN103710022B (zh) * 2013-11-29 2016-02-17 佛山安亿纳米材料有限公司 转光剂及其制备方法、转光母粒及其制备方法
CN107118764B (zh) * 2016-12-21 2019-11-15 广东工业大学 一种红色荧光粉及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694862A (zh) * 2009-10-27 2010-04-14 罗维鸿 暖白光发光二极管及其锂化物荧光粉
CN102504812A (zh) * 2011-09-30 2012-06-20 温州大学 一种led用单组份多波长全色白光材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694862A (zh) * 2009-10-27 2010-04-14 罗维鸿 暖白光发光二极管及其锂化物荧光粉
CN102504812A (zh) * 2011-09-30 2012-06-20 温州大学 一种led用单组份多波长全色白光材料及其制备方法

Also Published As

Publication number Publication date
CN102876325A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
Chen et al. Rare-earth free self-activated and rare-earth activated Ca2NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties
Long et al. High quantum efficiency red-emission tungstate based phosphor Sr (La1− xEux) 2Mg2W2O12 for WLEDs application
US8858836B2 (en) Borophosphate phosphor and light source
CN101824321B (zh) 一种基于蓝光激发的白光led用荧光粉及其制备方法
EP2236580A2 (en) Nitride and oxy-nitride cerium based phosphor materials for solid-state lighting applications
CN101595201A (zh) 具有二价和三价混合阳离子的以铝-硅酸盐为主的橙-红色磷光体
CN102807863A (zh) 硅酸盐磷光体及其制造方法和光产生装置
Zhao et al. Brownish red emitting YAG: Ce3+, Cu+ phosphors for enhancing the color rendering index of white LEDs
CN106479498A (zh) 一种氮氧化物蓝色荧光粉及其制备方法与应用
Xiong et al. Synthesis and photoluminescence of Mn4+ in M4Al14O25 (M= Sr or Mg) compounds as red-light phosphors for white LED
CN103881705B (zh) 铈、铽或铕共掺激活的硅铝酸盐蓝绿色荧光粉及其制备方法
CN102391859A (zh) 白光led用绿色荧光粉及其制备方法和应用
CN103254895B (zh) 硅铝酸盐绿色荧光粉及其制备方法
CN103773367B (zh) 用于白光led的荧光材料及制备方法
CN102876325B (zh) 光色可调的变价锰离子掺杂铝酸盐发光材料及其制备方法
CN107129805B (zh) 一种铕离子掺杂的硅酸盐白光荧光粉及其制备方法
CN102604633A (zh) 一种四钨酸盐红色荧光粉及其制备方法
CN102373062B (zh) 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
CN102286281B (zh) 一种铝酸盐基红色荧光材料及其制备方法
CN102618265B (zh) 一种用于ac-led的绿色荧光材料及其制备方法
CN107163943B (zh) 一种适于近紫外激发的光谱可调控的荧光粉及其制备方法
CN115873595A (zh) 一种可调控红光与近红外稀土发光材料及制备方法和红外led装置
CN104232082A (zh) 红色荧光体、白色光源、发光装置和红色荧光体形成方法
CN101270282B (zh) 发光二极管用稀土红色荧光粉及其制备方法
CN103937494B (zh) 一种单基质白光荧光粉及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150527

Termination date: 20151015

EXPY Termination of patent right or utility model