CN102870234A - 制造基于硫属化物的光伏电池的方法 - Google Patents

制造基于硫属化物的光伏电池的方法 Download PDF

Info

Publication number
CN102870234A
CN102870234A CN2011800218237A CN201180021823A CN102870234A CN 102870234 A CN102870234 A CN 102870234A CN 2011800218237 A CN2011800218237 A CN 2011800218237A CN 201180021823 A CN201180021823 A CN 201180021823A CN 102870234 A CN102870234 A CN 102870234A
Authority
CN
China
Prior art keywords
buffer body
cadmium
absorber
layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800218237A
Other languages
English (en)
Other versions
CN102870234B (zh
Inventor
托德·R·布里登
杰弗里·L·小芬顿
加里·E·米切尔
柯克·R·汤姆森
迈克尔·E·米尔斯
戴维·J·帕里洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN102870234A publication Critical patent/CN102870234A/zh
Application granted granted Critical
Publication of CN102870234B publication Critical patent/CN102870234B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明是在制作光伏电池中在基于硫属化铜的吸收体上形成基于硫化镉的缓冲体的方法。将缓冲体在相对高的压力溅射。所得到的电池具有良好的效率并且根据一个实施方案,其特征在于吸收体与缓冲体层之间狭窄的界面。根据第二实施方案,缓冲体的特征进一步在于相对高的氧含量。

Description

制造基于硫属化物的光伏电池的方法
发明领域
本发明涉及制造基于硫属化物的光伏电池的方法,并且尤其是在这些电池中形成缓冲体层的方法,以及通过该方法制成的电池。
发明背景
光伏电池可以使用基于p型硫属化物的材料作为吸收体层制成,所述吸收体层将入射光或辐射转化为电能。这些p型硫属化物典型地为以下金属的至少一种,并且更典型地至少两种或三种的硒化物、硫化物或硫化硒化物:Cu、In、Ga、Al(在本文依赖于所使用的元素的组合称为CIS、CISS、CIAS、CIASS、CIGS、CIGSS或CIAGSS)。还已知在p型硫属化物附近或邻近使用基于CdS的缓冲体层。
已知CdS层可以通过化学浴沉积、物理蒸气沉积或溅射在多种基板上形成。参见例如Abou-Ras等(Thin Solid Films 480-481(2005)118-123)和5,500,055。Abou-Ras具体考察了将CBD沉积与PVD沉积比较的沉积方法的效果,并且发现:与用PVD制成的电池比较,CdS的CBD沉积建立更高效的电池。Abou-Ras提出:在PVD沉积的电池的情况下,在CIGS-CdS界面相互扩散的缺乏或减少是它们效率降低的原因。
发明概述
本发明人令人惊讶地发现:将CdS在相对高压力在基本上惰性气氛中溅射至p型硫属化物上与在传统的低压溅射条件比较不仅带来与下方的硫属化物吸收体较少的相互扩散,而且带来比传统的低压溅射更高的电池效率。考虑到Abou-Ras的教导,这是尤其出乎预料的。
因此,根据一个实施方案,本发明是一种方法,所述方法包括:
在基板上形成基于硫属化物的吸收体层,
通过在惰性气氛中在0.08至0.12毫巴(0.06至0.09托或8-12Pa)的工作压力溅射在吸收体上形成包含镉和硫的缓冲体层。
本发明也是一种通过前面的方法制成的光伏电池。通过该方法制成的电池的特征在于CdS与吸收体层之间的相互扩散。相互扩散界面区域在吸收体区域由电池横截面的能量色散型x射线光谱(EDS)扫描中镉的原子分数超过0.05的点限定,并且在缓冲体区域由铟和硒的原子分数小于0.05且优选铜的原子分数小于0.10的点限定。原子分数基于铜、铟、镓、硒、镉、硫和氧的总原子量。硫化镉颗粒的粒度优选为小于50nm,更优选小于30nm,并且最优选小于20nm。因此,根据一个实施方案,本发明是一种光伏电池,所述光伏电池包括背侧电极(在本文也称作背侧电接触)、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上基于硫化镉的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、所述透明导电层上的集电极,其中所述电池具有小于10nm厚度的在所述吸收体与所述缓冲体之间的界面,并且所述缓冲体优选具有小于50nm的平均粒度。
令人惊讶地,虽然硫化镉优选在惰性环境中溅射,但是由本发明制成的电池的缓冲体层具有显著量的氧。因此,根据另一个实施方案,本发明是一种光伏电池,所述光伏电池包括背侧电极、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上的基于硫化镉的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、透明导电层上的集电极,其中基于硫化镉的缓冲体层中氧的原子分数为至少0.20。
同样,令人惊讶地,缓冲体层的厚度可以非常低,同时仍然产生高效的电池,同时提供来自电池的低镉浸出物的附加益处。因此,根据再另一个实施方案,本发明是一种光伏电池,所述光伏电池包含背侧电极、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上基于硫化镉的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、所述透明导电层上的集电极,其中所述缓冲体层的厚度为不大于30nm,优选不大于20nm,并且最优选不大于15nm。在USEPA毒性特征浸出程序试验(Toxicity Characteristic Leaching Procedure Test)1311(1992)下从该制品浸出的镉的量为不大于1mg/l(即如该规约中规定的,1mg的镉/升浸出溶液),优选为不大于0.8mg/l,并且最优选为不大于0.7mg/l。
附图简述
图1是根据本发明的一种代表电池的横截面示意图。
图2显示基于能量色散型x射线光谱的原子分数的图。
发明详述
本发明的方法包括在基板上形成基于硫属化物的吸收体层(在相关波长吸收电磁辐射并且将其转化为电能),之后在该吸收体上(on)形成硫化镉缓冲体层。当使用该方法形成光伏器件时,也将典型地加入如光伏领域中所知的其他层。例如,基板将典型地包括或带有背侧电接触。透明导电层将在缓冲体之上(over)建立,并且集电极系统(例如栅极)将典型地位于透明导电层之上。可以使用任选的窗口层,并且可以将保护层涂布在透明导电层和/或集电极之上。除了基于硫化镉的缓冲体层之外,这些其他的层可以通过本领域已知的任何方法形成。
图1显示可以通过本发明的工艺制备的光伏制品10的一个实施方案。该制品10包括基板,所述基板结合有载体22、背侧电接触24和硫属化物吸收体20。制品10还包括结合有本发明的n型硫属化物组合物的缓冲区域28、任选的前侧电接触窗口区域26、透明导电区域30、收集栅极40和任选的阻挡区域34,以有助于保护制品10并将其与环境隔离。这些组件中的每一个在图1中示出为包含单个层,但是需要时,这些中的任一个可以由多个子层独立地形成。也可以设置在目前已知的或以后开发出的光伏电池中传统使用的其他层(未示出)。如在本文中有时使用的,电池的顶部12被认为是接受入射光16的那一侧。在吸收体上形成基于硫化镉的层的方法也可以被用在串联电池结构中,其中将两个电池建立于彼此的顶部,每个电池具有吸收不同波长的辐射的吸收体。
载体22可以是刚性的或挠性的基板。载体22可以由宽范围的材料形成。这些包括玻璃、石英、其他陶瓷材料、聚合物、金属、金属合金、金属间组合物、纸、纺织物或无纺织物、这些的组合等。不锈钢是优选的。优选柔性基板,以允许薄膜吸收体和其他层的柔韧性的最大利用。
背侧电接触24提供方便的方式以将制品10电连接至外部电路。接触24可以由宽范围的导电材料形成,所述导电材料包括以下各项中的一种以上:Cu、Mo、Ag、Al、Cr、Ni、Ti、Ta、Nb、W,这些的组合等。结合有Mo的导电组合物是优选的。背侧电接触24也可以有助于将吸收体20与载体22隔离以使载体成分至吸收体20中的迁移最小化。例如,背侧电接触24可以有助于阻挡不锈钢载体22的Fe和Ni成分至吸收体20中的迁移。如果在吸收体20的形成中使用Se,则背侧电接触24也可以通过如使其不受Se的影响而保护载体22。
硫属化物吸收体20优选结合有包含铜、铟和/或镓中的至少一种的至少一种p型第16族硫属化物,如第16族硒化物、硫化物和硒化物-硫化物。在很多实施方案中,这些材料以多晶形式存在。有益地,这些材料展现出用于光吸收的出色截面,以使得吸收体20非常薄并且是挠性的。在示例性实施方案中,典型的吸收体区域20可以具有在约300nm至约3000nm,优选约1000nm至约2000nm的范围内的厚度。
这些p型硫属化物吸收体的典型实例是包含铜、铟、铝和/或镓中的至少一种的硒化物、硫化物、碲化物和/或这些的组合。更典型地,存在Cu、In、Ga和Al中的至少两种或甚至至少三种。硫化物和/或硒化物是优选的。一些实施方案包括铜和铟的硫化物或硒化物。其他实施方案包括铜、铟和镓的硒化物或硫化物。可以使用铝作为典型地代替镓的一些或全部的附加的或备选的金属。具体实例包括但是不限于:硒化铜铟、硒化铜铟镓、硒化铜镓、硫化铜铟、硫化铜铟镓、硒化铜镓、硫化硒化铜铟、硫化硒化铜镓、硫化铜铟铝、硒化铜铟铝、硫化硒化铜铟铝、硫化铜铟铝镓、硒化铜铟铝镓、硫化硒化铜铟铝镓和硫化硒化铜铟镓。也可以将吸收体材料用其他材料如Na、Li等掺杂,以提高性能。此外,很多硫属元素材料可以以少量结合至少一些氧作为杂质而没有对电子性质显著有害的影响。
一种优选的类型的CIGS材料可以由下式表示:
CuaInbGacAldSewSxTeyNaz            (A)
其中,如果将“a”定义为1,那么:
“(b+c+d)/a”=1.0至2.5,优选1.0至1.65
“b”是0至2,优选0.8至1.3
“c”是0至0.5,优选0.05至0.35
“d”是0至0.5,优选0.05至0.35,优选d=0
“(w+x+y)”是2至3,优选2至2.8
“w”是0以上,优选至少1,并且更优选至少2至3
“x”是0至3,优选0至0.5
“y”是0至3,优选0至0.5
“z”是0至0.5,优选0.005至0.02
吸收体20可以通过使用一种以上的技术如蒸发、溅射、电沉积、喷涂和烧结中的各种的任何合适方法形成。一种优选的方法是组成元素从一种以上的合适的靶的共蒸发,其中将单独的组成元素同时地、相继地或这些的组合共同地在热表面上热蒸发以形成吸收体20。在沉积之后,可以对所沉积的材料进行一种以上进一步的处理,以将吸收体性质最后确定下来。
可以根据现在已知的或以后开发的传统的实践在基板上使用任选的层(未示出),以有助于增强背侧电接触24与载体22之间和/或背侧电接触24与吸收体区域20之间的粘合性。此外,也可以将一个或多个阻挡层(未示出)设置在载体22的背侧之上,以有助于将器件10与环境隔离和/或以将器件10电隔离。
缓冲体区域28是通过在以下压力溅射而沉积在吸收体20上的基于硫化镉的材料:至少0.08毫巴(0.06托,8Pa),更优选至少0.09毫巴(0.067托,9Pa),并且最优选约0.1毫巴(0.075托,10Pa),并且不大于0.12毫巴(0.09托,12Pa),更优选不大于0.11毫巴(0.083托,11Pa)。优选地,气氛是惰性的或是含硫气体,但最优选是惰性的。
在这样的沉积方式过程中,典型地将基板如通过握持部件等固定至或以其他方式负载在沉积室内的支架上。然而,需要时,可以将基板通过各种各样的手段定向并附着。可以将基板以使得基板在处理过程中静止和/或不静止的方式设置在沉积室内。在一些实施方案中,例如,可以将基板负载在可旋转卡盘上以使得基板在沉积的过程中旋转。
将一个或多个靶可操作地设置在沉积系统中。靶组成上适宜于形成所需的硫化镉组成。例如,为形成n型硫化镉,合适的靶具有包含含镉和硫的化合物的组成,并且优选为99%纯的镉和硫。备选地,镉靶可以在含硫气体的存在下使用。所得到的膜优选为至少10纳米(nm),更优选至少15nm并且优选高达约200nm,更优选高达100nm,还更优选高达30nm,再更优选高达20nm并且最优选不大于15nm。因为缓冲体在这些还更优选、再更优选和最优选的非常薄的层处高效地发挥功能,因此与现有技术电池比较,电池中镉的量相对低。这些电池具有低镉浸出物量的附加益处。
虽然在通过本发明的方法制成的电池中可能出现少量的相互扩散,它显著地小于当用于溅射的气氛是较低压力时将发现的相互扩散。相互扩散界面区域在吸收体区域通过在电池横截面的能量色散型x射线光谱扫描中镉的原子分数超过0.05的点限定,并且在缓冲体区域通过在铟和硒的原子分数小于0.05并且优选铜的原子分数小于0.10的点限定。原子分数基于铜、铟、镓、硒、镉、硫和氧的总原子量。硫化镉颗粒的粒度优选为小于50nm,更优选小于30nm,并且最优选小于20nm。根据该实施方案,界面区域在厚度上小于10nm,优选小于8nm。
原子分数可以由使用能量色散型x射线光谱(EDS)的透射电子显微镜(TEM)线扫描测定。用于TEM分析的样品可以通过使用配备有Omniprobe取出工具的FEI Strata Dual Beam FIB磨进行聚焦离子束(FIB)研磨而制备。TEM分析可以例如在配备有Fischione高角度环形暗场(HAADF)扫描TEM(STEM)检测器和EDAX EDS检测器的FEI Tecnai TF-20XT FEGTEM上进行。TEM的操作电压可以是适合于仪器的水平,例如用上面提到的仪器可以使用约200keV的电压。
空间分辨的EDS线扫描可以在STEM模式下由HAADF图像获得。从100nm长的线扫描,使用2nm点对点分辨率和~1nm的STEM探针尺寸可以获得50个光谱。可以将全尺寸光谱(0-20keV)转换为元素分布图,因为峰强度(在背景移除之后数出积分峰的数目)直接正比于特定元素的浓度(以重量%计)。之后基于元素的摩尔重量将重量百分数转换为原子百分数。注意如本领域技术人员所知,将峰强度对于检测器响应和其他样品相关因素修正。这些调节典型地基于其EDS设备的厂商参数或其他合适的参考标准做出。粒度可以通过TEM亮和暗场图像的标准分析测定。
硫化镉层可以含有少量的杂质。硫化镉层优选基本上由镉、硫、氧和铜组成。优选地,镉和硫的原子分数为至少0.3,氧的原子分数为至少0.2并且铜的原子分数为小于0.15,更优选小于0.10。
用于溅射的气氛优选为惰性气体如氩、氦或氖。可以将基板相对于一个或多个靶放置在预定的距离和方向。在一些实施模式中,如果需要该距离可以在沉积的过程中变化。典型地,该距离在约50毫米(mm)至约100mm的范围内。优选地,该距离为约60mm至约80mm。在开始沉积之前,典型地将沉积室抽真空至适宜的底压力。在很多实施方案中,底压力在约1x10-8托至约1x10-6托的范围内。
便利地,很多实施模式可以在约20℃至约30℃的范围内的温度进行。便利地,很多实施模式可以在环境温度条件进行。当然,可以使用更冷的或更暖的温度以帮助控制沉积速率、沉积品质等。可以将沉积进行足够长时间以提供具有所需厚度、均匀性和/或类似性质的n型材料的层。
可以是单层或由多个子层形成的任选的窗口区域2526可以有助于防止分流。窗口区域26也可以在TC区域30随后沉积的过程中保护缓冲区域28。窗口区域26可以由宽范围的材料形成并且通常由电阻性(resistive)的透明氧化物如Zn、In、Cd、Sn、这些的组合等的氧化物形成。一种示例性的窗口材料为本征ZnO。典型的窗口区域26可以具有在约1nm至约200nm,优选约10nm至约150nm,更优选约80至约120nm的范围内的厚度。
可以是单层或由多个子层形成的TCO区域30电连接缓冲区域28,从而为制品10提供顶部导电电极。在很多合适的实施方案中,TCO区域30具有在约10nm至约1500nm,优选约150nm至约200nm的范围内的厚度。如所示的,TCO区域30与窗口区域26直接接触,但是可以任选地插入一个或多个插入层用于多种理由如促进粘合、增强电性能等。
可以各种各样的透明导电氧化物;极薄的导电透明金属膜;或这些的组合结合在形成透明导电区域30中使用。透明导电氧化物是优选的。这种TCO的实例包括氟掺杂的氧化锡、氧化锡、氧化铟、氧化铟锡(ITO)、铝掺杂的氧化锌(AZO)、氧化锌,这些的组合等。在一个示例性实施方案中,TCO区域30具有双层构造,其中邻近于缓冲体层的第一子层结合有氧化锌,并且第二子层结合有ITO和/或AZO。TCO层方便地经由溅射或其他合适的沉积技术形成。
可以将任选的电栅极收集结构体40沉积在TCO区域30之上,以减少该层的薄层电阻。栅极结构体40优选结合有Ag、Al、Cu、Cr、Ni、Ti、Ta、TiN、TaN以及它们的组合中的一种以上。优选该栅极由Ag制成。可以使用任选的Ni膜(未示出)以增强栅极结构体对TCO区域30的粘合性。可以以各种各样的方式形成该结构体,所述方式包括由丝网或类似的丝结构体制成,通过丝网印刷、喷墨印刷、电镀、光刻和经由合适的掩模金属化使用任何合适的沉积技术形成。
经由将合适的阻挡保护34直接、低温施加至光伏制品10的顶部12,可以使得基于硫属化物的光伏电池对与湿气相关的退化较不敏感。阻挡保护可以是单层或多个子层。如所示,阻挡物不覆盖电栅极结构体,但代替所示的阻挡物或除了它之外,也可以使用覆盖这种栅极的阻挡物。
实施例
实施例1-
如下制备光伏电池。提供不锈钢基板。通过溅射在基板上形成铌和钼背侧电接触。通过1阶段蒸发工艺形成硒化铜铟镓吸收体,其中将铜、铟、镓和硒从扩散源同时蒸发至不锈钢基板上,将所述不锈钢基板在~550℃保持~80分钟。该过程产生~Cu(In0.8Ga0.2)Se2的化学计量的吸收体。
将硫化镉层从CdS靶(99.9+%纯度)以160瓦特在氩的存在下和如表1中所示的变化的压力射频(rf)溅射。将基板的温度保持在≤35℃,并且靶与基板距离为~90mm。该层的近似厚度如表1中所示。
在硫化镉层上,经由rf-溅射沉积i-ZnO和Al掺杂的ZnO。将收集栅极沉积在Al掺杂的ZnO上。
通过测量照明下的电流电压特性,测试基本上根据以上程序制成的电池的效率。如所示,效率在约0.1毫巴(10Pa)达到峰值。
表1
 溅射压力,毫巴  CdS厚度,nm   样品的数量   平均效率,%
 0.002  15   12   6.8
 0.002  120   3   6.9
 0.01  15   3   6.7
 0.02  15   3   7.7
 0.05  15   3   8.2
 0.07  15   3   8.1
 0.10  15   32   9.5
 0.14  15   4   7.5
实施例2
通过如在以上详述中描述的聚焦离子束准备基本上根据实施例1的方法制备的光伏电池的横截面。见上文。
图2显示来自如上所述在其上将硫化镉从99.9%纯度硫化镉靶在氩气氛中溅射的基于硒化铜铟镓的吸收体上制成的电池的EDS的原子分数。图2a)显示通过本方法通过在0.1毫巴溅射制成的电池的原子分数。图2b)显示通过在0.002毫巴溅射制成的比较电池的原子分数。这显示:在较高压力形成的样品中,相互扩散被限至在约10nm范围。
实施例3
使用通过含有元素铜、铟和镓的溅射层的硒化(使用单质硒)并且在CdS溅射的过程中如表2中所示改变压力制成的吸收体,重复实施例1。吸收体形成工艺如下进行:将铜、铟和镓经由溅射从单质靶或由铜、铟和镓的合金制成的靶沉积在其上预先沉积有铌和钼的不锈钢基板上。将单质硒蒸发至所涂布的基板上,同时将基板温度保持在≤100℃。之后将该涂布后的基板加热以引起铜、铟、镓前体的硒化。
表2
  溅射压力,毫巴  CdS厚度,nm   样品的数量   平均效率,%
  0.09  15   1   5.9
  0.10  15   29   6.5
  0.12  15   1   4.9

Claims (16)

1.一种方法,所述方法包括:
在基板上形成基于硫属化物的吸收体层,
通过在0.08至0.12毫巴的工作压力溅射在所述吸收体上形成包含镉和硫的缓冲体层。
2.权利要求1所述的方法,其中气氛是惰性的。
3.权利要求1或2所述的方法,其中溅射来自镉和硫的靶。
4.权利要求1-3中的任一项所述的方法,其中在所述吸收体层与所述缓冲体层之间形成具有小于10nm的厚度的界面,其中所述界面在一侧上由所述电池的横截面的能量色散型x射线光谱扫描中镉的原子分数超过0.05的点限定,并且在第二侧上由铟和硒的原子分数小于0.05的点限定。
5.权利要求4所述的方法,其中所述界面在第二侧上由铜的原子分数进一步限定,所述铜的原子分数小于0.10。
6.权利要求1-5中的任一项所述的方法,所述方法还包括在所述缓冲体层之上形成透明导电层,任选地在所述透明导电层与所述缓冲体层之间形成窗口层,以及在所述透明导电层上形成电连接栅极。
包括在所述透明导电层之上设置阻挡层。
7.权利要求6所述的方法,所述方法包括在所述透明导电层和/或所述栅极之上设置阻挡层。
8.一种通过权利要求1-7所述的方法形成的光伏电池。
9.一种光伏电池,所述光伏电池包括:背侧电极、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上的包含镉和硫的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、所述透明导电层上的集电极,其中所述电池具有在所述吸收体与所述缓冲体层之间的界面,所述界面在一侧上由电池横截面的能量色散型光谱扫描中镉的原子分数超过0.05的点限定,并且在第二侧上由铟和硒的原子分数小于0.05的点限定,并且所述界面具有小于10nm的厚度。
10.权利要求9所述的电池,其中平均粒度为小于20nm。
11.权利要求9-10中的任一项所述的电池,其中所述缓冲体基本上由镉、硫、铜和氧组成,并且镉和硫的原子分数为至少0.30。
12.一种光伏电池,所述光伏电池包括背侧电极、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上的包含镉和硫的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、所述透明导电层上的集电极,其中所述缓冲体基本上由镉、硫、氧和任选的铜组成,并且镉和硫的原子分数为至少0.30,氧的原子分数为至少0.20并且铜的原子分数为小于0.10。
13.权利要求9-12中的任一项所述的电池,其中所述缓冲体层的厚度为小于30nm。
14.权利要求9-13中的任一项所述的电池,其中来自所述电池的镉浸出物为小于1mg/l。
15.一种光伏电池,所述光伏电池包括背侧电极、与所述背侧电极接触的基于硫属化物的吸收体、所述吸收体上的包含镉和硫的缓冲体层、位于所述缓冲体层的与所述吸收体层相反的一侧的透明导电层、所述透明导电层上的集电极,其中其中所述缓冲体包含镉并且所述缓冲体层的厚度为小于30nm。
16.权利要求15所述的电池,其中来自所述电池的镉浸出物为小于1mg/l。
CN201180021823.7A 2010-04-30 2011-04-28 制造基于硫属化物的光伏电池的方法 Expired - Fee Related CN102870234B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32972810P 2010-04-30 2010-04-30
US61/329,728 2010-04-30
PCT/US2011/034269 WO2011137216A2 (en) 2010-04-30 2011-04-28 Method of manufacture of chalcogenide-based photovoltaic cells

Publications (2)

Publication Number Publication Date
CN102870234A true CN102870234A (zh) 2013-01-09
CN102870234B CN102870234B (zh) 2016-01-20

Family

ID=44626134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180021823.7A Expired - Fee Related CN102870234B (zh) 2010-04-30 2011-04-28 制造基于硫属化物的光伏电池的方法

Country Status (10)

Country Link
US (3) US9356177B2 (zh)
EP (1) EP2564434B1 (zh)
JP (1) JP5918218B2 (zh)
KR (1) KR20130100907A (zh)
CN (1) CN102870234B (zh)
BR (1) BR112012027715A2 (zh)
MX (1) MX341736B (zh)
SG (1) SG185071A1 (zh)
TW (1) TW201212243A (zh)
WO (1) WO2011137216A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051565A (zh) * 2013-03-14 2014-09-17 通用电气公司 制造光伏器件的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062891A2 (en) * 2011-10-28 2013-05-02 Dow Global Technologies Llc Method of manufacture of chalcogenide-based photovoltaic cells
EP2791072B1 (en) * 2011-12-15 2016-05-11 Dow Global Technologies LLC Method of forming optoelectronic device having a stabilized metal oxide layer
US9018032B2 (en) * 2012-04-13 2015-04-28 Tsmc Solar Ltd. CIGS solar cell structure and method for fabricating the same
US9159850B2 (en) * 2012-04-25 2015-10-13 Guardian Industries Corp. Back contact having selenium blocking layer for photovoltaic devices such as copper—indium-diselenide solar cells
US8822816B2 (en) 2012-06-27 2014-09-02 International Business Machines Corporation Niobium thin film stress relieving layer for thin-film solar cells
KR101449547B1 (ko) * 2013-02-27 2014-10-15 주식회사 아바코 태양 전지 및 그 제조 방법
US9043743B2 (en) * 2013-10-22 2015-05-26 International Business Machines Corporation Automated residual material detection
US11131018B2 (en) * 2018-08-14 2021-09-28 Viavi Solutions Inc. Coating material sputtered in presence of argon-helium based coating
US11784267B2 (en) * 2019-10-29 2023-10-10 Sun Hunter Inc. CIGS lamination structure and portable solar charger using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640234A (zh) * 2009-08-21 2010-02-03 四川阿波罗太阳能科技有限责任公司 用磁控溅射法生产CdS/CdTe太阳能电池的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349425A (en) 1977-09-09 1982-09-14 Hitachi, Ltd. Transparent conductive films and methods of producing same
JPS57115879A (en) * 1981-01-12 1982-07-19 Ricoh Co Ltd Method for forming cds thin film
JPH0492900A (ja) * 1990-08-07 1992-03-25 Nkk Corp 半導体薄膜及びその製造方法
JP2974485B2 (ja) 1992-02-05 1999-11-10 キヤノン株式会社 光起電力素子の製造法
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US7194197B1 (en) * 2000-03-16 2007-03-20 Global Solar Energy, Inc. Nozzle-based, vapor-phase, plume delivery structure for use in production of thin-film deposition layer
EP1433207B8 (en) * 2001-10-05 2009-10-07 SOLAR SYSTEMS & EQUIOMENTS S.R.L. A process for large-scale production of cdte/cds thin film solar cells
AU2002248199A1 (en) * 2001-12-13 2003-06-30 Midwest Research Institute Semiconductor device with higher oxygen (o2) concentration within window layers and method for making
KR101027318B1 (ko) * 2003-08-14 2011-04-06 유니버시티 오브 요하네스버그 Ⅰb-ⅲa-ⅵa족 4원 또는 그 이상의 고원 합금 반도체필름 제조 방법
US7700464B2 (en) * 2004-02-19 2010-04-20 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from nanoflake particles
US7632701B2 (en) * 2006-05-08 2009-12-15 University Of Central Florida Research Foundation, Inc. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US8426722B2 (en) 2006-10-24 2013-04-23 Zetta Research and Development LLC—AQT Series Semiconductor grain and oxide layer for photovoltaic cells
JP5042363B2 (ja) * 2007-06-28 2012-10-03 ソーラー システムズ アンド エクイップメンツ エス.アール.エル. Cdte/cds薄膜太陽電池における非整流バック接点の形成方法
US20090194165A1 (en) * 2008-01-31 2009-08-06 Primestar Solar, Inc. Ultra-high current density cadmium telluride photovoltaic modules
US20100055826A1 (en) * 2008-08-26 2010-03-04 General Electric Company Methods of Fabrication of Solar Cells Using High Power Pulsed Magnetron Sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640234A (zh) * 2009-08-21 2010-02-03 四川阿波罗太阳能科技有限责任公司 用磁控溅射法生产CdS/CdTe太阳能电池的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.ABOU-RAS .ET AL: "Structural and chemical invetigations of CBD- and PVD –Cds buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells", 《THIN SOLID FILMS》, vol. 480481, 8 December 2004 (2004-12-08) *
PRAVEEN TANEJA ET AL: "Chemical passivation of sputter-deposited nanocrystalline CdS thin films", 《MATERIALS LETTERS》, vol. 54, 30 June 2002 (2002-06-30), XP055015525, DOI: doi:10.1016/S0167-577X(01)00590-0 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051565A (zh) * 2013-03-14 2014-09-17 通用电气公司 制造光伏器件的方法
CN104051565B (zh) * 2013-03-14 2017-03-01 第一太阳能马来西亚有限公司 制造光伏器件的方法

Also Published As

Publication number Publication date
BR112012027715A2 (pt) 2016-09-06
US20160155886A1 (en) 2016-06-02
US9356177B2 (en) 2016-05-31
CN102870234B (zh) 2016-01-20
JP5918218B2 (ja) 2016-05-18
EP2564434B1 (en) 2016-01-13
MX2012012620A (es) 2013-04-22
US20160149069A1 (en) 2016-05-26
MX341736B (es) 2016-08-31
WO2011137216A2 (en) 2011-11-03
SG185071A1 (en) 2012-12-28
KR20130100907A (ko) 2013-09-12
JP2013531366A (ja) 2013-08-01
US20110277840A1 (en) 2011-11-17
TW201212243A (en) 2012-03-16
EP2564434A2 (en) 2013-03-06
WO2011137216A3 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
CN102870234B (zh) 制造基于硫属化物的光伏电池的方法
US9735301B2 (en) Manufacture of N-type chalcogenide compositions and their uses in photovoltaic devices
JP6096790B2 (ja) 光電池のための導電性基材
WO2005088731A1 (en) Thin film solar cell and manufacturing method
JP6248118B2 (ja) Cigs光起電力デバイス用モリブデン基板
CN103907204B (zh) 制备基于硫属化物的光伏电池的方法以及通过该方法制备的光伏电池
CN102628161A (zh) 用于制造半导体膜和光伏装置的方法
EP2402479B1 (en) Method for sputtering a resistive transparent thin film for use in cadmium telluride based photovoltaic devices
KR101807118B1 (ko) 등급 크기 및 S:Se 비율을 갖는 광전 소자
CN107210187A (zh) 用于生产用于具有硫化铟钠缓冲层的薄膜太阳能电池的层系统的方法
KR101951019B1 (ko) Cigs 박막 태양전지 및 이의 제조방법
JP2016134494A (ja) 化合物薄膜太陽電池用基材、化合物薄膜太陽電池、化合物薄膜太陽電池モジュール、化合物薄膜太陽電池用基材の製造方法、および、化合物薄膜太陽電池の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20200428