CN102868318B - Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method - Google Patents
Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method Download PDFInfo
- Publication number
- CN102868318B CN102868318B CN201210326051.4A CN201210326051A CN102868318B CN 102868318 B CN102868318 B CN 102868318B CN 201210326051 A CN201210326051 A CN 201210326051A CN 102868318 B CN102868318 B CN 102868318B
- Authority
- CN
- China
- Prior art keywords
- pvdf piezoelectric
- pvdf
- pdms
- piezoelectric cantilever
- energy harvester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 73
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 40
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract description 40
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 40
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract description 39
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000002122 magnetic nanoparticle Substances 0.000 claims abstract description 26
- 239000002131 composite material Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 239000010703 silicon Substances 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 7
- 238000009713 electroplating Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000005728 strengthening Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 13
- 229920000642 polymer Polymers 0.000 abstract description 5
- 229920005570 flexible polymer Polymers 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005459 micromachining Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 241001124569 Lycaenidae Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- -1 magnetic mass block Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002520 smart material Substances 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
Landscapes
- Micromachines (AREA)
Abstract
本发明提供一种基于PVDF的微型复合式能量采集器及制备方法,利用柔性聚合物压电材料PVDF制备成悬臂梁结构,通过PVDF压电悬臂梁发生谐振,利用压电效应将振动能转化为电能;同时,与之固接的包含磁性纳米颗粒的PDMS质量块随着PVDF压电悬臂梁的振动也一起振动,使穿过电镀在基底上的平面螺旋线圈的磁通量发生变化,产生感应电动势,从而在外加负载上输出功率。本发明的复合式能量采集器采用聚合物压电材料PVDF来代替传统压电材料PZT,并通过压电式和电磁式两种方式进行能量采集,使得能量采集器的输出功率及效率可以显著提高,并且与生物兼容。
The invention provides a PVDF-based micro-composite energy harvester and a preparation method. The flexible polymer piezoelectric material PVDF is used to prepare a cantilever beam structure, and resonance occurs through the PVDF piezoelectric cantilever beam, and the vibration energy is converted into Electric energy; at the same time, the PDMS mass block containing magnetic nanoparticles fixed to it also vibrates with the vibration of the PVDF piezoelectric cantilever beam, so that the magnetic flux passing through the planar spiral coil electroplated on the substrate changes, and an induced electromotive force is generated. Thus output power on the external load. The composite energy harvester of the present invention uses the polymer piezoelectric material PVDF to replace the traditional piezoelectric material PZT, and collects energy through piezoelectric and electromagnetic methods, so that the output power and efficiency of the energy harvester can be significantly improved , and are biocompatible.
Description
技术领域 technical field
本发明涉及一种基于聚合物压电材料PVDF的微型能量采集器及制备方法,属于微机电系统领域。The invention relates to a micro-energy collector based on a polymer piezoelectric material PVDF and a preparation method thereof, belonging to the field of micro-electromechanical systems.
背景技术 Background technique
随着微纳技术的快速发展,大量新型微纳器件与系统不断的开发出来,如微型发电机、纳米结构光电子器件,用于防病治病的纳米药物输运和定向治疗等,但是,微纳产品的供电问题正成为困扰其应用的主要障碍,原因是目前这些微纳系统的供电主要依靠电池。为避免频繁的更换电池,这就要求电池的工作寿命不断延长,而在一些特殊的微纳产品或装置中,特别是在植入式系统(如心脏起搏器,植入式传感器等)中,更换电池或充电更是困难。替代电池作为微纳传感器能源的技术途径主要是从微型器件的环境中采集能量,然后将环境的能量转换成电能。由于振动在工业、建筑甚至生物体中(如肢体运动、血液流动、心脏跳动等)时刻存在,所以采集环境振动的微机电系统(MEMS)压电式能量采集器得到了国内外同行的重视。在已经开展的研究中,压电材料多采用压电陶瓷PZT,如D Isarakorn等人在“Therealization and performance of vibration energy harvesting MEMS devices based on anepitaxial piezoelectric thin film”(SMART MATERIALS AND STRUCTURES,2011,VOL.025015)(中文题目:“一种基于外延压电薄膜的MEMS振动能量采集器件的实现和性能”,国际期刊:精密材料和结构)文章中报道了包含1mm×2.5mm×0.015mm悬臂梁的能量采集器,悬臂梁外延了0.5μm厚的PZT并带有1mm×0.5mm×0.23mm的硅质量块,在2.3kHz的振动频率、5.6kΩ的负载下,可以产生13μW,0.27V的能量。Jeon等人在“MEMS power generator withtransverse mode thin film PZT”(Sensors and Actuators A,2005,122:16-22)(中文题目:“基于PZT薄膜d33压电模式的MEMS能量采集器”,国际期刊:传感器和执行器A)文章中报导了另一种以悬臂梁结构为主的能量采集器。悬臂梁由SiO2或SiNx膜、ZrO2层、PZT层以及相互交叉的电极(Pt/Ti)和质量块构成,其中,ZrO2层能够阻止压电层中电荷的逃逸。在13.91kHz的振动频率下,功率在负载为5.2MΩ时达到最大值1.01μW。然而由于压电陶瓷密度大,脆性大,加工过程中需要高温退火,导致器件生物兼容性、效率等方面有较大不足,且加工难度较大。With the rapid development of micro-nano technology, a large number of new micro-nano devices and systems have been continuously developed, such as micro-generators, nano-structured optoelectronic devices, nano-drug delivery and targeted therapy for disease prevention and treatment, etc. However, micro-nano The power supply problem of nano products is becoming the main obstacle to its application, because the power supply of these micro and nano systems mainly relies on batteries. In order to avoid frequent battery replacement, this requires the battery's working life to be continuously extended, and in some special micro-nano products or devices, especially in implanted systems (such as cardiac pacemakers, implanted sensors, etc.) , replacing or charging the battery is even more difficult. The technical way to replace batteries as the energy source of micro-nano sensors is mainly to collect energy from the environment of micro-devices, and then convert the energy of the environment into electrical energy. Since vibrations exist in industries, buildings, and even living organisms (such as limb movement, blood flow, heart beating, etc.), piezoelectric energy harvesters for micro-electromechanical systems (MEMS) that collect environmental vibrations have attracted the attention of domestic and foreign counterparts. In the research that has been carried out, piezoelectric materials mostly use piezoelectric ceramic PZT, such as D Isarakorn et al. in "Therealization and performance of vibration energy harvesting MEMS devices based on anepitaxial piezoelectric thin film" (SMART MATERIALS AND STRUCTURES, 2011, VOL. 025015) (Chinese title: "Realization and Performance of a MEMS Vibration Energy Harvesting Device Based on Epitaxial Piezoelectric Film", International Journal: Precision Materials and Structures) reported the energy of a 1mm×2.5mm×0.015mm cantilever beam For the collector, the cantilever beam is epitaxially 0.5μm thick PZT and has a 1mm×0.5mm×0.23mm silicon mass. At a vibration frequency of 2.3kHz and a load of 5.6kΩ, it can generate 13μW and 0.27V energy. Jeon et al. in "MEMS power generator with transverse mode thin film PZT" (Sensors and Actuators A,2005,122:16-22) (Chinese title: "MEMS energy harvester based on PZT thin film d33 piezoelectric mode", international journal: Sensors and Actuators A) Another energy harvester based on a cantilever beam structure is reported in the article. The cantilever beam is composed of SiO 2 or SiNx film, ZrO 2 layer, PZT layer and interdigitated electrodes (Pt/Ti) and mass blocks, among which the ZrO 2 layer can prevent the escape of charges in the piezoelectric layer. At a vibration frequency of 13.91kHz, the power reaches a maximum value of 1.01μW when the load is 5.2MΩ. However, due to the high density and high brittleness of piezoelectric ceramics, high-temperature annealing is required in the processing process, resulting in major deficiencies in device biocompatibility and efficiency, and the processing is difficult.
PVDF是一种柔性的生物兼容的压电聚合物材料,具有很强的压电性,施加外力时,能产生较大的电压。然而,由于压电材料的内阻特别大,输出的电流很小,当采用单一的压电式能量采集,输出功率仍然偏低。PVDF is a flexible biocompatible piezoelectric polymer material with strong piezoelectricity and can generate a large voltage when an external force is applied. However, due to the extremely large internal resistance of the piezoelectric material, the output current is very small. When a single piezoelectric energy harvesting is used, the output power is still low.
发明内容 Contents of the invention
为解决上述问题,本发明提供一种基于聚合物压电材料PVDF的微型压电及电磁复合式能量采集器及制备方法。利用柔性聚合物压电材料PVDF(聚偏氟乙烯)取代目前常用的压电陶瓷PZT,并与电磁式能量采集方法共同作用,结合MEMS体硅和表面微机械加工技术来制备微型能量采集器。In order to solve the above problems, the present invention provides a micro piezoelectric and electromagnetic composite energy harvester based on the polymer piezoelectric material PVDF and a preparation method. The flexible polymer piezoelectric material PVDF (polyvinylidene fluoride) is used to replace the commonly used piezoelectric ceramic PZT, and it works together with the electromagnetic energy harvesting method, combined with MEMS bulk silicon and surface micromachining technology to prepare micro energy harvesters.
本发明的微型能量采集器,包括基底、PVDF压电薄膜、包含磁性纳米颗粒的PDMS质量块和平面螺旋线圈三个主要部分。硅片上电镀平面螺旋铜线圈,PVDF压电薄膜位于线圈的上方或四周,制成悬臂梁结构,并令其单端固支,PVDF压电悬臂梁的自由端上带有磁性质量块。The miniature energy harvester of the present invention comprises three main parts: a substrate, a PVDF piezoelectric film, a PDMS quality block containing magnetic nanoparticles, and a planar spiral coil. The planar spiral copper coil is electroplated on the silicon wafer, and the PVDF piezoelectric film is located above or around the coil to form a cantilever beam structure, which is fixed at one end. The free end of the PVDF piezoelectric cantilever beam has a magnetic mass block.
当PVDF压电悬臂梁的固有频率接近或等于外界环境的振动频率时,PVDF压电悬臂梁上发生谐振,PVDF压电悬臂梁由于压电效应将振动能转化为电能,其上方的磁性PDMS质量块随着PVDF压电悬臂梁的振动也一起振动,从而穿过平面螺旋线圈的磁通量发生变化,根据法拉第电磁感应定律,平面螺旋线圈就会有感应电动势,从而在外加负载上输出功率。When the natural frequency of the PVDF piezoelectric cantilever is close to or equal to the vibration frequency of the external environment, resonance occurs on the PVDF piezoelectric cantilever, and the PVDF piezoelectric cantilever converts vibration energy into electrical energy due to the piezoelectric effect, and the magnetic PDMS mass above it The block vibrates with the vibration of the PVDF piezoelectric cantilever beam, so that the magnetic flux passing through the planar helical coil changes. According to Faraday's law of electromagnetic induction, the planar helical coil will have an induced electromotive force, thereby outputting power on the external load.
一种微型能量采集器的制备方法,包括如下步骤:A preparation method of a miniature energy harvester, comprising the steps of:
(a)处理、清洗硅片;(a) processing and cleaning silicon wafers;
(b)在硅片正面等离子增强化学气相沉积(PECVD)1μm的SiO2;(b) Plasma-enhanced chemical vapor deposition (PECVD) of 1 μm SiO 2 on the front side of the silicon wafer;
(c)溅射100nm的Ti/Cu种子层;(c) 100 nm Ti/Cu seed layer sputtered;
(d)甩正胶、第一次光刻;(d) Throwing the positive resist, the first photolithography;
(e)电镀平面螺旋Cu线圈;(e) Electroplating planar helical Cu coils;
(f)甩胶、第二次光刻;(f) Glue rejection, second photolithography;
(g)制作PDMS支撑架或振动窗口;(g) Fabrication of PDMS support frames or vibration windows;
(h)去掉光刻胶、去除种子层(h) Remove the photoresist and remove the seed layer
(i)将PVDF压电薄膜裁剪成悬臂梁结构,并将包含有磁性纳米颗粒的PDMS质量块粘贴到PVDF压电悬臂梁上,将带有质量块的PVDF压电悬臂梁与平面螺旋线圈、PDMS支撑架或振动窗口组合。(i) Cut the PVDF piezoelectric film into a cantilever beam structure, and paste the PDMS mass block containing magnetic nanoparticles on the PVDF piezoelectric cantilever beam, and connect the PVDF piezoelectric cantilever beam with mass block with the planar spiral coil, PDMS support frame or vibration window combination.
利用本发明制造的基于压电聚合物PVDF的能量采集器的有益效果在于:The beneficial effect of the energy harvester based on piezoelectric polymer PVDF manufactured by the present invention is:
(1)本发明包含了两种能量采集的方式:PVDF的压电式输出和磁性质量块、线圈的电磁式输出,可以增加输出功率,提高能量采集的效率;(1) The present invention includes two ways of energy collection: piezoelectric output of PVDF and electromagnetic output of magnetic mass block and coil, which can increase the output power and improve the efficiency of energy collection;
(2)本发明采用柔性聚合物压电材料PVDF作为压电悬臂梁,能够获得更大的能量输出,且具有很好的生物兼容性,适合生物体应用,不但为微纳传感器自我供电提供了技术途径,而且为微纳传感器在生物体内的无线应用提供了可能,可以应用于内置生物传感器、生物医药监控和生物活体探测等;(2) The present invention uses the flexible polymer piezoelectric material PVDF as the piezoelectric cantilever beam, which can obtain greater energy output, and has good biocompatibility, and is suitable for biological applications. It not only provides self-power supply for micro-nano sensors It also provides the possibility for the wireless application of micro-nano sensors in living organisms, which can be applied to built-in biosensors, biomedical monitoring and biological living detection, etc.;
(3)本发明利用包含磁性纳米颗粒的PDMS质量块形成磁场,相比微装配或者手工粘连永磁体,使得能量采集器的制备工艺更加简单,并且可以通过控制PDMS中磁性纳米颗粒的含量改变磁场强度;(3) The present invention uses a PDMS mass block containing magnetic nanoparticles to form a magnetic field. Compared with micro-assembly or manual adhesion of permanent magnets, the preparation process of the energy harvester is simpler, and the magnetic field can be changed by controlling the content of magnetic nanoparticles in PDMS strength;
(4)本发明的PVDF聚合物压电薄膜,还可以在其他MEMS器件和系统制作上进行应用,比如压电式制动器、压电式传感器等等。(4) The PVDF polymer piezoelectric film of the present invention can also be applied in the manufacture of other MEMS devices and systems, such as piezoelectric brakes, piezoelectric sensors, and the like.
附图说明 Description of drawings
图1为含柔性支架的微型复合式能量采集器的结构示意图;Fig. 1 is the structural representation of the miniature composite energy harvester that contains flexible support;
图2为本发明的振动悬臂梁示意图;Fig. 2 is the schematic diagram of vibrating cantilever beam of the present invention;
图3为实施例一的工艺流程图;Fig. 3 is the process flow chart of embodiment one;
图4为PVDF压电悬臂梁的自由端与平面螺旋线圈串联输出端的结构示意图;Fig. 4 is a structural schematic diagram of the free end of the PVDF piezoelectric cantilever beam and the output end of the planar helical coil in series;
图5为PVDF压电悬臂梁的自由端与平面螺旋线圈并联输出端的结构示意图;Fig. 5 is a structural schematic diagram of the free end of the PVDF piezoelectric cantilever beam and the parallel output end of the planar helical coil;
图6(a)为含振动窗口的微型复合式能量采集器正面结构示意图;Figure 6(a) is a schematic diagram of the front structure of a miniature composite energy harvester with a vibration window;
图6(b)为含振动窗口的微型复合式能量采集器背面结构示意图;Figure 6(b) is a schematic diagram of the back structure of a miniature composite energy harvester with a vibration window;
图7为实施例二的工艺流程图。Fig. 7 is the process flow chart of embodiment two.
其中:in:
1-PVDF压电悬臂梁; 2-平面螺旋线圈; 3-PDMS质量块;1-PVDF piezoelectric cantilever beam; 2-planar spiral coil; 3-PDMS mass block;
4—柔性支架; 5—振动窗口。4—flexible support; 5—vibration window.
具体实施方式 Detailed ways
以下结合附图和具体的实施例对本发明的技术方案作进一步描述。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
一种压电及电磁复合式MEMS能量采集器,包括基底、PVDF压电薄膜、平面螺旋线圈2、包含磁性纳米颗粒的PDMS质量块3,以及柔性支架4或振动窗口5,含柔性支架4的微型复合式能量采集器如图1所示。A piezoelectric and electromagnetic composite MEMS energy harvester, including a substrate, a PVDF piezoelectric film, a planar spiral coil 2, a PDMS mass block 3 containing magnetic nanoparticles, and a flexible support 4 or a vibration window 5, including a flexible support 4 The miniature composite energy harvester is shown in Figure 1.
所述PVDF压电薄膜制成悬臂梁结构,其自由端与包含磁性纳米颗粒的PDMS质量块3相连,另一端与柔性支架或振动窗口固定。通过PVDF压电悬臂梁1将振动能转化为电能,以及包含磁性纳米颗粒的PDMS质量块3与平面螺旋线圈2之间的电磁感应输出功率,实现压电及电磁复合式能量的输出。The PVDF piezoelectric film is made into a cantilever beam structure, its free end is connected with the PDMS mass block 3 containing magnetic nanoparticles, and the other end is fixed with a flexible support or a vibration window. Vibration energy is converted into electrical energy through the PVDF piezoelectric cantilever beam 1, and the electromagnetic induction output power between the PDMS mass block 3 containing magnetic nanoparticles and the planar helical coil 2 realizes the output of piezoelectric and electromagnetic composite energy.
PVDF压电悬臂梁1的尺寸设计如下:The dimensions of the PVDF piezoelectric cantilever beam 1 are designed as follows:
根据弹性力学原理,单端固支梁的弹性系数为:According to the principle of elastic mechanics, the elastic coefficient of a single-end fixed beam is:
式中,E为悬臂梁的杨氏模量,L、W、H分别为悬臂梁的长度、宽度和厚度,如图2所示。In the formula, E is the Young's modulus of the cantilever beam, and L, W, and H are the length, width and thickness of the cantilever beam, respectively, as shown in Figure 2.
能量采集器系统的固有频率为:The natural frequency of the energy harvester system is:
式中,m为振动梁和磁性质量块的质量之和。In the formula, m is the sum of the mass of the vibrating beam and the magnetic mass.
根据Roundy模型,对于给定的负载电阻RL,压电悬臂梁的输出功率为According to the Roundy model, for a given load resistance RL , the output power of the piezoelectric cantilever is
式中,b*为压电梁几何常量,tc为压电层厚度,YC为压电材料弹性模量,ε为压电材料介电常数,ζ为阻尼系数,ω为振动角频率,CP为压电部分等效电容,Ain为输入振幅,d为压电系数。In the formula, b * is the geometric constant of the piezoelectric beam, t c is the thickness of the piezoelectric layer, Y C is the elastic modulus of the piezoelectric material, ε is the dielectric constant of the piezoelectric material, ζ is the damping coefficient, ω is the vibration angular frequency, C P is the equivalent capacitance of the piezoelectric part, A in is the input amplitude, and d is the piezoelectric coefficient.
根据(1)-(3)式,可以确定能量采集器的谐振频率和输出功率,从而设计出采集外界环境不同振动频率、具有不同输出功率的能量采集器,如果采集对象是生物体,只要外加一些处理电路,就可以采集生物体运动能量。According to (1)-(3), the resonant frequency and output power of the energy harvester can be determined, so as to design an energy harvester that collects different vibration frequencies of the external environment and has different output power. Some processing circuits can collect the energy of biological movement.
实施例1Example 1
一种压电及电磁复合式MEMS能量采集器,包括基底、PVDF压电薄膜、平面螺旋线圈2、包含磁性纳米颗粒的PDMS质量块3,还包括柔性支架4,即PDMS支撑架,如图1所示。PVDF压电薄膜制成悬臂梁结构,所述基底由表面淀积了一层SiO2的硅片构成,平面螺旋线圈2电镀于SiO2层之上,柔性支架4也位于SiO2层之上,并位于平面螺旋线圈2的周围。PVDF压电薄膜裁剪成悬臂梁结构,包含磁性纳米颗粒的PDMS质量块3固定于PVDF压电悬臂梁1的自由端,PVDF压电悬臂梁1的另一端固支于柔性支架4上,如图2所示。PVDF压电悬臂梁1的自由端为输出端,与平面螺旋线圈2输出端可以串联,如图4所示,也可并联,如图5所示,具体情况可视需要而定。A piezoelectric and electromagnetic composite MEMS energy harvester, including a substrate, a PVDF piezoelectric film, a planar spiral coil 2, a PDMS mass block 3 containing magnetic nanoparticles, and a flexible support 4, namely a PDMS support frame, as shown in Figure 1 shown. The PVDF piezoelectric film is made into a cantilever beam structure, and the substrate is composed of a silicon wafer with a layer of SiO2 deposited on the surface. The planar spiral coil 2 is electroplated on the SiO2 layer, and the flexible support 4 is also located on the SiO2 layer. And located around the planar helical coil 2. The PVDF piezoelectric film is cut into a cantilever structure, and the PDMS mass block 3 containing magnetic nanoparticles is fixed on the free end of the PVDF piezoelectric cantilever 1, and the other end of the PVDF piezoelectric cantilever 1 is fixed on the flexible support 4, as shown in the figure 2 shown. The free end of the PVDF piezoelectric cantilever beam 1 is the output end, which can be connected in series with the output end of the planar spiral coil 2, as shown in Figure 4, or in parallel, as shown in Figure 5, depending on the specific situation.
当环境中的振动频率与PVDF压电悬臂梁1的固有频率接近或等于时,将会引起PVDF压电悬臂梁1的谐振,PVDF压电悬臂梁1由于压电效应将振动能转化为电能,实现能量的输出;同时,PVDF压电悬臂梁1自由端的包含磁性纳米颗粒的PDMS质量块3随着PVDF压电悬臂梁1一起振动,使得穿过平面螺旋线圈2的磁通量发生变化,根据法拉第电磁感应定律,平面螺旋线圈2会产生感应电动势,从而在外加负载上输出功率。When the vibration frequency in the environment is close to or equal to the natural frequency of the PVDF piezoelectric cantilever 1, it will cause the resonance of the PVDF piezoelectric cantilever 1, and the PVDF piezoelectric cantilever 1 converts vibration energy into electrical energy due to the piezoelectric effect. Realize the output of energy; at the same time, the PDMS mass block 3 containing magnetic nanoparticles at the free end of the PVDF piezoelectric cantilever 1 vibrates together with the PVDF piezoelectric cantilever 1, so that the magnetic flux passing through the planar spiral coil 2 changes, according to Faraday According to the law of magnetic induction, the planar helical coil 2 will generate an induced electromotive force, thereby outputting power on the external load.
一种压电及电磁复合式MEMS能量采集器制备方法,采用表面为机械加工的方法,即利用电镀工艺形成平面螺旋线圈,然后再光刻形成固定悬臂梁所用的柔性支架。A preparation method of a piezoelectric and electromagnetic composite MEMS energy harvester adopts the method of mechanically processing the surface, that is, forming a planar spiral coil by electroplating technology, and then forming a flexible support for fixing a cantilever beam by photolithography.
在对硅片进行常规清洗、处理(见图3(a))之后,在硅片正面等离子增强化学气相沉积(PECVD)1μm的SiO2(见图3(b)),然后:After routine cleaning and treatment of the silicon wafer (see Figure 3(a)), plasma-enhanced chemical vapor deposition (PECVD) of 1 μm SiO 2 on the front side of the silicon wafer (see Figure 3(b)), and then:
(1)溅射Ti/Cu种子层(1) Sputtering Ti/Cu seed layer
采用真空溅射的方法制备200nm的Ti/Cu种子层。在真空环境中50W功率的条件下溅射1个小时,可得到总厚度为200nm的Ti/Cu种子层,如图3(c)所示。A 200 nm Ti/Cu seed layer was prepared by vacuum sputtering. Sputtering for 1 hour under the condition of 50W power in a vacuum environment can obtain a Ti/Cu seed layer with a total thickness of 200nm, as shown in Figure 3(c).
(2)电镀制作平面螺旋线圈2(2) Electroplating to make planar spiral coil 2
在溅射Ti/Cu种子层之后,甩一层10μm的正胶AZ P4903,曝光时间70s,显影时间120s,即图3(d),然后电镀平面螺旋线圈2,即图3(e)。平面螺旋线圈2的匝数为15,导线宽度为100μm,导线间距为100μm,材质为Cu。After sputtering the Ti/Cu seed layer, a layer of 10 μm positive resist AZ P4903 was cast, the exposure time was 70s, and the development time was 120s, as shown in Figure 3(d), and then the planar spiral coil 2 was electroplated, as shown in Figure 3(e). The number of turns of the planar spiral coil 2 is 15, the wire width is 100 μm, the wire spacing is 100 μm, and the material is Cu.
(3)制作柔性支架(PDMS支撑架)(3) Making a flexible support (PDMS support frame)
在电镀平面螺旋线圈2之后,再甩一层10μm的正胶AZ P4903,曝光时间220s,显影时间150s,即图3(f),然后在被曝光的光刻胶槽处滴注PDMS,如图3(g)所示。然后在真空锅中抽真空30分钟以去除PDMS中的气泡,最后放入70℃的烘箱中烘烤2h。取出冷凝,无版曝光、显影后,去除光刻胶、种子层,即可得到PDMS柔性支架4,如图3(h)所示。After electroplating the planar spiral coil 2, throw off a layer of 10μm positive resist AZ P4903, the exposure time is 220s, and the development time is 150s, that is, Figure 3(f), and then PDMS is dripped at the exposed photoresist groove, as shown in the figure 3(g). Then vacuumize in a vacuum pot for 30 minutes to remove air bubbles in PDMS, and finally bake in an oven at 70°C for 2h. Take out the condensation, and after exposure and development without a plate, remove the photoresist and the seed layer to obtain the PDMS flexible support 4, as shown in Figure 3(h).
(4)制作磁性质量块(4) Making magnetic mass blocks
在液态的PDMS中加入磁性纳米颗粒,PDMS和磁性纳米颗粒的质量比为5:1,然后在真空锅中抽真空30分钟以去除PDMS中的气泡,再用一强磁场对磁性纳米颗粒进行磁化,最后放入70℃的烘箱中烘烤2h。取出冷凝后手工切割成2cm*2cm的方块,即可获得包含磁性纳米颗粒的PDMS质量块3。Add magnetic nanoparticles into liquid PDMS, the mass ratio of PDMS and magnetic nanoparticles is 5:1, then vacuumize in a vacuum pot for 30 minutes to remove air bubbles in PDMS, and then magnetize the magnetic nanoparticles with a strong magnetic field , and finally baked in an oven at 70° C. for 2 hours. After taking out the condensation, manually cut into 2cm*2cm squares to obtain the PDMS mass 3 containing magnetic nanoparticles.
(5)粘贴PVDF压电薄膜、磁性质量块、柔性支架构成能量采集器(5) Paste PVDF piezoelectric film, magnetic mass block, and flexible bracket to form an energy harvester
本发明选用的是锦州科信电子材料有限公司生产的100μm厚聚偏氟乙烯(PVDF)压电膜。将PVDF压电薄膜裁剪出2cm*5cm的悬臂梁结构,把包含磁性纳米颗粒的PDMS质量块与PVDF压电悬臂梁1的一端相连,并将PVDF压电悬臂梁1的另一端固定于柔性支架4上。此时,平面螺旋线圈2位于PVDF压电悬臂梁1的下方。压电及电磁复合式MEMS能量采集器就此完成,如图3(i)所示。The present invention selects a 100 μm thick polyvinylidene fluoride (PVDF) piezoelectric film produced by Jinzhou Kexin Electronic Material Co., Ltd. Cut the PVDF piezoelectric film into a 2cm*5cm cantilever structure, connect the PDMS mass block containing magnetic nanoparticles to one end of the PVDF piezoelectric cantilever 1, and fix the other end of the PVDF piezoelectric cantilever 1 to the flexible support 4 on. At this time, the planar helical coil 2 is located under the PVDF piezoelectric cantilever beam 1 . The piezoelectric and electromagnetic composite MEMS energy harvester is completed, as shown in Figure 3(i).
实施例2Example 2
一种压电及电磁复合式MEMS能量采集器制备方法,采用体硅和表面微机械加工技术相结合的三维微机械加工方法,包括基底、PVDF压电薄膜、平面螺旋线圈2、包含磁性纳米颗粒的PDMS质量块3,还包括振动窗口5,如图6所示。即利用体硅微机械加工技术的方法刻蚀硅,形成PVDF压电悬臂梁的振动窗口,并在硅片上通过表面微机械加工的方法制作平面螺旋线圈2。A preparation method of a piezoelectric and electromagnetic composite MEMS energy harvester, using a three-dimensional micromachining method combining bulk silicon and surface micromachining techniques, including a substrate, a PVDF piezoelectric film, a planar helical coil 2, and magnetic nanoparticles The PDMS mass block 3 also includes a vibration window 5, as shown in FIG. 6 . That is, the silicon is etched by bulk silicon micromachining technology to form the vibration window of the PVDF piezoelectric cantilever beam, and the planar spiral coil 2 is fabricated on the silicon chip by surface micromachining.
其制作步骤与实施例1大致相同,只不过在制作完成平面螺旋线圈2后,接着采用湿法刻蚀技术制作振动窗口5,而不再制作柔性支架4。The manufacturing steps are roughly the same as those in Embodiment 1, except that after the planar spiral coil 2 is manufactured, the vibration window 5 is manufactured using wet etching technology instead of the flexible support 4 .
步骤(3)为振动窗口制作,过程如图7所示,具体为:Step (3) is to make the vibration window, the process is shown in Figure 7, specifically:
湿法刻蚀SiO2所用的腐蚀剂为缓冲氧化硅腐蚀液,腐蚀液成分为HF:NH4F:H2O=84:339:510(质量比),刻蚀温度为45℃,腐蚀速率为0.4μm/min。SiO2的腐蚀为各向同性腐蚀,由于HF酸对SiO2的腐蚀速率远大于对Si的腐蚀,因此在正胶的掩蔽作用下,光刻图形地方的SiO2将被HF酸腐蚀。腐蚀SiO2后,采用KOH溶液(配比KOH:H2O=44g:100ml)腐蚀Si,刻蚀温度为85℃,腐蚀速率为1.4μm/min,Si的腐蚀为各向异性腐蚀,被HF酸刻蚀的SiO2下方的Si被刻蚀掉,形成PVDF压电悬臂梁的振动窗口5。The etchant used for wet etching SiO 2 is buffered silicon oxide etchant, the composition of the etchant is HF:NH 4 F:H 2 O=84:339:510 (mass ratio), the etching temperature is 45°C, and the etching rate is 0.4μm/min. The corrosion of SiO 2 is isotropic corrosion. Since the corrosion rate of HF acid to SiO 2 is much higher than that of Si, under the masking effect of positive resist, SiO 2 in the photolithographic pattern will be corroded by HF acid. After corroding SiO 2 , use KOH solution (ratio KOH: H 2 O = 44g: 100ml) to etch Si, the etching temperature is 85°C, and the etching rate is 1.4 μm/min. The corrosion of Si is anisotropic corrosion, which is HF The Si beneath the acid-etched SiO2 is etched away, forming the vibration window 5 of the PVDF piezoelectric cantilever.
步骤(4)磁性质量块的制作过程与实施例一相同。Step (4) The manufacturing process of the magnetic mass block is the same as the first embodiment.
最后步骤(5)粘贴PVDF压电薄膜、磁性质量块、硅片构成能量采集器的过程为:The final step (5) the process of pasting PVDF piezoelectric film, magnetic mass block, and silicon wafer to form the energy harvester is as follows:
将PVDF压电薄膜裁剪出2cm*5cm的悬臂梁结构,把包含磁性纳米颗粒的PDMS质量块3与PVDF压电悬臂梁1的一端相连,并将PVDF压电悬臂梁1的另一端固定于硅片背面,PVDF压电悬臂梁1的自由端(即与包含磁性纳米颗粒的PDMS质量块相连的一端)位于预留的振动窗口5内,此时,平面螺旋线圈2位于PVDF压电悬臂梁1的侧上方。压电及电磁复合式MEMS能量采集器就此完成。Cut the PVDF piezoelectric film into a cantilever structure of 2cm*5cm, connect the PDMS mass block 3 containing magnetic nanoparticles to one end of the PVDF piezoelectric cantilever 1, and fix the other end of the PVDF piezoelectric cantilever 1 on the silicon On the back of the sheet, the free end of the PVDF piezoelectric cantilever 1 (that is, the end connected to the PDMS mass block containing magnetic nanoparticles) is located in the reserved vibration window 5. At this time, the planar spiral coil 2 is located on the PVDF piezoelectric cantilever 1 side above. This completes the piezoelectric and electromagnetic composite MEMS energy harvester.
以上仅列举本发明的典型实施例,为方便本领域内人员的理解,但本发明并不以此为限。任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围以权利要求书为准。The above only lists typical embodiments of the present invention for the convenience of understanding by those skilled in the art, but the present invention is not limited thereto. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention shall be determined by the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210326051.4A CN102868318B (en) | 2012-09-05 | 2012-09-05 | Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210326051.4A CN102868318B (en) | 2012-09-05 | 2012-09-05 | Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102868318A CN102868318A (en) | 2013-01-09 |
CN102868318B true CN102868318B (en) | 2015-05-13 |
Family
ID=47446976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210326051.4A Expired - Fee Related CN102868318B (en) | 2012-09-05 | 2012-09-05 | Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102868318B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346696A (en) * | 2013-07-22 | 2013-10-09 | 杭州电子科技大学 | Array-type compound energy collector |
CN103337988A (en) * | 2013-07-22 | 2013-10-02 | 杭州电子科技大学 | Piezoelectricity and electromagnetic coupling-based composite wideband vibration energy collector |
CN105527014B (en) * | 2016-01-12 | 2018-09-21 | 湖北大学 | Flexible vibration sensor production method based on PVDF nanofibers |
CN106301076B (en) * | 2016-11-01 | 2020-09-29 | 合肥工业大学 | Jellyfish Buoy Energy Harvesting System |
CN107809186B (en) * | 2017-09-22 | 2019-04-09 | 南京邮电大学 | A compact acoustic wave generator for low frequency broadband |
CN107947633B (en) * | 2017-12-08 | 2019-08-16 | 东南大学 | Piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof |
CN108683359B (en) * | 2018-05-04 | 2019-10-15 | 北京理工大学 | A multi-degree-of-freedom up-conversion compound vibration energy harvester and its application |
CN109167531A (en) * | 2018-08-08 | 2019-01-08 | 南京航空航天大学 | A kind of miniature energy collection device and preparation method thereof based on Flow vibration |
CN109346313A (en) * | 2018-10-25 | 2019-02-15 | 华为技术有限公司 | A wireless charging coil module and its manufacturing method |
CN110311530B (en) * | 2019-06-25 | 2020-11-06 | 上海交通大学 | An Integrated Fabrication of Magnetic Inversion Bistable Vibration Energy Harvester |
CN111076805B (en) * | 2019-12-18 | 2021-09-24 | 天津大学 | A fully flexible electromagnetic vibration sensor based on folded film |
CN114251336A (en) * | 2021-11-05 | 2022-03-29 | 湖北塞思博科技有限公司 | Preparation method and detection method of cantilever beam structure magnetoelectric antenna and magnetoelectric antenna |
CN114337372A (en) * | 2022-02-21 | 2022-04-12 | 上海声动微科技有限公司 | MEMS energy harvester and method of making the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101580223A (en) * | 2009-06-18 | 2009-11-18 | 大连理工大学 | Manufacturing method of a piezoelectric micro-cantilever beam probe |
CN102064736A (en) * | 2010-12-08 | 2011-05-18 | 重庆大学 | Composite micro wind turbine generator |
CN102647111A (en) * | 2012-04-23 | 2012-08-22 | 兰州大学 | Magnetically driven nanogenerators |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010237519A (en) * | 2009-03-31 | 2010-10-21 | Brother Ind Ltd | Optical scanner |
-
2012
- 2012-09-05 CN CN201210326051.4A patent/CN102868318B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101580223A (en) * | 2009-06-18 | 2009-11-18 | 大连理工大学 | Manufacturing method of a piezoelectric micro-cantilever beam probe |
CN102064736A (en) * | 2010-12-08 | 2011-05-18 | 重庆大学 | Composite micro wind turbine generator |
CN102647111A (en) * | 2012-04-23 | 2012-08-22 | 兰州大学 | Magnetically driven nanogenerators |
Non-Patent Citations (2)
Title |
---|
内嵌永磁体阵列的柔性振动膜微型电磁驱动器的设计与制造工艺;苏宇锋等;《仪表技术与传感器》;20090430(第4期);论文第58页右栏最后1段第1-9行、第59页右栏最后1段第3-8行、第60页左栏第2段第1-8行及论文附图1、6 * |
崔铮.微纳米加工技术及其应用.《微纳米加工技术及其应用》.高等教育出版社,2009,第273页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102868318A (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102868318B (en) | Mini-type combined type energy collector based on PVDF (Poly Vinyli Dene Fluoride) and preparation method | |
CN101860262B (en) | Piezoelectric bimorph MEMS energy harvester and preparation method thereof | |
KR101774301B1 (en) | energy harvesting device and manufacturing of the same | |
Toprak et al. | MEMS scale PVDF-TrFE-based piezoelectric energy harvesters | |
CN101944860B (en) | Piezoelectric cantilever vibration energy harvester and preparation method thereof | |
CN105186922B (en) | Piezoelectricity friction replies box-like MEMS widebands energy collecting device and preparation method thereof by cable | |
CN102332529A (en) | Piezoelectric energy harvester with flexible substrate and preparation method thereof | |
CN101941670B (en) | Miniature electromagnetic broadband vibration energy harvester based on permanent magnet array | |
Chen et al. | A low-power milliwatt electromagnetic microspeaker using a PDMS membrane for hearing aids application | |
CN102064736B (en) | Composite micro wind turbine generator | |
Kim et al. | Piezoelectric microgenerators-current status and challenges | |
CN103346694A (en) | Piezoelectric micro energy collector based on annular interdigital electrode and preparation method thereof | |
CN103036477B (en) | Multi-modal combined type energy collector based on flexible polymer piezoelectric materials | |
CN107947633B (en) | Piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof | |
CN106252501A (en) | A kind of based on piezoelectric thick in flexible substrate and preparation method thereof | |
CN102185097A (en) | Piezoelectric stacking type MEMS (Micro-electromechanical System) vibration energy collector and manufacturing method thereof | |
CN103746602B (en) | A kind of Screw-type piezoelectric type energy collector preparation method | |
CN205070840U (en) | Piezoelectricity - triboelectric combined type MEMS wide band energy gatherer | |
CN107511317A (en) | Piezoelectric ultrasonic transducer and preparation method thereof | |
CN107808926B (en) | A kind of micro energy harvester based on piezoelectric thick film MEMS technology and preparation method thereof | |
CN102223107B (en) | A Broadband Low Frequency Miniature Piezoelectric Vibration Energy Harvesting System | |
CN102723839A (en) | Electromagnetic energy harvester with flexible substrate and method for preparing electromagnetic energy harvester | |
CN116848966A (en) | Piezoelectric device including flexible single crystal piezoelectric LiNbO3 and/or LiTaO3 film integrated on flexible substrate and manufacturing method thereof | |
CN102544349A (en) | MEMS (micro-electromechanical systems) broadband vibration energy collector based on PMNT (polymer dispersed negative) piezoelectric single crystal and preparation method thereof | |
Toprak et al. | Micron scale energy harvesters using multiple piezoelectric polymer layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160125 Address after: 100871 red third floor, Peking University, Beijing 105 Patentee after: Science & Technology Development Deparatment, Peking University Address before: 100871 Beijing the Summer Palace Road, Haidian District, No. 5 Patentee before: Peking University |
|
TR01 | Transfer of patent right |
Effective date of registration: 20190708 Address after: 100871 No. 5 Summer Palace Road, Zhongguancun, Haidian District, Beijing Patentee after: Peking University Address before: 100871 Red Third Floor 105, Peking University Patentee before: Science & Technology Development Deparatment, Peking University |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150513 Termination date: 20190905 |
|
CF01 | Termination of patent right due to non-payment of annual fee |