CN102858405A - 心脏再同步治疗控制参数自动调节的系统和方法 - Google Patents

心脏再同步治疗控制参数自动调节的系统和方法 Download PDF

Info

Publication number
CN102858405A
CN102858405A CN2010800661606A CN201080066160A CN102858405A CN 102858405 A CN102858405 A CN 102858405A CN 2010800661606 A CN2010800661606 A CN 2010800661606A CN 201080066160 A CN201080066160 A CN 201080066160A CN 102858405 A CN102858405 A CN 102858405A
Authority
CN
China
Prior art keywords
pace
electrical activity
cardiac
cardiac electrical
ventricle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800661606A
Other languages
English (en)
Other versions
CN102858405B (zh
Inventor
M·O·斯维尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brigham and Womens Hospital Inc
Original Assignee
Brigham and Womens Hospital Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brigham and Womens Hospital Inc filed Critical Brigham and Womens Hospital Inc
Publication of CN102858405A publication Critical patent/CN102858405A/zh
Application granted granted Critical
Publication of CN102858405B publication Critical patent/CN102858405B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/35Detecting specific parameters of the electrocardiograph cycle by template matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • A61N1/36843Bi-ventricular stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

提供了心脏再同步治疗的系统与方法,其中通过将在基线和起搏情况下的由心脏可植入电设备获得的局部电描记图与从导联心电图测量中导出的心脏电活动的模型进行比较,来自动地调节起搏控制参数。经调节的起搏控制参数,在减少牺牲心脏舒张功能的风险的同时确保心室激动波阵面融合的基本最大的迹象。房室间期(AVI)被测量并被用于限制起搏控制参数的调节,从而在患者心脏内不引起心脏舒张功能障碍。

Description

心脏再同步治疗控制参数自动调节的系统和方法
相关申请的交叉引用
本申请要求名为“System And Methods For Automatically GeneratingVentricular Activation Wavefront Fusion During Multisite Pacing Therapy”、在2010年2月12日申请的美国临时专利申请系列号No.61/337,817;名为“DuringMultisite Pacing Therapy,Systems and Methods for Determining VentricularActivation Times and For Automatically Titrating Maximum Evidence ForVentricular Activation Wavefront Fusion”、在2010年5月17日申请的美国临时专利申请系列号No.61/345,251;名为“A System and Apparatus for AutomaticallyPredicting and Reporting The Probability of Reverse Ventricular RemodelingDuring Multisite Pacing Therapy”、在2010年6月23日提交的美国临时专利申请系列号No.61/357,617;名为“Systems,Apparatuses and Methods for CardiacResynchronization.”、在2010年7月9日提交的美国临时专利申请系列号No.61/362,972的优先权。
技术领域
本发明的领域是心律管理的系统与方法。更具体地,本发明涉及用于执行心脏再同步治疗的系统和方法,其中相关于心脏电活动的模型(诸如全局心脏电活动的模型)来自动地做出起对于搏控制参数的调节。
发明背景
由于束支阻滞引起的左心室传导延迟引起区域异质性收缩与延展、或异步,这减少了泵血功能并刺激了不利的左心室重构,诸如增加的腔室体积。实验性模型展示了左心室电激动、心脏力学、和重构之间的直接关联。异步心力衰竭的多部位起搏(也被称为心脏再同步治疗(“CRT”)或双心室起搏)的概念基础,是最小化心室传导延迟,这减少了收缩异步并改进了腔室力学。电机械活动的再同步引起所谓“逆向”重构(表征为心室体积减少)、和改进的泵血功能(表征为增加的心室射血分数)。逆向重构相关联于减少的心力衰竭发病率和死亡率。然而,高达三分之一的患者进行CRT后没有改进。
响应于异步心力衰竭的多部位起搏的逆向体积重构的转换机制是心室激动波阵面(wavefront)融合,这在起搏的12导联ECG上很明显。不论基线底物条件如何,心室激动波阵面融合的存在预测了逆向重构的增加的概率,而没有激动波阵面融合则预测了重构的减少的概率。
不利的底物条件,诸如较高的心肌瘢痕量或少量心室传导延迟,不可由起搏技术所修改。反之,起搏策略可易于适用于修改心室激动,且可在具有心脏可植入电设备(“CIED”)的全流动性患者中自动地实现这样的指令。最近的实验迹象表明,仅有三分之二的CIED患者在常规CRT过程中具有心室激动波阵面融合的起搏体表ECG迹象。这暗示了:尽管有常规的CRT起搏,仍存在校正心室传导延迟的失败,这极大地造成体积重构无响应。
所有现有CIED方法对于CRT的起搏控制系统的自动或半自动调节的限制在于它们仅依靠有限的基于设备的测量,而这些测量没有被相关联于任何临床结果测量(特别值得一提的是逆向容积重构)的改进。因此期望的是提供心脏再同步治疗的系统和方法,其更准确地表征全局心室激动模式且其导致对于起搏控制参数的临床可靠的测量和改变。
发明内容
本发明通过提供心脏再同步治疗(“CRT”)的系统和方法来克服了上述缺陷,在该系统和方法中,使用心脏电活动的模型(诸如从各种体表心电图(“ECG”)信号中导出的全局心脏电活动的模型),通过将由CIED获取的多种局部场和远场电描记图(“EGM”)与该模型进行比较,来自动地调节心脏可植入电设备(“CIED”)的起搏控制参数。这样的系统与方法提供了CIED所观察到的全局心室激动模式的准确的表征,藉此提供了可更准确地调节合适的起搏控制参数从而实现基本最佳心室激动的系统与方法。因此,本发明的方面是提供心脏再同步治疗的系统与方法,其利用了诸如形态学框架之类的框架用于分析作为全局心脏电活动的替代物的心脏电活动的局部的基于CIED的测量。
本发明的一方面在于提供用于传递心脏再同步治疗至具有CIED的患者心脏用于心律管理(“CRM”)的方法。该治疗使用心脏电活动的模型(诸如从基线和起搏的体表心电图信号导出的全局心脏电活动的模型)来持续地且自动地加以调节。利用形态学框架来提供在用CIED获取的电描记图和心脏电活动的模型之间的直接的、比较性的分析。
本发明的另一方面在于提供用于采用用于CRM的CIED传递心脏再同步治疗至患者心脏的方法。该治疗使用心脏电活动的模型(诸如从基线和起搏体表心电图信号导出的全局心脏电活动的模型)来持续地且自动地调节被用于引导该治疗的起搏控制和定时(timing)参数。示例性定时参数包括房室间期(“AVI”),诸如本征AVI(“iAVI”)、起搏器AVI(“pAVI”)、和有效AVI(“eAVI”)。
本发明的又一个方面在于提供用于准确地预测源自给定心脏再同步治疗计划的逆向体积心室重构的概率的方法。
本发明的又一个方面在于提供用于在心脏再同步治疗过程中自动测定心室激动融合的最大迹象(maximal evidence)的方法。
本发明的又一个方面在于提供用于自动地增加CIED的心房敏感度的方法,从而克服不能在多部位起搏过程中获得心室激动波阵面融合的最大迹象的问题,并且在不牺牲心室激动波阵面融合的最大迹象的情况下减少诸如心脏舒张功能障碍之类的左心室充盈异常的风险。
本发明的前述的和其它方面以及优点将出现在以下描述中。在该描述中,参考了形成本发明的部分的附图,在这些附图中作为说明示出了本发明的优选实施例。然而这些实施例未必代表本发明的全部范围,并且因此参考权利要求书和本文来解释本发明范围。
附图说明
图1是在实现本发明的实施例时采用的用于心律管理(“CRM”)的示例性心脏可植入电设备(“CIED”)的图示;
图2是一组示例性QRS复合体象形符号(hieroglyph)、或“字形(glyph)”的图示,其形成用于将心脏电活动的CIED测量与全局心脏电活动的体表ECG测量相关联的形态学框架,该形态学框架被示出来预测心室泵血功能的改进(逆向重构);
图3是阐明用于获取与产生形成在实践本发明时所采用的全局心脏电活动的模型的数据的示例性方法的步骤的流程图;
图4是阐明用于自动调节心脏再同步治疗起搏控制参数的示例性方法的步骤的流程图;
图5是一组示例性体表心电图(“ECG”)导联测量和基于CIED的电描记图(“EGM”)测量的图示;
图6是改变心房敏感度来克服由于心房感测反应时间引起的不完整的心室激动波阵面融合的效果的图示;
图7是一组示例性体表心电图(“ECG”)导联信号和基于CIED的电描记图(“EGM”)信号的图示,示出在ECG和EGM信号上对于心室激动时间的计算;
图8是示例性体表ECG信号和相应EGM信号的图示;
图9是在没有增加房室传导时间的情况下在心房起搏过程中的示例性体表ECG信号和相应EGM信号的图示;
图10是在增加的房室传导时间的情况下在心房起搏过程中的示例性体表ECG信号和相应EGM信号的图示;
图11是说明用于执行房室间期管理的心脏再同步治疗的示例性方法的步骤的流程图;
图12是逆向心室重构的概率的示例性可视报告的图示;
图13是其中还显示了来自相关的体表ECG或CIED EGM的QRS字形的逆向心室重构的概率的示例性可视报告的图示;
图14是当其受到双心室起搏时间的影响时,逆向心室重构的概率的示例性可视报告的图示;
图15是当其受到不同起搏控制参数之间的变化的影响时,逆向心室重构的概率的示例性可视报告的图示;和
图16是其中获得了逆向心室重构的最大概率的逆向心室重构的概率的示例性可视报告的图示。
发明详细描述
利用被植入的心律管理(“CRM”)设备(诸如起搏器和具有起搏功能的可植入复律除颤器(“ICD”))的常规心脏起搏,涉及经由与心脏的期望部分电接触的心脏内电极传递电起搏脉冲至患者心脏。该CRM设备一般被皮下地植入在患者胸部。
现在参看图1,示出了被用于心脏再同步治疗(“CRT”)的示例性心脏可植入电设备(“CIED”)100。这样的示例性CIED100包括与心脏内导联系统104电通信的可植入脉冲发生器102。
通过上部静脉系统的血管(诸如上腔静脉),心脏内导联系统104的部分可被插入患者心脏106。心脏内导联系统104包括一个或多个电极,该一个或多个电极被配置为产生代表在电极位置处、在空间上间隔开的电极之间、或在电极的各种组合与脉冲发生器102的外壳108之间所感测到的心脏电活动的电描记图(“EGM”),或者被配置为传递起搏电脉冲至电极的位置。任选地,心脏内导联系统104可包括一个或多个电极,该一个或多个电极被配置为感测诸如心腔压力或温度之类的生理学参数。
导联系统104可包括被置于一个或多个心腔内、上、或周围的一个或多个心脏内电极110-114,用于从患者心脏106感测电信号并传递起搏脉冲至心脏106。心脏内电极110-114,诸如如图1中所示的,可被用于感测心脏的一个或多个腔室中的电活动或用于起搏心脏的一个或多个腔室,包括左心室、右心室、左心房、和右心房。导联系统104可包括用于传递复律/去纤颤电击至心脏的一个或多个去纤颤电极。
脉冲发生器102包括用于检测心律失常、并控制通过导联系统104被传递至心脏106的电刺激脉冲或电击形式的起搏或去纤颤治疗的电路。脉冲发生器102的外壳108还与各种选择性心脏内电极110-114组合来作为用于记录远场EGM的感测电极。这样的控制器由与用于程序和数据存储的存储器电通信的微处理器形成。其它控制器设计对于本领域技术人员而言是容易理解的。
该控制器被配置为以数个编程模式来操作CRM设备100,每一个编程模式定义了响应于所感测到的心脏电活动或者在没有自发心脏电活动的情况下如何输出起搏脉冲。还提供了通信电路用于帮助控制器和外部通信设备之间的通信,外部通信设备诸如是,例如,便携式或床侧通信台、患者携载/佩戴的通信台、或外部编程器。通信电路还可辅助与一个或多个植入的;外部的;皮肤或皮下生理学或非生理学传感器;患者输入设备;或信息系统之间的单向或双向通信。
控制器根据存储于存储器中的编程指令来控制CRM 100设备的整体操作。控制器编译从心脏内电极110-114、和用脉冲发生器102的外壳108形成的远场电极感测到的电描记信号,并根据编程起搏模式来控制起搏电脉冲的传递。CRM设备的感测电路从由特定通道的电极所感测到的电压中,单独地或以各种组合地,产生多个心房、心室、和远场电描记信号。电描记图类似于体表ECG且表示在本征或起搏的跳动过程中发生的心脏除极的时程和幅度。
建立形态学框架来提供对由CIED获得的电描记图(“EGM”)和采用体表-导联(surface-lead)系统的心电图(“ECG”)设备获得的心电图的直接的、比较性的分析。特定地,在用CRM设备起搏之前和之后获得的ECG中形成心脏电活动的模型。因此,这模型传递了与异常基线全局心脏电活动、由CRM设备完成的全局心脏电活动中的变化、以及最大化心室激动波阵面融合的理想全局心脏电活动相关的信息,藉此确保心脏泵血功能改进的最大可能性。尽管EGM与由ECG设备通常采用的导联系统没有采用相同的视角来记录全局心脏活动,通过形态学框架的方式,心脏电活动的模型被直接与由CIED所记录的EGM所比较。因此,多个CIED EGM用作全局心脏电活动的体表ECG测量的形态学替代物。
形态学框架被称为心室激动模式比较的QRS象形符号框架(hieroglyphicframework)。简而言之,在每一个导联(surface lead)中起搏前和起搏后QRS复合体被解构为四个可能的波形元素:R、S、Q、和QS。每一个QRS复合体的所有元素的以毫伏(“mV”)计的绝对幅值和以毫秒(“ms”)计的持续时间被用于表征特定激动模式。每一个导联中的心室激动可用九个可能的模式、或QRS象形符号(“字形”)来表征,如下述表格1所描述和图2所示的那样。
表格 1
Figure BDA00002248644600061
Figure BDA00002248644600071
在左侧束支阻滞(“BBB”)过程中的典型心室激动表现为额面中的右向左、水平面中的前向后、和体表ECG中的可变轴。以示例的方式用于表征在QRS象形符号框架中用导联所记录的心脏电活动,这个心室传导阻滞产生印刷术象形符号签名,用导联I,aVL中的主导正作用力(字形:R、Rs)、aVR中的负作用力(字形:QS)、II,III,AVF中的可变作用力(字形:R,Rs,rS,QS)、V1-V2中的主导负作用力(字形:QS,rS)、V3-V5中的瞬变(字形:rS变为Rs,R)、和V5-V6中的主导正作用力(字形:R,Rs)。可为其他形式的心室传导阻滞类似地构建其他特征QRS象形符号签名。
左侧BBB的实验性模型展示了当通过心室激动波阵面融合最小化左心室间电异步时发生心室泵血功能的最大改进。在多部位起搏过程中的波阵面相对和翻转(opposition and reversal)获得心室激动波阵面融合的可预测的ECG迹象如下。首先,额面电轴中的变化导致正常的或电轴左偏(“LADEV”)变化至电轴右偏(“RADEV”)。这个偏差表示额面中的激动的翻转,诸如,从右向左变成左向右。类似地,水平表面中的激动翻转用从前向后到后向前的主导电作用力的变化来表示。全局心室电活动中的这样的代表性方向变化是相关联的,不过取决于基线电活动、起搏电活动、起搏控制参数、起搏导联位置、和其他考虑事项之间的相互作用而表现为不同程度。表征心室融合的迹象的可选方法是使用在表示起搏前后的激动波阵面翻转的期望方向中的最大R-波幅值变化的局部或全局性测量。下文将更详细地描述这个方法。
此外,当向右的作用力并入具有主导的向左作用力的导联中时,QRS象形符号签名的变化变得明显。例如,在导联I和aVL中,qR、QR、和QS字形替代R、Rs、或RS字形。这些变化表示额面中的激动的翻转,诸如,从右向左变成左向右。附加地,前面的作用力并入具有主导后面的作用力的导联中,如导联V1中的QS字形至rS,RS,Rs,或R字形的变化;导联V2中的QS或rS字形至RS,Rs,或R字形的变化;V3中的rS或RS字形至R字形的变化;等所表征的。这些变化表示水平面中的激动的翻转,诸如,从前面向后面变成后面向前面。涉及全局心脏电活动的基线导联测量和在多部位起搏过程中的这些测量的期望的变化的上述信息,被转换为QRS象形符号框架,被结合至心脏电活动的模型中,其可被CIED所编译并被与其中记录的EGM所比较。
值得注意的是在局部和区域QRS象形符号签名中的所期望的变化在特定体表ECG导联中被最多地显现:I,aVL,V1,和V2,此处被称为“中枢(pivotal)导联”。这些中枢导联表征垂直的前和水平表面中的全局心室激动。导联I和aVL表示额面中的右向左方向的全局激动,而导联V1和V2表示水平表面中前面向后面方向中的全局激动。因此,在不牺牲准确度的情况下,分析全局心室激动的可选方法使用具有来自减少的体表ECG导联组的信息的心脏电活动模型。
示例性的减少的导联组包括用于评估额面中的活动波阵面翻转的1-2导联(如,I、aVL导联)和在水平面中的1-2导联(如,V1、V2导联)。附加地,包括仅中枢导联I和V1的甚至更简单的体表ECG导联组可可选地提供用于检测前和水平面中的活动波阵面翻转的足够的观察力。
此处描述的根据本发明的一些实施例执行的用于心脏再同步治疗方法被粗略地分为两阶段。第一,心脏电活动的模型被产生并被提供至CRM设备,和第二,由CRM设备记录的EGM被实时地和所提供的模型相比较,从而在持续、逐搏、或近乎持续的基础上,持续地调节起搏控制参数来提供基本优化的全局心室激动波阵面融合。为产生心脏电活动的模型,首先是从起搏之前和之后的导联中获取ECG信号。然后为全局心室激动分析这些信号。使用QRS象形符号框架,在所获取的ECG信号中的全局心室激动波阵面融合的标记被转换为体表ECG测量的CIED EGM替代物。这样的替代物可由单个或多个、互补的心脏内、局部和远场EGM QRS字形形成。
现在参看图3,示出了说明从体表ECG测量中产生心脏电活动的模型(诸如全局心脏电活动的模型)的示例性方法的步骤的流程图。可构想,在CIED的植入之后将产生患者特定的模型;然而,根据这个方法产生的可选的“标准”模型可被预加载到各CRM设备上。
为了产生心脏电活动的模型,首先在完全没有心室起搏的情况下评估基线心室激动,如步骤302中所示。如果从已经具有所植入的CRM设备的患者处产生心脏电活动的模型,通过将CRM设备转换为诸如ODO、OVO、或VVI模式之一的选择性临时测试模式来获得这个基线情况。对于没有自发心室电活动的患者,在右心室起搏过程中评估基线心室激动,这是对于左侧束支阻滞的生理学替代物。
然后分析起搏的单心室(单腔室)活动序列,如步骤304中所示。这个分析要求用起搏的激动全面代替天然的心室激动。实现完全起搏的单心室激动的数种方法对于本领域技术人员而言是已知的,作为操作者的参考。例如,在诸如VVI模式之类的临时测试模式中进行右侧单心室(“RUV”)起搏和左侧单心室(“LUV”)起搏。此处,起搏被编程为超过主要心室速率达至少每分钟十下(“bpm”)的速率,藉此消除了与天然的对侧心室激动的融合。可选地,起搏的全局激动,而非单腔室心室激动,通过在自发房室传导过程中选择至少是天然AVI的百分之五十的起搏器房室间期(“pAVI”),可在诸如如上所述的VVI模式之类的单腔室模式中被评估,或者在诸如DDD模式之类的双腔室模式中被评估。
双心室同时起搏,典型的主治疗模式,被初始化且所得到的信号被记录,如步骤306中所示。在双腔室模式中,pAVI应该充分短来确保用起搏心室激动完全替代天然心室激动。在仅有单腔室心室的模式中,较低速率应该超过主要天然心室速率达充分量从而消除与天然活动融合的可能性,诸如大于主要速率10-20bpm。用实时体表ECG来分析同时起搏的双心室激动。
从自发的心室激动、或在依靠起搏器的患者的右心室起搏活动中的体表ECG中导出的QRS象形符号的数字模板被获取和存储,如步骤308中所示。类似地,在单心室起搏心室激动(包括RUV和LUV)和双心室(“BV”)起搏心室激动过程中的中枢导联的体表ECG象形符号的数字模板被获取和存储,分别如步骤310和312中所示。所有十二个导联的象形符号被初始地获得。这些模板可被显示在用户界面上用于在各种起搏情况下比较。可选地,显示了仅包括2-4个中枢导联的减少的体表ECG导联组,代表两个垂直表面上的心室激动。
对于所有十二个导联、或者对于使用2-4个关联导联的减少的导联组的起搏的QRS象形符号的数字模板,在同时的BV起搏活动过程中被获取。这些象形符号被与在基线心室激动中获取的对应的QRS象形符号并排地呈现。以在QRS象形符号签名中引起搏引起的变化为基础,为心室激动波阵面融合的迹象来做出比较。数种比较方法是可能的且包括直接的并排可视比较和使用对于本领域技术人员已知的数学技术来进行半自动或全自动模板交叠比较(overlapping comparison)。
如果双心室同时起搏没有提供心室激动波阵面融合的最大迹象,对心室起搏定时控制参数做出手动、半自动、或全自动的调节。QRS象形符号模板获取和比较过程被重复直至生成了融合的最大迹象。示例性控制参数调节包括pAVI的处理,诸如通过缩短;或更有可能,通过基本定时的BV起搏定时,诸如V-V定时。对于V-V定时,电延迟的心室在较早激活的心室之前以固定或可变的间期被刺激,直到生成融合的最大迹象。这样的调节,以及相关本质的其他调节,对于本领域技术人员而言是已知的。
一旦使用QRS象形符号模板分析获得起搏活动波阵面融合的最大迹象,在最终起搏控制参数设置的对于所有十二导联、或对于使用2-4中枢导联的减少导联组的起搏QRS象形符号的数字模板可被获取并存储于心脏电活动的模型中。这些象形符号可与在基线心室激动过程中的相应QRS象形符号进行并排呈现用于实时或空闲时(off-time)比较。进一步,这些象形符号可被用于进一步操作,藉此消除了在临床上后续行动过程中对于十二导联ECG的持续需要。
从自发的心室激动、或在依靠起搏器的患者的右心室起搏活动中的体表ECG中导出的QRS象形符号的数字模板被获取和存储。所有十二个导联的象形符号被初始地获得。从体表ECG测量中,心房和心室激动时间可被计算并存储,如步骤314中所示,且如下文详细描述。通过解剖区域,将QRS象形符号模板可被显示在用户界面上按照解剖区域进行心室激动时间(“VAT”)的比较分析。在这样的情况下,使用电子卡尺在外部编程器用户界面显示器上测量VAT。还测量QRS复合体持续时间,通过导联/解剖区域来注释,并自动存储。按照解剖区域在一个或多个导联中测量从QRS开始时间到第一陷波(notch)(如下所述)的右VAT。连续地为每一个右VAT测量而自动计算左VAT直到所有解剖区域已经被勘察。然后最大的左VAT,LVATmax,被指定为来自任何解剖区域的在任何导联中的最长的左VAT。如果不存在自发心室激动,在起搏的右单心室(单腔室)活动中测量VAT。类似地构建确定右和左VAT的过程。
如果在天然心室激动或起搏的右单心室激动中没有QRS陷波,使用QRS持续时间的回归公式(将在下文详细描述)来导出LVATmax。在这个情况下,通过解剖区域在任何导联中记录的最长QRS持续时间被用于计算LVATmax
如下文将会详细描述地,房室间期信息还可被计算并被存储于心脏电活动的模型中,如步骤316中所示。类似地,从体表ECG测量中计算出QRS计分信息(用于瘢痕量的估算),如步骤318中所示。
全局心室激动的分析的可选方法将体表ECG测量限制为减少的导联组而不牺牲所获得的心脏电活动模型的准确度。这个导联组包括1-2个中枢导联(诸如导联I和aVL)用于估算额面中的活动波阵面翻转、以及水平表面中的1-2个中枢导联(诸如导联V1和V2)。
在心脏再同步治疗过程中,区域和全局心室激动的这些体表ECG标记被翻译为中枢CIED QRS EGM源,这些源显示了类似于中枢体表ECG导联中的这些变化的主要或分量电作用力的幅值和方向性中的变化。通过调节起搏控制参数来自动测定QRS EGM字形变化的大小,从而获得活动波阵面翻转的最大迹象。这要求体表ECG活动模式与基于CRM设备的QRS EGM字形替代物(为自动性可被开发)之间的准确的相关性。这样的分析使用心脏电活动的模型来确保这个准确度。
现在特定地参考图4,示出了说明其中基于心脏电活动的模型持续且自动地更新起搏控制参数的心脏再同步治疗的示例性方法的步骤的流程图。这样的方法开始于通过被植入患者的心律管理(“CRM”)设备的来自患者心脏的电描记图(“EGM”)的主动获取,如步骤402中所示。如步骤404中所示,然后所获取的EGM被与心脏电活动的模型相比较,诸如是从之前获得的和在患者心脏起搏期间活动的体表ECG测量中导出的全局心脏电活动的模型。如上所述,这样的心脏电活动的模型包括代表例如没有起搏的基线心室激动、单心室激动、和双心室激动的QRS象形符号。包括于这个模型中的信息可使用全十二导联ECG设置、或可选地使用其中测量仅基于2-4中枢导联的减少的导联组来获得。
在比较过程中,成比例于模型中所包含的起搏的QRS字形中的类似变化,对于主要电作用力、或分力的幅值或方向性的变化的迹象来实时分析待选EGM。不管是绝对比例或绝对方向性,诸如上述或下述基线,对于这个比较都不是必须的,因为EGM不必幅值被用于产生这个模型的体表ECG导联的观点。附加地,展示与起搏的EGM中的变化成比例的幅值和方向性的变化的EGM的特定垂线偏差分量并不重要;而是,比较方法搜寻数学地关联于包含在心脏电活动中包含的期望变化的EGM中的一致性变化。
从基线到最大心室激动融合的模型QRS字形和所获取的EGM中的成比例的变化被自动地量化并被用作关键起搏控制参数的后续测定和维护的可再现的数值端点。例如,通过计算从基线到起搏后的每一个EGM字形的主要幅值或分量偏差中的变化来生成满足上述条件EGM字形主要幅值或分量偏差的变化的指数,作为基线值的一部分。例如,当在基线处没有且在起搏后有感兴趣的偏差时使用该起搏后的值;在基线处由且在起搏后没有感兴趣的偏差时使用一的值;且当两个都没有时,使用零的值。如果模型中所期望的方向中有变化则将主要作用力或分量偏差幅值变化值设置为正;否则设置为负。然后对个别患者的EGM来平均这些变化。然后可创建数个不同的汇总,例如,按区域的EGM的平均变化、或所有EGM的平均。通过这个方式,生成了用于建立心室激动波阵面融合的最大迹象的关键起搏控制参数的测定和维护的一个或多个互补的可再现的数值端点。
现在参看图5,示出了从心脏电活动模型与从被植入的CRM设备中记录的EGM之间的比较的示例。示出表示来自渐进的波阵面翻转和表示心室激动融合的来自导联I和V1的示例性ECG信号。类似地,示出来自四个源的示例性QRS字形EGM形态。在由EGM信号表示的QRS字形之间进行心室激动融合迹象的实时比较。在心脏电活动模型中的两个导联测量示出在渐进融合过程中的主要幅值或分量偏转中的成比例的变化。如上所述这些适于形态学和数值学分析。最后两个QRS字形EGM形态,源3和4,示出尽管渐进的激动融合的不充分的变化且因此被放弃来分析。反之,头两个QRS字形EGM形态,源1和2,示出在渐进融合过程中主要幅值或分量偏转中的充分且成比例的变化并因此是当与心脏电活动的模型进行比较时心室激动融合的准确且可靠的迹象。
再次参考图4,如果,在比较之后,在判定框406基于现有起搏控制参数做出确定,出现了心室激动波阵面融合的基本最大的迹象,则维持现有参数,如步骤408中所示。另一方面,如果当前起搏控制参数没有导致心室激动波阵面融合的最大迹象,则执行这个最大迹象的测定从而确定更合适的起搏控制参数。
因此,如步骤410中所示,调节当前起搏控制参数从而实现对患者心脏的更合适的起搏。示例性起搏控制参数包括AVI定时、心室间定时、心房敏感度、和起搏刺激输出电压。在对于起搏控制参数的调节之后,从CRM设备中获取一组新的EGM,如步骤412中所示。然后以上述方式将这些更新的EGM与心脏电活动的模型相比较,如步骤414中所示。再一次,在判定框416中分析比较的结果。如果经调节的起搏控制参数导致心室激动波阵面融合的最大迹象的测定,则维持所更新的起搏控制参数,如步骤408中所示。否则,在步骤410中再次调节起搏控制参数,重复步骤412-414来评估所更新的起搏控制参数的功效。
使用这个方法,将在心室激动融合的最大迹象的过程中展示对应于全局心室融合的动态特性的一个或多个独特EGM QRS字形,进行标识、获取、并链接至对应的所测定的起搏控制参数。可构想的是可采用近场和远场EGM QRS字形的组合。使用多个EGM QRS字形可增加对于未来自动调节的全局心室激动成像的再现性和准确度。
起搏控制参数被周期性地更新从而维持表示最大心室激动波阵面融合的EGM QRS字形的主要幅值或分量偏差的最大幅值和方向性。当采用了从减少的导联组中导出的心脏电活动的模型时,消除了对于整个EGM QRS字形的数字模板的需要;取而代之,在比较性分析过程中聚焦于这些EGM的单个分量。
做出在最大心室激动融合过程中的实时起搏的CIED EGM QRS字形与基线起搏的EGM模板的周期性检查。周期性监督的目的在于检测基线心室传导特性中的临床相关的变化。这样的检查可被自动地安排在选择性间期或默认时间间期,或者通过患者或起搏情况的变化来自动触发,诸如通过出现了对起搏器的依赖。主要幅值或分量偏差的模板匹配过程或数学比较被用于将正在进行的实时EGM QRS字形模板与基线EGM QRS字形起搏的活动融合模板相比较,如上所述。
如上所述,当优化的CIED EGM QRS字形模板没有被匹配时、或者在所期望方向中从主要幅值或分量偏转变化的分析中导出的数值测量显著不同于基线时,做出对于起搏控制参数的选择性或自动调节来恢复与基线EGM QRS字形起搏的全局活动融合模板的最有可能的实时匹配这样的调节包括AVI定时的重新校准、心室间(“V-V”)定时、心房敏感区、和起搏刺激输出电压。
任选地,特定情况可触发警报情况,在警报情况中建议基于心室激动融合测量的ECG和EGM的重新确定。例如,在周期性确定的主要幅值或分量偏转变换中,相比在心室激动融合的最大迹象过程中建立的基线,诸如大于百分之十的增加或减少,可能表示基线心室激动时间和顺序的临床相关的变化。这样的观测可自动触发提醒以在下一个临床后续行动中重复半自动的体表ECG和CIED基于EGM的测量。
可构想的是,在使用下述半自动处理的CIED多部位起搏治疗初始时将获得满足对应于中枢体表ECG导联中的心室激动波阵面融合的迹象的主要幅值或分量偏转的可再现和数值地量化的变化的上述条件的CIED EGM字形的确定。不可能基于ECG的活动融合迹象的重新确定是一直必要的。将基于CIED的EGM关联至在体表ECG上的心室激动上的可再现变化的目的是为了消除在随访预约中的体表ECG的需要、开发EGM作为全局心室激动中的体表ECG和变化估算的替代物、以及指令使用EGM在起搏控制参数中的自动变化来连续地积极地修改全局心室激动。这样,这个方法是与本领域中的现有应用极大不同的。
除了上述自动方法外,被植入的CRM设备可初始地用来自临床医生的输入被编程。在这个半自动方法中,标准十二导联ECG被关联至所植入的CRM设备的外部编程器并被显示在用户界面上。为简化目的,包括在两个垂直视平面中的约2-4中枢导联的减少的ECG导联组的选项被提供至用户。这样的体表ECG导联组的任何一个被实时地与使用标准无线电遥测关联至CRM设备的心脏内和体表EGM QRS字形与遥感标记一起被显示。为了简化,表示在水平和额面中的心室激动波阵面方向性的2-4个中枢导联,可被实时地与心脏内或体表EGM字形并排显示用于视觉上和形态上的比较。
存储于心脏电活动模型中的,在最大可获得的心室激动融合过程中产生的起搏的QRS象形符号的数字模板,与从被植入的CRM设备处记录的选择性心脏内EGM并排显示。将在心室激动融合的最大迹象的过程中展示对应于全局心室融合的一个或多个心脏内或体表EGM QRS字形的独特形态学模板,进行标识、获取、并链接至对应的所测定的起搏控制参数。可构想的是可采用近场和远场EGM QRS字形模板的组合。使用多个EGM QRS字形模板增加了对于未来自动调节的全局心室激动成像的再现性和准确度。
当使用减少的导联组时,在操纵起搏控制参数来获得最大心室激动融合的过程中,中枢起搏QRS字形的数字模板(导联V1-V2、I和aVL)被实时地显示在CIED-编程器界面上在这个过程中,来自多个记录源的潜在可选CIED QRSEGM的面板也被与中枢起搏的QRS字形并排显示。实时地检查备选的CIEDQRS EGM用于主电作用力、或分力的幅值和方向性变化(成比例于中枢起搏的QRS字形中的类似变化)的可视迹象。不论是绝对的比例或绝对的方向性(如,基线之上或之下)都不是必要的,因为CEID EGM QRS字形并不需要复制体表ECG导联的视角。附加地,展示了成比例于中枢起搏的QRS EGM字形中的变化的幅值和方向性的变化的CIED QRS EGM字形的特定偏转分量并不重要;而是,在最大活动波阵面融合过程中,用户搜寻可被视觉地且数学地关联至中枢体表ECG导联中的变化的CIED QRS EGM字形中的一致性变化。
EGM QRS字形模板形成基于CIED的减少的导联组并对于体表ECG QRS象形符号提供准确的且可靠的可再现的替代物,该象形符号可被组合来再现图像并表征全局心室激动。这些EGM QRS字形模板被用于起搏控制参数的周期性更新并被用于指令心室刺激的定时从而持续地维持最大活动融合。可构想的是使用来自多个记录源的EGM QRS字形模板将增加再现具有对于起搏控制参数的调节的精确全局心室激动序列的准确度。
一旦初始的起搏控制参数已经由临床医生使用上述方法所设置,CIED在自动模式中操作,做出对于起搏控制参数的必要调节从而测定心室激动波阵面融合的最大迹象,如上详细所述那样。
上述在CIED中自动或半自动调节起搏控制参数以获得心室激动波阵面融合的最大迹象来减少心室异步的上述方法可被基于房室间期定时的考虑进一步实现。在这样的情况下,且如下文详细所述,起搏控制参数被进一步调节来维持合适的房室间期(“AVI”)从而作为所应用的心脏再同步治疗的结果,心脏舒张功能障碍没有被引入。
校正心脏传导延迟来改进心室力学并引起逆向体积重构是心脏再同步治疗的主要目的。然而,心室电机械定时的再同步直接影响心脏收缩的性能。由于心室刺激的定时主要受控于起搏器AVI(“pAVI”),心脏再同步治疗还对于AV定时具有直接影响,这影响了心室负载情况和心脏舒张功能。心脏舒张功能障碍对于收缩性心力衰竭而言是常见的且对于症状有贡献。优选AV再同步因此可减少心脏舒张功能障碍并改进症状。值得注意的是,心脏舒张功能的AV优化对于心室电机械再同步并不是必须的且在逆向体积心室重构中不起作用。实际上,甚至在AV定时没有被优化时可发生逆向体积心室重构。因此,不管左心室尺寸和收缩性,持久的心脏舒张功能障碍,是用心脏再同步治疗的具有异步心力衰竭的患者中的重要且经常未被认识到的症状源。
在多部位起搏治疗过程中用于测定优化AV再同步的现有方法包括左心室流入速度模式的超声波心动描记术分析、从侵入性血液动力学监测中导出的CIED-EGM定时分析、和在pAVI操纵过程中的实时血液动力监测。这些方法的共同目的是标识获得左心室预载中的最大改进和最大舒张期充盈时间的单个pAVI。为了实现这个目的,要求从左心房收缩到左心室收缩的定时被优化。当左心房收缩发生地太过早于左心室收缩时,超声波心动描记术上的A-波所标识的延迟舒张期主动充盈,与超声波心动描记术上的E-波所标识的提前舒张期被动充盈相融合,藉此减少了左心室预载。这个形式的心脏舒张功能障碍自发地发生于第一程度的AV阻塞(“AVB”)中,经常伴随有左束支阻滞(“LBBB”),且由短pAVI必要地校正来实现心室融合活动的最大迹象。
充分短的pAVI,特别是在具有较长PR间期的重要的第一程度AVB存在时,可导致这个形式的心脏舒张功能障碍。这个情况通常被称为pAVI相对本征AVI(“iAVI”)而言“太长”。当左心房收缩与左心室收缩同时或在左心室收缩之后立即发生时,心脏舒张功能障碍的不同形式被引发。超声波心动描记术上的A-波所标识的延迟舒张期充盈,通过二尖瓣关闭被截止,且在最为极端形式下导致心房传输阻塞。这个功能障碍减少左心室预载;引起增加的左心房压力和静脉血流翻转,获得限制性心脏舒张功能障碍的模式;且可触发反生理学神经激素反射。这种紊乱很少自发发生;然而,这个定时异常可不经意地由相对iAVI而言“太短”的pAVI所引起。由于提前被动充盈关联于之前的心室收缩,且延迟主动充盈独立地由窦性速率而被时间调节,pAVI控制A-波和心室收缩之间的定时关系。
如下文将详细描述的,用于在心脏再同步治疗过程中用于管理房室间期的之后的系统和方法克服了现有方法的缺点。例如,将优化pAVI计算为PR间期(右iAVI)的现有策略被充分地针对超前的左心室激动加以偏置,从而获得心室激动融合的最大迹象。这样做的理由在于PR间期(右iAVI)没有解决左心室激动时间。因此,达到预先定义的停止点的作为PR间期的百分比的双心室pAVI将不能将左心室激动提前达至少等于RVAT的值,这是不完整的左心室预先刺激的最小大小。
类似地,基于局部左心室EGM的定时的优化pAVI的现有策略被偏置向心房截断。这样做的理由是左心室EGM经常是在LVAT中非常晚地被记录的。因此,基于左心室EGM提前的到达预定义停止点的双心室pAVI可过量地将左心室激动提前达由右心室激动停止和左心室EGM定义的范围之内的值。此举的潜在结果在于左心室激动与左心房激动停止冲突或先于左心房激动停止。
可变形的相关源在于左心室EGM的定时取决于左心室刺激部位。基于上述理由,LVAT中较早的左心室EGM部位可减少心房截断的风险,而较后的左心室EGM部位可增加风险。
这些考虑对于涉及AVI管理的CRM设备编程构成重要的临床考虑和挑战。由于心室激动波阵面融合的最大迹象的生成要求双心室起搏的激动代替天然心室激动,首先施加一般短于iAVI的pAVI,其一般伴随有诸如左心室刺激治疗的连续心室间定时。这样安排的结果在于在心脏再同步治疗中的pAVI很少可能会“太长”。而是,很有可能充分短从而生成心室激动融合的最大迹象的pAVI将不经意地引起延迟主动充盈的截断或阻塞,诸如当pAVI“太短”时。当基线PR间期、iAVI较短时,这个效果特别引人关注。
下文描述辨识和校正心房感测延迟的从而能使主要起搏控制参数中有宽容度的方法,诸如在心室间起搏过程中增加pAVI或缩短左心室预先刺激定时,从而减少诸如心脏舒张功能障碍之类的左心室充盈异常的风险而不牺牲心室激动波阵面融合的最大迹象。
现有的用于优化AV再同步基于CIED的策略的限制在于尽管已知左心室刺激的定时,左心房电机械活动的定时并不是已知的。因此,没有现存的基于CIED的系统可提供迹象表示有必要来实现心室激动波阵面融合的最大迹象的主要起搏控制参数没有导致左心室充盈异常,特别是对心脏舒张延迟主动左心室充盈的截断,即,A-波截断和心房传输阻塞。尽管可想到新颖的导联的多样性可最终提供涉及LA电机械活动的定时的信息,但目前还不存在。
已经发现在特定条件下,心室激动波阵面融合的最大迹象没有被生成,尽管也有对于一般的关键起搏控制参数的合适的自动或选择性调节,包括但不限于pAVI定时的重新校准、心室间(“V-V”)定时、和起搏刺激输出电压。
这个条件用如下特征来识别。左心室刺激被执行形成能翻转心室激动的部位,这由体表ECG QRS象形符号分析所确认;然而,全局心室激动融合的所期待的模式被减少或没有,尽管存在对于一般关键起搏控制参数的操作。在这个示例中,尽管有短pAVI约100毫秒(“ms”)和具有双心室顺序起搏的左心室刺激的渐进提前,不完整的心室激动融合的QRS象形符号图案持续,如图6中所示。如图6的左手侧上来自中枢导联V1的四个ECG信号所示,左心室的渐进的较早激动在全局心室激动模式中没有获得变化(持久的Rs字形),但是增加了心脏舒张功能障碍的风险,即,pAVI潜在地“太短”。另一方面,如图6的右手侧上来自中枢导联V1的两个ECG信号所示,心房敏感度的增加,获得了心室激动融合迹象的增加的迹象(单相R字形),尽管存在同时的BV活动(如,即使在没有V-V起搏的情况下,藉此减少了pAVI“太短”的风险)。
提前左心室激动并生成心室激动融合的最大迹象的这个反常的失败的可校正的原因是功能性心房失敏(其中局部心房电激动的开始的延迟的识别发生在心房感测操作、或感测延迟中)发生。这个行为的结果在于pAVI较之本征AVI(“iAVI”)晚开始。在LBBB过程中,通过本征传导右心室保持被激动,而对于左心室的激动由于缓慢的心肌传导而延迟。在双心室起搏过程中,通过起搏刺激的定时来控制右和左心室激动,这遵循了被编程的AVI处的心房感测。被编程的AVI一直小于天然PR间期,从而右和左心室较之在天然传导过程中会发生的而较早地被激动。以此方式,双心室起搏控制右和左心室激动,校正由于LBBB引起的左心室传导延迟、并生成心室激动波阵面融合。
由于双心室起搏刺激出现在pAVI端部,在生理学AVI、从心房电活动到双心室起搏刺激的时间、以及在存在心房感测延迟时的pAVI之间存在不匹配。因此,双心室起搏刺激的出现相对于心房电激动的真正开始而言被延迟。这具有延迟左心室激动的效果,这表现为生成活动融合的增加的迹象的失败,尽管存在pAVI的渐进缩短。
在没有心房感测延迟的情况下,pAVI开始于心房激动的开始,被标识为P-波。在存在心房感测延迟时,pAVI的开始相对于心房激动开始而被延迟,其结果是减少了双心室起搏提前天然心室激动的时间。这些定时关系的结果是仅部分地校正了由于LBBB引起的左心室传导延迟,表现为ECG上的不完整的心室激动融合。被编程的心房敏感度的增加消除了心房感测延迟,从而pAVI与心房激动的开始一起开始。如此处所使用的,术语“心房敏感度”是指与左或右心房电通信的心脏内电极上的敏感度。消除心房感测延迟的结果是进一步提前了双心室起搏提前于天然心室传导的时间。因此,这导致左心室传导延迟的不完整的校正,表现为最大心室波阵面融合,由QRS字形或活动翻转的全局测量中所期望的变化所迹象。
以示例的方式,且再次参看图6,心房敏感度从0.35增加至0.18mV,同时保持所有其他起搏控制参数不变,包括pAVI,导致心室激动融合的最大迹象,这用中枢导联V1中的R-波的较大幅值来表示。心房敏感度的增加将局部心房电描记感测与P-波的开始同步。这个同步的结果在于pAVI等于有效AVI(“eAVI”,见下文)且由于pAVI被较早地初始化,双心室起搏体表ECG上可测量的PR间期被缩短。较短的PR间期是由于相对于P-波开始的双心室刺激的较早的传递,而结果是左心室激动被进一步提前且心室激动融合的最大迹象被生成。
在较低的心房敏感度,最大激动融合的模式不完整,而在较高的心房敏感度,诸如约0.18mV,激动融合的模式被最大化,确认在失败中心房感测延迟的角色来完全提前左心室激动从而生成最大心室激动融合。
心房感测延迟经常是不能实现心室激动波阵面融合的未被识别的原因。由于心房感测延迟而不能提前左心室激动更可能发生在具有较短PR间期的患者中。这是临床上重要的观测,因为当基线PR较短时,足够短以生成心室激动融合的最大迹象的pAVI更为可能引起左心室充盈的截断。通过同时应用心室间顺序起搏,诸如在右心室刺激之前的左心室刺激,这个情况可被潜在地恶化。在这个情况下的心房感测延迟的校正允许左心室刺激充分提前从而实现在较长pAVI处的心室激动融合的最大迹象并且不需要心室间(“V-V”)顺序起搏,藉此减少牺牲心脏舒张功能的风险。
可将对于心房敏感度的调节结合至用于测定心室激动波阵面融合的最大迹象的上述系统与方法中,诸如参看图4所描述的方法。可构想的是,当在操纵主起搏控制参数(诸如pAVI和心室间定时,或当特定警报情况存在时,诸如短iAVI(如,小于200ms的PR间期))后不能实现记录心室激动融合的最大迹象时,调用心房敏感度调节。
当对于心房敏感度做出改变时,进行对于(1)心室激动波阵面融合的迹象和(2)远场R-波过分敏感的出现的重新估计。选择实现心室激动融合的最大迹象的心房敏感度的最低增加从而最小化远场R-波过分敏感的风险。在一些情况下,心室激动融合的优化心房敏感度引起不可被消除的远场R-波过分敏感。在这样的情况下,并非牺牲心室激动融合,而是调用起搏控制参数对策来最小化远场R-波过分敏感的发生率和临床结果,诸如对于后心室心房空白期、心房空白期、和模式切换控制参数的调节。
像其他起搏控制参数一样,心房敏感度的增加可由特定临床条件,或由足以实现心室激动融合的最大迹象主起搏控制参数的编程组合,自动地或半自动地触发。例如,可由短PR间期(或CIED测量的定时替代物,诸如iAVI)触发警告,因为由于心房感测延迟引起的提前左心室激动的失败更有可能发生在具有较短PR间期或iAVI(诸如低于200ms的那些)患者中。进一步,较短的PR间期和iAVI增加了主起搏控制参数的极限调节(诸如pAVI和心室间(V-V)定时)被要求来实现心室激动融合的最大迹象的可能性。在这个情况下,非常短的pAVI(伴随心室间(V-V)定时(首先是左心室)增加了心脏舒张功能的可能性(诸如左心室充盈))将被牺牲。
相应地,心房感测延迟的识别和消除能使主起搏控制参数中有宽容度,诸如在心室间(V-V)起搏过程中增加pAVI和缩短左心室预先激励定时,这在不牺牲心室激动波阵面融合的最大迹象的情况下减少了LV充盈异常的风险。
由于当前不可能直接对左心房电机械活动计时,可选方法是估算真实本征、或基线的左心房-左心室(“LA-LV”)电耦合时间。这个估算用作在左心室激动提前过程中pAVI的外边界。这个外边界和提出对于心脏舒张较晚主动LV充盈的截断的考虑的最小pAVI直接的时间差异,诸如小于50ms或临床可选择的,建立了pAVI和心室间(V-V)定时的操纵的安全范围,从而在最小化限制模式心脏舒张功能障碍的风险的同时实现心室激动波阵面融合的最大迹象。以此方式,A-波截断的风险被最小化,而非替代在pAVI的较宽范围上获得“优化”AV再同步的企图(这在上述给定限制条件下是不切实际的)。因此,在最小化由于pAVI“太短”引起的A-波截断的风险的同时,优先了心室激动融合的最大迹象的测定。
通过分析从结合有多个CIED EGM定时标记的体表ECG测量中导出的全局心脏电活动的模型,可估算心房和心室电激动的定时。在执行这样的估算时,左心房激动的结束和左心室激动的开始被建立。这个间期描述了真实的天然LA-LV耦合时间,这可被测量作为在左心房激动停止和左心室激动开始之间的时间。
上述心脏电活动的模型进一步包括有关于心房和心室激动的定时的信息。P-波的持续时间代表总的心房激动时间(“AAT”),且在任何导联中的P-波的最早翻转表示右心房激动的开始。假设在任何导联中的P-波的最终结束代表左心房电激动的结束。由于心房电激动的持续时间随着体表ECG上的局部视角而变化,任何解剖区域中的任何P-波的最后结束被认为表示左心房激动的结束。因此,心房激动时间被测量作为在所有体表ECG导联上的最早P-波开始和最晚P-波结束之间的持续时间。
心室间传导延迟,诸如束支阻滞,引起连续的心室电激动。这一般在体表ECG上被登记作为“裂口(split)”或“凹陷(notched)”QRS复合体。这个第一陷波表示连续的单心室电激动之间的过渡点。发生在这个陷波之前的QRS复合体的一部分由被激动的第一腔体构成,而发生在这个陷波之后的QRS复合体的一部分由被激动的第二、延迟的腔体构成。
在任何ECG导联中的左束支阻滞QRS复合体的最早的第一向上表示右心室激动传导的开始。在任何ECG导联中的QRS复合体中的最早第一陷波表示在由于左束支阻滞引起的右心室激动的结束和左心室激动开始之间的过渡点。在任何ECG导联中的QRS复合体最终返回至基线,表示由于左束支阻滞引起的延迟的左心室激动的结束。
上述心脏电活动的模型进一步包括与本征房室间期(“iAVI”)和LA-LV耦合时间有关的信息。
从任何导联中的P-波的最早偏转(右心房激动开始)到任何导联中QRS复合体的最早第一向上(upstroke)(由于右束支阻滞引起的右心室激动的开始)的时间表示最小的右iAVI。从任何导联的P-波的最早偏转到任何ECG导联的QRS复合体中的最早陷波的时间表示最大右iAVI。最小和最大右iAVI之间的差异是RVAT。从任何导联中的P-波的最晚结束(左心房激动结束)到任何导联中的QRS复合体的最早陷波(左心室激动开始)的时间表示最小的左iAVI。从任何导联中的P-波的最晚结束(左心房激动结束)到任何导联中的QRS复合体至基线的最晚返回(左心室激动结束)的时间表示最大的左iAVI。最小和最大左iAVI之间的差异是LVAT。
因此,从最晚结束的P-波的结束到获得了最长LVATmax的QRS复合体中的第一陷波的变化点(最低点)的时间是LA–LV电耦合时间。这建立了pAVI的操作的外边界和测定心室激动波阵面融合的最大迹象的心室间定时。
在任何ECG导联中的QRS复合体中的最早第一陷波表示在由于左束支阻滞引起的右心室激动的结束和左心室激动开始之间的过渡点。由于在左BBB过程中的QRS分量中的多个陷波可能由于心肌疤痕而发生,第一陷波被假设为表示右心室和左心室去极化之间的过渡。由于心肌疤痕对于QRS凹陷的潜在的混淆影响,一些排除是必要的。导联V1或V2中的S-波的第一个40ms中的凹陷被排除,因为这在QRS计分中表示疤痕。
右心室激动时间(“RVAT”)被测量为按解剖区域排列的两个或更多个相邻ECG导联中的任意中的QRS开始和第一陷波之间的时间。这些区域被解剖学地定义为顶(导联I、V5、V6)、前-上(导联I、aVL)、前-间隔和后外侧(posterolateral)(导联V1-V2)、前(导联V3-V4)、和下(导联II、III、aVF)。
左心室激动时间(“LVAT”)被如下计算,
LVAT=QRSd-RVAT  (1);
其中QRSd是QRS复合体以毫秒计的持续时间。最长或最大LVAT,LVATmax,是在多部位起搏治疗过程中对于逆向体积左体积重构的可能性的独立的预测项(predictor),如下文详细描述的。因此,增加LVATmax预测了逆向体积重构的更高的概率,假设心室传导延迟被充分校正且瘢痕量是非抑制性的。LVAT随着解剖区域变化且最长的LVAT(LVATmax)最时常在下导联中被记录。因此,必须对所有解剖区域来执行心室激动时间的确定,从而确定真正的LVATmax。偶尔地,尽管存在极大的心室传导延迟,但QRS凹陷不存在。在QRS凹陷不存在的情况下,可应用从QRS持续时间和LVATmax之间的数值关系中导出的用于估算LVATmax的回归公式。这个数值关系特定为
LVAT max = - 35.839 + 0.763 · QRS d + 0.000619 · QRS d 2 - - - ( 2 ) ,
收集了表示基于CIED的减少的导联组的各种EGM QRS字形模板。这些提供了体表ECG QRS象形符号的准确可靠的可再现的合成替代物,并代表了全局心室激动的各种视角。使用来自多个记录源的EGM QRS字形模板增加了基于CIED的VAT测量的准确度。可构想的是可采用近场和远场EGM QRS字形模板的组合。使用多个EGM QRS字形模板增加了对于未来自动调节的全局心室活动成像的再现性和准确度。
现在参看图7,由于LVATmax随着解剖区域变化,多个CIED EGM字形模板将被筛选并相关联于被包含在心脏电活动模型中的体表ECG测量中。EGMQRS字形被检查凹陷,凹陷可表示顺序心室电激动。以与对于上述体表ECG信号类似的方式,从所获取的EGM中测得QRS持续时间、RVAT、和LVAT。例如,从开始(在任何方向中的从基线的第一次偏转)到实时、起搏抑制的(或右心室起搏的)双心室EGM中的第一次陷波或峰值的时间被假设为表示RVAT。这个时间在图7中被示为T1。进一步,LVAT被计算如下,
LVAT=QRSd,EGM-RVAT  (3);
其中QRSd,EGM是以毫秒计的EGM QRS字形持续时间。这个时间在图7中被示为T2。
从EGM中被导出的LVATmax值被认为是EGM LVAT,最接近于在体表ECG上被记录且被包含在心脏电活动中的LVATmax。这并不一定是最长的EGMLVATmax,因为在EGM QRS字形和ECG QRS字形持续时间之间存在差异。在其中一个或多个EGM LVATmax值超过心脏活动模型中的LVATmax值的情况下,选择最接近模型中的LVATmax的EGM LVATmax值。
如果在天然心室激动或起搏的右单心室激动中没有EGM字形QRS陷波,使用上述式(2)中所述的QRS持续时间的回归公式来导出LVATmax。例如,来自源1的QRS字形缺少QRS凹陷,且因此被VAT计算丢弃、或者采用式(2)中的回归公式。在这个情况下,从任何源所记录的最长EGM字形QRS持续时间、或所有源的平均,被用于计算LVATmax。可选地,EGM字形的合成可被用于提供LVATmax的更准确的全局测量。在这个情况下,在多个源EGM字形上记录RVAT、LVAT、和QRS持续时间,从而提供全局心室激动的更完整的估算。这些值被平均从而提供VAT的更为平衡的测量。
可构想的是在CIED多部位起搏治疗初始时完成EGM字形QRSLVATmax的确定。不可能基于ECG的VAT的重新确定是一直必要的。然而,可能做出起搏抑制的实时EGM字形QRS LVATmax模板的周期性检查。周期性监督的目的在于检测基线心室传导特性中的临床相关的变化。这样的检查可被自动地安排在选择性间期或默认时间间期,或者通过患者或起搏情况的变化来自动触发,诸如出现了对起搏器的依赖。特定情况可触发其中建议进行ECG和基于EGM的VAT的重新确定的警告情况。例如,在周期性确定的EGM字形QRS LVATmax值的多于百分之十的重大改变将表示在基线心室激动时间和顺序中的临床上相关的变化。这样的观测可自动触发提醒在下一个临床后续行动中重复半自动的ECG和基于EGM的测量。
EGM字形QRS LVATmax被继续用于提供诊断信息,诸如在多部位起搏过程中的逆向体积重构概率的预测模型和定时指令,如下文。
从体表ECG中导出的窦性心律(心房起搏被抑制)中的心房和双心室电激动时间可由基于CIED的EGM替代物所表征。窦性心律(心房起搏被抑制)过程中从任何导联的P-波的最早偏转到局部右心房EGM的时间的时间时右心房感测延迟时间。从任何导联中的QRS复合体的最早向上到局部右心室EGM的时间的时间是右心室感测延迟时间。从局部右心房EGM到局部右心室EGM的时间是右pAVI,这是最小的右本征iAVI的CIED替代物。因此,CIED有效右pAVI(“eAVI”)被确定如下,
eAVIright=(pAVIright+SLRA)-SLRV  (4);
其中SLRA是右心房感测延迟,且SLRV是右心室感测延迟。总心室间激动时间的CIED替代物是从局部右心室EGM到局部左心室EGM的时间。由于右心室感测延迟、左心室感测延迟、和左心室EGM相对于QRS结束的可变时间通过左心室导联位置而确定,这不准确地估算了真实的心室间激动时间。
以类似的方式,LA–LV电耦合时间和窦性心律(心房起搏抑制)中的CIED-EGM替代物可被计算。从心房感测的时间至所安排的双心室起搏事件期间测量pAVI。从右心房开始到所安排的双心室起搏事件期间测得CIED有效pAVI。因此,当感测延迟存在时,有效pAVI超过pAVI。因此,CIED左侧的窦性心律被计算如下,
eAVIleft,sinus=(pAVIright+(RVEGM→LVon))-(RAEGM→LAoff)  (5);
其中(RVEGM→LVon)是从右心室EGM到左心室开始的时间,且(RAEGM→LAoff)是从右心房EGM到左心房结束的时间。
在心房起搏过程中,对于心房捕捉延迟做出调节。心房捕捉延迟是从心房起搏刺激出现到任何导联中的P-波的最早偏转的时间。注意,由于心房内和心房间传导延迟,心房刺激时间增加了在心房起搏过程。心房起搏的pAVI从心房起搏刺激被发射的时间至所安排的双心室起搏事件期间测得。从右心房激动开始到所安排的双心室起搏事件期间测得有效pAVI。因此,当捕捉延迟存在时,心房起搏的pAVI超过有效pAVI。CIED有效左心房起搏的pAVI是,
eAVIleft,pace=(pAVIright,pace+(RVEGM→LVon))-(AP→LAoff)  (6);
其中pAVIright,pace是右心房起搏pAVI,(RVEGM→LVon)是从右心室EGM到左心室开始的时间,且(AP→LAoff)是从心房起搏刺激到左心房结束的时间。
心房分析的体表ECG和双心室激动时间与CIED EGM定时测量的关联被结合来提供pAVI的可容许的范围的估算来在最小化减少较晚心脏舒张LV充盈的风险的情况下测定最大心室激动波阵面融合。
现在参照图8-10,示出了示例性ECG信号、对应的EGM信号、和相关的定时参数与度量,如表2中所述。表2中列出的符号被定义如下。以示例的方式,A-C标识了图8-10上的时间点A和时间点C之间的持续时间。此处,时间段A-C标识了右本征房室间期(“iAVI”)、或房室传导时间(“AVCT”)。在图8-10中的每一个中,虚线框表示在没有所引起的不理想的心脏舒张功能障碍的情况下用于维持所期望的心室激动融合的所允许的pAVI值的范围。
表2
Figure BDA00002248644600261
Figure BDA00002248644600271
特定地参看图8,示出了作为在体表ECG上的LA–LV电耦合时间的CIEDEGM导出替代物,300ms的示例性有效左窦性心律pAVI。这定义了最小有效的双心室pAVI,因为左心室刺激将与天然左心室激动开始同时发生,因此,左心室激动将不被提前。假设最小可允许的LA-LV电耦合时间为50ms(为了防止心房截断)且P-波持续时间(心房激动时间)为80ms,则最小可允许双心室pAVI是130ms。因此,有效左窦性心律双心室pAVI操作范围为130-300ms,藉此定义了可允许的pAVI范围802。由于双心室pAVI从300ms被减少至130ms,左心室激动被提前,藉此测定心室激动波阵面融合。使用上述方法生成了心室激动波阵面融合的最大迹象。双心室左pAVI外边界(如,300ms)被定义为最小有效的pAVI,而内边界(如,130ms)被定义为由本征LA-LV电耦合时间所定义的操作限制中的最大有效pAVI和双心室起搏过程中的最小可接受的LA-LV耦合时间。
由于基线左心室传导延迟,在右和左心室激动定时上应用不会侵犯最小可接受的LA-LV耦合时间(如,50ms)的最大有效双心室pAVI(如,130ms)的效果导致左心室激动被提前超过右心室激动。在这个示例中,左心室激动开始被提前达200ms,在左心室EGM处的激动被提前达300ms,且左心室激动结束被提前达350ms。
这个示例被扩展至包括如图9中所示的在房室定时间期测量上的心房起搏的所预期的效果中的一些。由于心房内和心房间传导延迟,心房起搏引起心房捕捉延迟(心房起搏刺激的出现和右心房电激动之间)和心房激动时间(P-波持续时间)的增加。心房刺激时间增加的效果,即使在没有AV传导时间增加时,是延迟了左心房激动的开始,这减少了pAVI可允许的范围。假设,最小的可允许的LA-LV电耦合时间是50ms(为防止心房截断),心房起搏刺激到心房激动延迟时间50ms,且心房激动时间(P-波持续时间)130ms,最小可允许双心室pAVI为230ms。因此,有效的左窦性心律双心室pAVI操作范围为230-300ms。在这个示例中,可允许的pAVI范围已经被减少100ms。
由于双心室pAVI从300ms被减少至230ms,左心室激动被提前,测定心室激动波阵面融合。使用上述方法生成了心室激动波阵面融合的最大迹象。双心室pAVI外边界(如,300ms)被定义为最小有效的pAVI,而内边界(如,230ms)被定义为由本征LA-LV电耦合时间所定义的操作限制中的最大有效pAVI和双心室起搏过程中的最小可接受的LA-LV耦合时间。
由于基线左心室传导延迟,在右和左心室激动定时上应用不会侵犯最小可接受的LA-LV耦合时间(如,50ms)的最大有效左双心室pAVI(如,130ms)的效果导致心室激动被提前超过右心室激动。在这个示例中,右心室激动被提前20ms,左心室激动开始被提前100ms,在左心室EGM处的激动被提前200ms,且左心室激动结束被提前250ms。
在图10的心房-心室定时间期测量上,这个示例被进一步扩展至包括在心房起搏过程中增加AV传导时间(“AVCT”)的有益效果、或以其他方式增加心律。心房起搏引起心房捕捉延迟、由于心房内和心房间传导延迟引起的心房激动时间、以及由于递减AV传导引起的AVCT的增加。心房激动时间的增加的效果在于延迟左心房激动的结束,这缩窄了pAVI可允许范围,而AVCT增加的效果在于延迟了左心室激动的开始,这拓宽了pAVI可允许范围。
假设,最小的可允许的LA–LV电耦合时间是50ms(为防止心房截断),心房起搏刺激到心房激动延迟时间50ms,且心房激动时间(P-波持续时间)130ms,最小可允许双心室pAVI为230ms。因此,有效的窦性心律BV pAVI操作范围为230-410ms。由于增加的AVCT对于心脏舒张充盈时间的抵衡(counterbalancing)效果,可允许的pAVI范围已经被增加80ms。由于双心室pAVI从410ms被减少至230ms,左心室激动被提前,测定心室激动波阵面融合。使用上述方法生成了心室激动波阵面融合的最大迹象。双心室pAVI外边界(如,410ms)被定义为最小有效的pAVI,而内边界(如,230ms)被定义为由本征LA-LV电耦合时间所定义的操作限制中的最大有效pAVI和双心室起搏过程中的最小可接受的LA-LV耦合时间。
由于基线左心室传导延迟,在右和左心室激动定时上应用不会侵犯最小可接受的LA-LV耦合时间(如,50ms)的最大有效双心室pAVI(如,130ms)的效果导致左心室激动被提前超过右心室激动。在这个示例中,右心室激动被提前10ms,左心室激动开始被提前180ms,在左心室EGM处的激动被提前280ms,且左心室激动结束被提前330ms。
AVI管理的上述方法可被结合至上述用于测定心室活动波阵面融合的最大迹象的系统与方法中,该系统与方法包括当记录到无法实现心室激动融合的最大迹象时的心房敏感度调节。
在基线做出的所集合的定时测量中的大部分被固定,诸如RVAT、LVAT、心室间传导时间、和窦性心律心房激动时间。心房和心室感测与捕捉延迟与心房间/心房内起搏的心房激动时间、以及心室传导时间,跨假定的稳定激动部位的心律而保持基本不变。在窦性心律或心房起搏过程中的iAVI的增加一般发生在觉醒状态中的增加心律和睡着状态中的减少心律,且可由对于本领域技术人员而言已知的数种方法中的任意周期性地再评估,包括pAVI的渐进扩展、单个安排双心室起搏刺激的抑制、暂时性转换至非追踪模式,等。
可通过iAVI中自发记录的变化触发定时测量的周期性重新计算,诸如由于AVB的出现引起的缩短、延长、或缺少。定时测量的重新计算还可在当特定控制参数被改变时在编程者界面期间被自动触发,诸如心房或心室起搏速率、心房敏感度、在不同心律条件下的pAVI的变化、心室间间期的变化等,或者在临床起搏控制参数的预期变化时由临床医生选择或响应于临床条件的已知变化来重新计算。
此处描述的AVI管理的系统和方法被完全结合到上述用于自动生成心室激动波阵面融合、测定心室激动波阵面融合的最大迹象、并确定心室激动时间的上述系统和方法中。特定地,AVI管理和协同地自动增加心房敏感度的方法克服无法实现心室激动融合的最大迹象并在不牺牲心室激动波阵面融合的最大迹象的情况下减少了左心室心脏舒张充盈异常的风险。可构想的是这个方法在具有较短PR间期(iAVI)的患者之中是特别有用的,因为在基线PR较短时,充分短来生成心室激动融合的最大迹象的pAVI,更有可能引起左心室充盈(心房传输阻塞)的截断。类似地,可构想的是这个组合的方法将在增加心房激动时间的情况下减少左心室充盈异常的风险。
现在参看图11,示出了说明用于执行房室间期管理的心脏再同步治疗的示例性方法的步骤的流程图。该方法开始于通过被植入患者的心律管理(“CRM”)设备的来自患者心脏的电描记图(“EGM”)的主动获取,如步骤1102中所示。接着,左侧AVI,诸如本征AVI、起搏器AVI、和有效AVI,以上文详细所述那样被估算,且如步骤1104中所示。左侧LA-LV电耦合时间还被如上所述地估算,且如步骤1106中所示。
使用所估算的AVI和LA-LV耦合时间,可允许的pAVI值的范围被确定,如步骤1108中所示。通过计算仍维持理想的心室激动融合的最小和最大可允许pAVI值来确定所允许pAVI值的范围。接着,如步骤1110中所示,选择最小可允许的LA-LV耦合时间。
使用上述确定的定时度量,CRM设备的起搏控制参数被调节从而确保维持了所期望的心室激动波阵面融合,如步骤1112中所示。例如,可在可允许的pAVI值范围内调节pAVI从而产生心室激动波阵面融合的最大迹象,如使用上述特别参看图4详细描述的方法而确定的那样。在判定框1114做出判定,是否观察到了心室激动融合的最大迹象。如果没有的话,迭代地增加心房敏感度,如步骤1116中所示,直到获得了心室激动融合的最大迹象。
然后做出判定,心脏舒张功能障碍的警告是否存在,如判定框1118中所示。示例性警告情况包括短PR间期、iAVI、pAVI、心室间定时、或其组合。如果警告情况存在,则增加一个或多个起搏控制参数的容忍度,如步骤1120中所示。例如,在维持较高心房敏感度并检测心室激动融合的同时可增加pAVI或心室间定时的容忍度。
上述方法可持续地由所植入的CRM设备所操作,诸如起搏控制参数自动地且持续地被实时调节来维持合适的、同步的心室激动。
使用左束支阻滞的该QRS计分计算左心室瘢痕量的ECG量化。在左束支阻滞登记(registration)上的瘢痕的效果转换为特定QRS象形符号签名。例如,它们由梗死区域表现为无对立的向右电作用力,如下文表3中所示。
表3
Figure BDA00002248644600301
V1-V2中的S-波的上升支上的凹陷表示后外侧的梗死。QRS计分,每一个分数点表示百分之三的左心室瘢痕量,近来已经被表面与解决重构的所有其他基线和多部位起搏后的预测项的经调节模型中的逆向体积心室重构的概率具有逆向关系。
由于QRS计分是心室瘢痕量的测量,这是固定的,不需要周期性地重复地做出瘢痕量估算。可使用筛选卡尺(screen caliper)和链接至CIED用户界面的体表ECG,少于五分钟地手动或自动地确定QRS计分,如上所述。使用基于被编程的体表ECG,通过将按解剖学区域的一系列询问链接至QRS计分的输入变量来自动化这个过程。还可通过专用于ECG分析的软件自动生成QRS计分。一旦被构成,可构想的是QRS计分将在后续行动的持续过程中保持不变,除非由用户超控(overridden)。
期望的是提供可被报告给临床医生的对于逆向体积心室重构的概率的准确且持续的更新估算。这样的估算能使临床医生来理解关键CIED操作参数的变化对于重构的概率的影响。另外,这些估算能使临床医生标识出最大化逆向心室重构的可能性的优化控制参数。
逆向体积心室重构的概率的确定包括如下基本阶段。首先,确定心室瘢痕量的标记、如上所述地计算心室激动时间、并如上所述地确定全局基线心室激动顺序。其次,所确定的心室瘢痕量的QRS计分被标识并被与所计算的心室激动时间一起被提供至CIED。然后,心室激动时间和全局激动波阵面融合的ECG标记被从心脏电活动的模型转移至基于CIED的体表ECG替代物,形式为多个、互补的、心脏内、远场(可能包括体表)EGM QRS字形。使用基于CIED的EGM QRS字形,起搏控制参数被持续地调节从而连续地(如,逐节拍地)或近乎连续地确保优化的全局心室激动波阵面融合。然后,基线预测项,诸如心室瘢痕量和心室激动时间的QRS计分,和起搏后预测项,诸如心室激动融合迹象,被编译为逆向心室重构的概率。这些分量被传递至用于预测逆向体积重构的概率的被验证的回归模型,且重构的概率被输出作为CIED中的专用诊断。当底物和起搏后条件改变时,可执行概率模型的自动更新。
四个分量变量(QRS分数、最大左心室激动时间LVATmax、和两种形式的起搏后融合迹象)的值被输入至获得逆向重构的估算的线性回归中。回归方程被特定如下。左心室端部收缩期容积((“LVESV”)的百分之十或更多的减少的概率被如下给出,
p = 1 1 - e - α - - - ( 7 ) ;
其中,α=-1.311-0.7428·β-0.0985·γ+0.0207·δ
+0.5794·ε+0.4301·ζ        (8);
Figure BDA00002248644600321
QRS是QRS计分点s;
δ = LVAT max LVAT max ≤ 125 125 LVAT max > 125 - - - ( 11 ) ;
当作为基线的一部分的导联V1和V2中测得的R-波幅值的平均变化小于4.5时ε是4.5,且当作为基线的一部分的导联V1和V2中测得的R-波幅值的平均变化大于4.5时ε就是该平均变化;且当患者具有额面轴变化时ζ是1,否则就是零。
在预测模型中的两个基线分量的变量(QRS计分和LVATmax)被固定于心肌底物水平,且因此仅需要在例如植入或设备初始化时测量一次。预测模型中的两个起搏后分量的变量是动态的且响应于起搏情况的变化。再次重申,这些起搏后分量是作为基线一部分的导联V1和V2中的R-波幅值的平均变化,且左轴偏差(“LADEV”)到右轴偏差(“RADEV”)额面轴变化。因此,转换为全局心室激动中的测量的起搏情况中的变化将正面地或负面地影响逆向重构的可能性。这提供了响应于起搏定时指令中的自动或临床医生选择的变化来重新计算逆向重构可能性的机会并将这个更新的信息提供作为专用诊断。当前,在多部位起搏系统中不存在这样的系统。
式(7)-(8)中的回归公式被用于自动地计算逆向心室重构的可能性,这被计算为LVESV中的百分之十或更多的减少。例如,如果QRS计分具有值12,LVATmax值为87.0,作为基线一部分的导联V1和V2中的R-波幅值的平均变化为值6.375,且LADEV到RADEV设为1,则重构的预测概率为百分之70.2。在双心室刺激的定时中的自动或临床医生选择的调节导致全局心室激动中的可预测和已知的变化,如上文详细描述的那样。这样的变化显现于体表ECG字形上并被转换为CIED EGM字形。
在基线自动或半自动地测量R-波幅值。同步的双心室起搏被初始化。起搏的心室激动由体表ECG导联所分析。起搏的心室激动的数字模板与基线心室激动过程中相应的导联并排呈现。为按每一个独立导联在预测方向中R-波幅值的最大变化的迹象做出手动、半自动或全自动的数值比较。接着,对心室起搏定时控制参数做出手动、半自动、或全自动的调节,并重复QRS模板获取和比较处理。示例性控制参数调节包括pAVI的操纵(如,缩短)、或顺序定时的心室(V-V)起搏定时。
在后一种情况下,在被提前激动的心室之前,电延迟的心室以固定或可变的间期被刺激,直到记录了每一个导联的期望方向中的R-波幅值的最大变化。这代表了起搏的激动波阵面融合的最大迹象,这预测了逆向心室重构的概率。
腔室定时参数中的这样的变化被期望来生成导联V1-V2中的较大的R-波幅值并增加额面轴变化(LADEV到RADEV)。考虑到其中由于起搏定时指令中的变化引起的导联V1和V2中的R-波幅值的平均变化从六增至十二的示例性患者。保持其与三个变量在上述报告的示例值处不变,则逆向重构的预测概率增至百分之98.4。
可选地,或附加于生成逆向重构的数值概率,可使用激动波阵面方向性中的变化的全局测量的形式来估算逆向重构的可能性。如上详细所述,提供了按照中枢导联、按照以所期望的方向用于量化QRS字形形态中的变化的新颖的、特定的方法。这提供了表征心室融合的迹象的可选方法,使用表示在起搏前后激动波阵面逆向的期望方向中的最大R-波幅值变化的局部或全局性测量。
由于逆向重构预测了更长的存活率(减少的死亡率)并改进了心力衰减征兆和症状,逆向重构的概率状态的诊断报告对于临床医生而言可能是重要的。这样的工具,对于生成激动波阵面融合的最大迹象的关键起搏控制参数中的自动或手动选择的变化的重构可能性的效果提供了可视迹象。报告逆向重构可能性的一个方法在于简单的数值输出。重构回归方程的四个分量的变量被呈现。两个基线变量(QRS计分、LVATmax)在基线被记录并被固定。两个起搏后变量(导联V1-V2中的R-波幅值的变化或其CIED EGM替代物、QRS前额面轴变化或CIED-EGM替代物轴变化)响应于关键起搏控制参数中的自动或手动命令的变化而被更新。
式(7)–(8)中的回归方程基于所显示的四个变量来自动地生成重构的可能性。这个数值估算被显示在报告上并且无论何时参数变量变化时该数值估算被自动地实时更新。这个数值输出可被用可视趋势的输出实现。在这个设置中,诸如图12中所示的示例性曲线,在垂直轴上显示重构的估算可能性且在水平轴上显示时间(从植入到后续过程,以月或年计)。虚线是随时间的重构可能性的趋势。在对关键起搏控制参数做出自动或手动调节时插入标记注释。
对于逆向重构的可能性的可视报告设置的各种增强都是可能的。例如,可用中枢QRS字形或CIED-EGM字形替代物来实现趋势曲线,如图13中所示。这可将全局心室激动中的正向变化的可视迹象与关键起搏控制参数的操纵过程中的逆向重构的可能性组合起来。这个设置可被用于反映关键起搏控制参数中的实时变化。例如,在图14中,类似的趋势曲线被用于显示从双心室同时起搏到双心室顺序起搏的过渡(左心室刺激在右心室刺激前20、40、和60ms)之间的“剂量-响应”关系。在这个示例中,诸如起搏器AVI、心房敏感度、和心室输出之类的其他相关起搏控制参数被保持不变。
可使用更复杂的曲线来显示关键起搏控制参数、剂量-响应关系与逆向重构可能性之间的影响,如图15中所示。曲线A 1502显示了当起搏器AVI保持不变时(例如100ms)且双心室刺激定时变化为逐渐地更早的左心室刺激(例如具有60、40、和20ms的左心室起搏延迟)时,重构的增加的可能性。曲线B 1504显示了当双心室刺激定时保持不变(诸如位于任何值的同步或双心室顺序起搏)且起搏器AVI被逐渐缩短时(这提前了两个腔室的心室刺激并减少了传导延迟)重构的增加的可能性。曲线C 1506显示了当起搏器AVI和双心室定时参数被同时调节时的重构的增加的可能性。曲线D 1508显示了当由于“虚拟电极”效应引起的左心室起搏输出被增加、或诸如心室敏感度增加之类的其他关键起搏控制参数的变化时,重构的增加的可能性。
这样的可视显示可被用于标识重构的增加的可能性的最佳起搏控制设置,如图16中所示。在这个示例中,逆向重构的最大可获得的可能性发生在左心室起搏延迟40ms和pAVI 100ms的双心室顺序起搏过程中。双心室定时和AVI的进一步调节没有获得重构可能性的增加,如高原区1602所表征的。可证明这样的显示对于临床医生是有用的,因为左心室刺激的进一步未控制的提前或起搏AVI的缩短可牺牲左侧AV定时关系,诸如心房截断和心室欠充盈,导致心脏舒张预载和收缩率的减少。
因此,提供了用于将CIED-EGM与从体表ECG中导出的多腔室电激动定时结合从而提供对于左侧房室定时关系的准确估算并调节起搏控制参数来确保减少牺牲心脏舒张功能风险的同时确保心室激动波阵面融合的最大迹象的系统和方法。
此处描述的AVI管理的系统和方法也可完全结合到上述用于自动生成心室激动波阵面融合、测定心室激动波阵面融合的最大迹象、确定心室激动时间、并预测和报告逆向心室重构的概率的上述系统和方法中。特定地,AVI管理和协同地自动增加心房敏感度的方法克服无法获得心室激动融合的最大迹象并在不牺牲心室激动波阵面融合的最大迹象的情况下减少了左心室心脏舒张充盈异常的风险。这个方法在具有较短PR间期(iAVI)的患者之中是特别有用的,因为在基线PR较短时,充分短来生成心室激动融合的最大迹象的pAVI,更有可能引起左心室充盈(心房传输阻塞)的截断。类似地,这个所组合的方法将在增加心房激动时间(诸如心房起搏)的情况下减少左心室充盈异常的风险。
已经以一个或多个优选实施例的形式描述了本发明,且应该理解的是从这些直接地表达中引出的很多等效物、替代物、变化、改型是可能的且落在本发明的范围内。

Claims (19)

1.用于将心脏再同步治疗传递至患者心脏的心脏可植入电设备,所述心脏可植入电设备包括:
用于接收表示所述心脏内的心脏电活动的信号的输入;
脉冲传递系统,用于传递电脉冲至所述心脏从而将心脏再同步治疗传递至所述心脏处;
存储器,用于存储起搏控制参数,和从体表心电图信号中导出的全局心脏电活动的模型;
与所述存储器通信的处理器,所述处理器被配置为:
接收所接收到的信号;
使用将所接收到的信号表征为全局心脏电活动的替代物的形态学框架,来将所接收到的信号与所存储的全局心脏电活动的模型进行比较;
基于所接收到的信号与所存储的所存储的全局心脏电活动的模型的比较来调节所存储的起搏控制参数;且
与所述脉冲传递系统通信,根据所接收到的所确定和所调节的起搏控制参数中的至少一个来提供心脏再同步治疗至所述心脏。
2.如权利要求1所述的心脏可植入电设备,其特征在于,其中所述处理器被进一步配置为标识所接收到的信号中的一个或多个QRS复合体(complex)字形(glyph)。
3.如权利要求2所述的心脏可植入电设备,其特征在于,所述处理器被进一步配置为将所标识出的QRS复合体与所存储的全局心脏电活动的模型中的相应QRS复合体字形相比较。
4.如权利要求1所述的心脏可植入电设备,其特征在于,其中所述处理器被进一步配置为从所接收到的信号与所存储的全局心脏电活动的模型的比较中来标识出基本最大心室再同步的迹象,以及一旦标识出基本最大的心室再同步时,则跳过对所存储的起搏控制参数的调节。
5.如权利要求1所述的心脏可植入电设备,其特征在于,其中所述处理器被进一步配置为从所接收的信号和所述全局心脏电活动的模型来确定心室间期值的可允许的范围,以及使用所确定的心室间期值的可允许的范围来调节所存储的起搏控制参数从而最小化心脏舒张功能障碍的概率。
6.如权利要求1所述的心脏可植入电设备,其特征在于,其中所述控制器进一步与所述输入通信,且所述处理器被进一步配置为调节所述输入的心房敏感度,所述心房敏感度被调节为在最小化心脏舒张功能障碍的概率的同时基本维持同步的心室激动。
7.如权利要求1所述的心脏可植入电设备,其特征在于,其中所述全局心脏电活动的模型是患者特定的且是从在基线和起搏情况过程中获得的体表导联ECG信号中所导出的。
8.用于通过心律管理(CRM)设备将心脏再同步治疗传递至患者心脏的方法,所述方法的步骤包括:
a)使用与所述CRM设备电通信的电极,获取代表所述患者心脏中的心脏电活动的信号;
b)将所获取的心脏电活动信号与从体表导联心电图测量中导出的心脏电活动的模型相比较;且
c)基于所获取的心脏电活动信号与所述心脏电活动的模型之间的比较来设置一个或多个起搏控制参数;且
d)使用所述一个或多个起搏控制参数将心脏再同步治疗传递至所述患者心脏。
9.如权利要求8中所述的方法,其特征在于,所述步骤b)包括在所获取的心脏电活动信号中标识一个或多个QRS复合体字形。
10.如权利要求9中所述的方法,其特征在于,所述步骤b)还包括将所标识出的QRS复合体字形与所述心脏电活动模型中的相应QRS复合体字形相比较。
11.如权利要求9中所述的方法,其特征在于,在持续调节所述一个或多个起搏控制参数的同时,所述步骤a)-c)被重复地执行,直到标识出了基本最大的心室再同步的迹象。
12.如权利要求11中所述的方法,其特征在于,其中在步骤c)中通过将所获取的心脏电活动信号与所述心脏电活动的模型相比较来标识基本最大的心室再同步的迹象。
13.如权利要求8中所述的方法,其特征在于,在步骤b)中所使用的所述心脏电活动的模型包括与在心室激动过程中的基线全局心脏电活动和起搏的全局心脏电活动相关的信息。
14.如权利要求13中所述的方法,其特征在于,在步骤b)中所使用的所述心脏电活动的模型进一步包括与全局心脏电活动定时度量有关的信息,包括心室激动时间和房室间期。
15.如权利要求8中所述的方法,其特征在于,步骤c)包括设置房室间期、心室-心室间期、和起搏刺激输出电压中的至少一个。
16.如权利要求8中所述的方法,其特征在于,步骤c)包括确定房室间期值的可允许的范围并使用所确定的房室间期值的可允许的范围来设置一个或多个起搏控制参数,从而最小化心脏舒张功能障碍的概率。
17.如权利要求8中所述的方法,其特征在于,所述一个或多个起搏控制参数包括心房敏感度,且步骤c)包括设置所述心房敏感度,从而维持基本同步的心室激动并最小化心脏舒张功能障碍的概率。
18.如权利要求8所述的方法,其特征在于,还包括:
e)使用所述心脏电活动的模型和所获取的信号来计算逆向心室重构的概率;和
f)产生表示使用所述一个或多个起搏控制参数的心脏再同步治疗的逆向心室重构的概率的报告。
19.如权利要求18所述的方法,其特征在于,其中步骤e)包括使用至少QRS计分、左心室激动时间、R-波幅值的平均变化;和与额面轴变化有关的信号,来执行回归分析。
CN201080066160.6A 2010-02-12 2010-07-16 心脏再同步治疗控制参数自动调节的系统和方法 Expired - Fee Related CN102858405B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US33781710P 2010-02-12 2010-02-12
US61/337,817 2010-02-12
US34525110P 2010-05-17 2010-05-17
US61/345,251 2010-05-17
US35761710P 2010-06-23 2010-06-23
US61/357,617 2010-06-23
US36297210P 2010-07-09 2010-07-09
US61/362,972 2010-07-09
PCT/US2010/042337 WO2011099992A1 (en) 2010-02-12 2010-07-16 System and method for automated adjustment of cardiac resynchronization therapy control parameters

Publications (2)

Publication Number Publication Date
CN102858405A true CN102858405A (zh) 2013-01-02
CN102858405B CN102858405B (zh) 2015-08-19

Family

ID=44368031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080066160.6A Expired - Fee Related CN102858405B (zh) 2010-02-12 2010-07-16 心脏再同步治疗控制参数自动调节的系统和方法

Country Status (5)

Country Link
US (1) US9265951B2 (zh)
EP (1) EP2533853A4 (zh)
JP (1) JP2013519428A (zh)
CN (1) CN102858405B (zh)
WO (1) WO2011099992A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102826A (zh) * 2014-01-16 2016-11-09 美敦力公司 双心房同步左心室心脏起搏
CN107480413A (zh) * 2016-06-07 2017-12-15 创领心律管理医疗器械(上海)有限公司 治疗心律失常的医疗设备及其房室间期搜索方法
CN107847752A (zh) * 2015-07-31 2018-03-27 美敦力公司 用于在心脏再同步治疗期间递送左心室起搏治疗的医疗设备系统
CN107995854A (zh) * 2015-01-29 2018-05-04 美敦力公司 心脏再同步治疗的非侵入式评估
CN109069046A (zh) * 2016-04-15 2018-12-21 皇家飞利浦有限公司 Ecg训练和技能提高
CN109562267A (zh) * 2016-08-11 2019-04-02 心脏起搏器股份公司 用于心力衰竭监视的舒张期心内膜加速度
CN109789309A (zh) * 2016-09-29 2019-05-21 美敦力公司 心内心室起搏器中的心房跟踪
CN110769894A (zh) * 2017-06-16 2020-02-07 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN111246910A (zh) * 2017-10-17 2020-06-05 美敦力公司 用于希氏束和束支起搏的无引线起搏设备
WO2024016202A1 (en) * 2022-07-20 2024-01-25 Medtronic, Inc. Method and apparatus for monitoring conduction system pacing
WO2024032416A1 (zh) * 2022-08-08 2024-02-15 合源医疗器械(上海)有限公司 用于发放脉冲刺激的医疗器械

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519428A (ja) 2010-02-12 2013-05-30 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心臓再同期療法の調節パラメータの自動調整のためのシステムおよび方法
JP2014505558A (ja) * 2011-02-01 2014-03-06 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心室興奮シミュレーションと表面ecg測定値を用いた心臓再同期療法調節パラメータ生成のためのシステム及び方法
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US9129053B2 (en) * 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9924884B2 (en) 2013-04-30 2018-03-27 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9993172B2 (en) 2013-12-09 2018-06-12 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US11289207B2 (en) 2015-07-09 2022-03-29 Peacs Investments B.V. System for visualizing heart activation
EP3165160B1 (fr) 2015-11-05 2019-03-13 Sorin CRM SAS Dispositif médical implantable actif comprenant des moyens de détections et de quantification des situations de fusion
US10780279B2 (en) 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US11219769B2 (en) 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
US11458320B2 (en) 2016-09-06 2022-10-04 Peacs Investments B.V. Method of cardiac resynchronization therapy
US20180078773A1 (en) * 2016-09-21 2018-03-22 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with mode switching timing reference
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
US10686878B2 (en) * 2017-03-30 2020-06-16 Pacesetter, Inc. Method and device for managing display of multiple data streams
US10709349B2 (en) * 2017-04-18 2020-07-14 Boston Scientific Scimed Inc. Annotation waveform
US11272887B2 (en) 2017-04-18 2022-03-15 Boston Scientific Scimed Inc. Electroanatomical mapping tools facilitated by activation waveforms
WO2018195052A1 (en) * 2017-04-18 2018-10-25 Boston Scientific Scimed Inc. Annotation histogram for electrophysiological signals
CN110996784B (zh) 2017-07-28 2023-05-30 美敦力公司 生成激动时间
CN111050841B (zh) 2017-07-28 2023-09-26 美敦力公司 心动周期选择
US10713790B2 (en) * 2017-08-01 2020-07-14 Catheter Precision, Inc. Methods of cardiac mapping and directional guidance
US11246662B2 (en) 2017-08-01 2022-02-15 Catheter Precision, Inc. Methods of cardiac mapping and model merging
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
CN111902082A (zh) 2018-03-29 2020-11-06 美敦力公司 左心室辅助设备调整和评估
US11304641B2 (en) 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11198004B2 (en) * 2019-04-11 2021-12-14 Biosense Webster (Israel) Ltd. Goal-driven workflow for cardiac arrhythmia treatment
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US20210169359A1 (en) * 2019-12-06 2021-06-10 Biosense Webster (Israel) Ltd. Intra-cardiac pattern matching
US11883672B2 (en) * 2020-02-21 2024-01-30 Pacesetter, Inc. Methods, system and device for improving cardiac resynchronization therapy (CRT)
US11351382B2 (en) 2020-06-17 2022-06-07 Medtronic, Inc. Detecting the onset of sensing issues using short intervals
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
RU2759069C1 (ru) * 2020-12-25 2021-11-09 Александр Викторович Ежков Способ неинвазивной диагностики ишемической болезни сердца
WO2023026119A1 (en) * 2021-08-27 2023-03-02 Medtronic, Inc. Intracardiac electrogram-based differentiation of conduction system and myocardial pacing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122479A1 (en) * 2002-12-20 2004-06-24 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US20040172079A1 (en) * 2003-02-28 2004-09-02 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
EP1703944A1 (en) * 2003-12-19 2006-09-27 Cardiac Pacemakers, Inc. Adjustment of sequential biventricular pacing parameters
EP2070562A1 (fr) * 2007-12-13 2009-06-17 Ela Medical Dispositif médical pour la caractérisation de l'état cardiaque d'un patient appareillé avec un implant actif à stimulation biventriculaire

Family Cites Families (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
US4674511A (en) 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4497326A (en) 1981-04-06 1985-02-05 Curry Paul V L Heart pacing lead
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US5054496A (en) 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
US5311873A (en) 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
US5443492A (en) 1994-02-02 1995-08-22 Medtronic, Inc. Medical electrical lead and introducer system for implantable pulse generator
ATE178471T1 (de) 1994-11-07 1999-04-15 Johnmccune Anderson Bio-elektrischer aufnehmer
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
WO1997017893A1 (en) 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
US6311089B1 (en) 1996-05-14 2001-10-30 Pacesetter, Inc. Implantable stimulation device and method for determining ventricular and atrial sensitivity thresholds
US6047206A (en) 1996-07-17 2000-04-04 Cambridge Heart, Inc. Generation of localized cardiac measures
WO1998026712A1 (en) 1996-12-18 1998-06-25 John Mccune Anderson Apparatus for body surface mapping
AU8600598A (en) 1997-07-31 1999-02-22 Case Western Reserve University Electrolphysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor
US6975900B2 (en) 1997-07-31 2005-12-13 Case Western Reserve University Systems and methods for determining a surface geometry
US5922014A (en) 1997-09-02 1999-07-13 Medtronic, Inc. Single pass lead and method of use
JP4208275B2 (ja) 1997-10-30 2009-01-14 株式会社東芝 心臓内電気現象の診断装置およびその現象の表示方法
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
EP1178855B1 (en) 1999-05-12 2006-08-02 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US6539259B1 (en) 1999-07-15 2003-03-25 Pacesetter, Inc. System and method of automatically adjusting sensitivity in an implantable cardiac stimulation device
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6473638B2 (en) 1999-12-24 2002-10-29 Medtronic, Inc. Medical device GUI for cardiac electrophysiology display and data communication
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
JP2003527186A (ja) 2000-03-17 2003-09-16 メドトロニック・インコーポレーテッド 患者管理システム用の心不全モニタのクイックルック概要
US6507756B1 (en) 2000-04-03 2003-01-14 Medtronic, Inc. Dual chamber pacing system having time-adaptive AV delay
US7321677B2 (en) 2000-05-09 2008-01-22 Paieon Inc. System and method for three-dimensional reconstruction of an artery
AU2002212639A1 (en) 2000-10-18 2002-05-15 Paieon Inc. Method and system for positioning a device in a tubular organ
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
US6766189B2 (en) 2001-03-30 2004-07-20 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy
US6993389B2 (en) 2001-03-30 2006-01-31 Cardiac Pacemakers, Inc. Identifying heart failure patients suitable for resynchronization therapy using QRS complex width from an intracardiac electrogram
US6804555B2 (en) 2001-06-29 2004-10-12 Medtronic, Inc. Multi-site ventricular pacing system measuring QRS duration
US6856830B2 (en) 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
US6640136B1 (en) 2001-09-12 2003-10-28 Pacesetters, Inc. Implantable cardiac stimulation device with automatic electrode selection for avoiding cross-chamber stimulation
WO2003028801A2 (en) 2001-10-04 2003-04-10 Case Western Reserve University Systems and methods for noninvasive electrocardiographic imaging (ecgi) using generalized minimum residual (gmres)
US7113823B2 (en) 2001-10-26 2006-09-26 Cardiac Pacemakers, Inc. Morphology-based optimization of cardiac resynchronization therapy
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
US7499743B2 (en) 2002-03-15 2009-03-03 General Electric Company Method and system for registration of 3D images within an interventional system
US7346381B2 (en) 2002-11-01 2008-03-18 Ge Medical Systems Global Technology Company Llc Method and apparatus for medical intervention procedure planning
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US7778686B2 (en) 2002-06-04 2010-08-17 General Electric Company Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool
US7041061B2 (en) * 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
US6978184B1 (en) * 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7031777B2 (en) 2002-09-27 2006-04-18 Medtronic, Inc. Cardiac vein lead with flexible anode and method for forming same
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7215998B2 (en) 2003-01-06 2007-05-08 Medtronic, Inc. Synchronous pacemaker with AV interval optimization
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7610088B2 (en) 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7107093B2 (en) 2003-04-29 2006-09-12 Medtronic, Inc. Use of activation and recovery times and dispersions to monitor heart failure status and arrhythmia risk
US7747047B2 (en) 2003-05-07 2010-06-29 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning left atrial appendage isolation
US7565190B2 (en) 2003-05-09 2009-07-21 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning atrial fibrillation intervention
US7142911B2 (en) * 2003-06-26 2006-11-28 Pacesetter, Inc. Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US7587074B2 (en) 2003-07-21 2009-09-08 Paieon Inc. Method and system for identifying optimal image within a series of images that depict a moving organ
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7818040B2 (en) 2003-09-05 2010-10-19 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
JP5129480B2 (ja) 2003-09-25 2013-01-30 パイエオン インコーポレイテッド 管状臓器の3次元再構成を行うシステム及び血管撮像装置の作動方法
US7308299B2 (en) 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US7308297B2 (en) 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
WO2005056108A2 (en) 2003-12-03 2005-06-23 Medtronic, Inc. Method and apparatus for determining an efficacious atrioventricular delay interval
US7787951B1 (en) 2003-12-24 2010-08-31 Pacesetter, Inc. System and method for determining optimal stimulation sites based on ECG information
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
US7486991B2 (en) * 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7454248B2 (en) 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
US7792572B1 (en) 2004-05-17 2010-09-07 Pacesetter, Inc. Ischemia detection using intra-cardiac signals
CA2481631A1 (en) * 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for physiological signal processing
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7426412B1 (en) 2004-10-13 2008-09-16 Pacesetter, Inc. Evoked potential and impedance based determination of diaphragmatic stimulation
US7664550B2 (en) 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US8050756B2 (en) 2004-12-20 2011-11-01 Cardiac Pacemakers, Inc. Circuit-based devices and methods for pulse control of endocardial pacing in cardiac rhythm management
US7684863B2 (en) 2004-12-20 2010-03-23 Medtronic, Inc. LV threshold measurement and capture management
US20060155338A1 (en) * 2004-12-20 2006-07-13 Mongeon Luc R Bi-ventricular ventricular capture management in cardiac resyncronization therapy delivery devices
US20090099468A1 (en) 2004-12-21 2009-04-16 Aravinda Thiagalingam Automated Processing of Electrophysiological Data
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US7515959B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Delivery of CRT therapy during AT/AF termination
JP5027797B2 (ja) 2005-03-31 2012-09-19 プロテウス バイオメディカル インコーポレイテッド 心臓再同期化のための多重電極ペーシングの自動最適化
US7555340B2 (en) 2005-04-01 2009-06-30 Cardiac Pacemakers, Inc. Electrogram morphology-based CRT optimization
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US7769451B2 (en) 2005-04-28 2010-08-03 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy
JP2008539857A (ja) 2005-05-03 2008-11-20 パイエオン インコーポレイテッド 両心室ペースメーカーのリードおよび電極を配置するための方法および装置
CA2616263C (en) 2005-07-22 2014-12-16 Case Western Reserve University System and method for noninvasive electrocardiographic image (ecgi)
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7751882B1 (en) 2005-12-21 2010-07-06 Pacesetter, Inc. Method and system for determining lead position for optimized cardiac resynchronization therapy hemodynamics
US7848807B2 (en) 2005-12-30 2010-12-07 Medtronic, Inc. Closed loop optimization of A-V and V-V timing
US8175703B2 (en) * 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7567836B2 (en) 2006-01-30 2009-07-28 Cardiac Pacemakers, Inc. ECG signal power vector detection of ischemia or infarction
US7860580B2 (en) 2006-04-24 2010-12-28 Medtronic, Inc. Active fixation medical electrical lead
US7792584B2 (en) 2006-04-25 2010-09-07 Medtronic, Inc. System and method for characterization of atrial wall using digital signal processing
EP2029227A1 (en) 2006-05-31 2009-03-04 St. Jude Medical AB A method in an imd system
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US8725255B2 (en) * 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US7765002B2 (en) * 2006-12-08 2010-07-27 Cardiac Pacemakers, Inc. Rate aberrant beat selection and template formation
US7941213B2 (en) 2006-12-28 2011-05-10 Medtronic, Inc. System and method to evaluate electrode position and spacing
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US20080242976A1 (en) 2007-03-30 2008-10-02 Proteus Biomedical, Inc. Electric field tomography
US7912544B1 (en) 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US7957799B2 (en) 2007-04-30 2011-06-07 Medtronic, Inc. Non-invasive cardiac potentiation therapy
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US7706879B2 (en) 2007-04-30 2010-04-27 Medtronic, Inc. Apparatus and methods for automatic determination of a fusion pacing pre-excitation interval
US20080281195A1 (en) 2007-05-09 2008-11-13 General Electric Company System and method for planning LV lead placement for cardiac resynchronization therapy
US8160700B1 (en) 2007-05-16 2012-04-17 Pacesetter, Inc. Adaptive single site and multi-site ventricular pacing
US20090005831A1 (en) 2007-06-01 2009-01-01 Wilson Lon P Method, apparatus and protocol for screening appropriate patient candidates and for cardiac resychronization therapy (crt), determining cardiac functional response to adjustments of ventricular pacing devices and follow-up of crt patient outcomes
US8301246B2 (en) 2007-06-07 2012-10-30 Pacesetter, Inc. System and method for improving CRT response and identifying potential non-responders to CRT therapy
US20090048528A1 (en) 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
EP2190528B1 (en) 2007-08-20 2014-10-08 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
EP2195078B1 (en) 2007-08-20 2013-10-09 Medtronic, Inc. Implantable medical lead with biased electrode
US20090054941A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009027812A2 (en) 2007-08-31 2009-03-05 Medicalgorithmics Sp. Zo.O Reconstruction of geometry of a body component and analysis of spatial distribution of electrophysiological values
US7917214B1 (en) 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US8485980B2 (en) 2007-09-28 2013-07-16 Maquet Critical Care Ab Electrode positioning
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US8145306B2 (en) 2007-10-15 2012-03-27 Lessmeier Timothy J Method for optimizing CRT therapy
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
US8145308B2 (en) * 2008-03-13 2012-03-27 Medtronic, Inc. Method and apparatus for determining a parameter associated with delivery of therapy in a medical device
US20090232448A1 (en) 2008-03-14 2009-09-17 Eci Technology, Inc. Fiber optic multiplexer
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
WO2009139911A2 (en) 2008-05-16 2009-11-19 Heartscape Technologies, Inc. Electrode patch monitoring device
US8200322B2 (en) 2008-06-02 2012-06-12 Medtronic, Inc. Electrogram storage for suspected non-physiological episodes
US9037240B2 (en) 2008-06-02 2015-05-19 Medtronic, Inc. Electrode lead integrity reports
US20090299423A1 (en) 2008-06-03 2009-12-03 Pacesetter, Inc. Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8155739B2 (en) 2008-06-20 2012-04-10 Pacesetter, Inc. Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
JP5628804B2 (ja) 2008-08-11 2014-11-19 ワシントン・ユニバーシティWashington University オンサイトでリアルタイムの心電図イメージング(ecgi)のためのシステムおよび方法
US8090443B2 (en) 2008-09-15 2012-01-03 Xiaoyi Min Monitoring HF exacerbation and cardiac resynchronization therapy performance
EP2346398B1 (en) 2008-10-23 2013-08-14 Koninklijke Philips Electronics N.V. Cardiac- and/or respiratory-gated image acquisition system for virtual anatomy enriched real-time 2d imaging in interventional radiofrequency ablation or pacemaker placement procedures
US8554314B2 (en) 2008-10-31 2013-10-08 Medtronic, Inc. Device and method to detect the severity of ischemia and heart attack risk
EP2345024B1 (en) 2008-11-10 2017-11-08 Cardioinsight Technologies, Inc. Visualization of electrophysiology data
CN102256544A (zh) 2008-12-18 2011-11-23 马奎特紧急护理公司 确定食道导管的位置的方法、控制单元和计算机程序产品
US20100174137A1 (en) 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
US8755881B2 (en) 2009-01-30 2014-06-17 Medtronic, Inc. Pacing therapy adjustment based on ventriculo-atrial delay
US20100198292A1 (en) 2009-01-30 2010-08-05 Medtronic, Inc. Evaluating electrode configurations for delivering cardiac pacing therapy
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US8219186B2 (en) 2009-03-05 2012-07-10 Chen Guangren Non-invasive system and method for scanning the heart
US8010194B2 (en) 2009-04-01 2011-08-30 David Muller Determining site-to-site pacing delay for multi-site anti-tachycardia pacing
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
JP5410600B2 (ja) 2009-05-27 2014-02-05 カーディアック ペースメイカーズ, インコーポレイテッド 横隔神経活性化の検知
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US9387329B2 (en) 2009-07-22 2016-07-12 Pacesetter, Inc. Systems and methods for determining ventricular pacing sites for use with multi-pole leads
US8626260B2 (en) 2009-08-27 2014-01-07 William Crosby Expandable electrode pad
US8285377B2 (en) 2009-09-03 2012-10-09 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US20110054560A1 (en) 2009-09-03 2011-03-03 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US8731642B2 (en) 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
US8412327B2 (en) 2009-11-18 2013-04-02 Pacesetter, Inc. Cardiac resynchronization therapy optimization using vector measurements obtained from realtime electrode position tracking
US9381363B2 (en) 2009-12-07 2016-07-05 Pacesetter, Inc. Optimal pacing configuration via ventricular conduction delays
SE534636C2 (sv) 2009-12-12 2011-11-01 Anna Bjaellmark Ett system för kvantifiering och visualisering av hjärtats rotationsmönster
US20110144510A1 (en) 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
US8942818B2 (en) 2009-12-30 2015-01-27 Medtronic, Inc. Communication with an implantable medical device during implantation
JP2013519428A (ja) 2010-02-12 2013-05-30 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心臓再同期療法の調節パラメータの自動調整のためのシステムおよび方法
US20110213260A1 (en) 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
WO2012003122A1 (en) 2010-07-01 2012-01-05 Cardiac Pacemakers, Inc. Rhythm correlation diagnostic measurement
JP5632539B2 (ja) 2010-09-17 2014-11-26 カーディオインサイト テクノロジーズ インコーポレイテッド 興奮伝播図を計算するためのシステムおよび方法
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US8401646B2 (en) 2010-10-21 2013-03-19 Medtronic, Inc. Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors
US8583230B2 (en) 2011-01-19 2013-11-12 Pacesetter, Inc. Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters
CA2827042A1 (en) 2011-02-11 2012-08-16 Natalia Trayanova System and method for planning a patient-specific cardiac procedure
JP5883888B2 (ja) 2011-02-17 2016-03-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光形状検知を使用して電気的活動マップを提供するシステム
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US20120296387A1 (en) 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US20120330179A1 (en) 2011-06-24 2012-12-27 Verathon, Inc. Electrode contact-quality evaluation
US9186515B2 (en) 2011-07-05 2015-11-17 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
US8897851B2 (en) 2011-07-14 2014-11-25 Verathon Inc. Releasable liner for sensor device
US9615790B2 (en) 2011-07-14 2017-04-11 Verathon Inc. Sensor device with flexible joints
US8527050B2 (en) 2011-07-28 2013-09-03 Medtronic, Inc. Method for discriminating anodal and cathodal capture
US8744576B2 (en) 2011-07-29 2014-06-03 Medtronic, Inc. Sampling intrinsic AV conduction time
US8954160B2 (en) 2011-09-02 2015-02-10 Medtronic, Inc. Detection of extracardiac stimulation by a cardiac rhythm management device
US20130072790A1 (en) 2011-09-19 2013-03-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Selection and optimization for cardiac resynchronization therapy
WO2013056050A1 (en) 2011-10-12 2013-04-18 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US8861830B2 (en) 2011-11-07 2014-10-14 Paieon Inc. Method and system for detecting and analyzing heart mechanics
US8682433B2 (en) 2011-11-21 2014-03-25 Medtronic, Inc. Method for efficient delivery of dual site pacing
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US8886315B2 (en) 2011-12-23 2014-11-11 Medtronic, Inc. Effectiveness of ventricular sense response in CRT
US8694099B2 (en) 2012-02-17 2014-04-08 Medronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US20130289640A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Heart sound-based pacing vector selection system and method
EP2846684B1 (en) 2012-05-09 2021-11-03 CardioInsight Technologies, Inc. Channel integrity detection
US8527051B1 (en) 2012-07-10 2013-09-03 St. Jude Medical Ab Detection and reduction of phrenic nerve stimulation
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
US8781584B2 (en) 2012-11-15 2014-07-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US9320905B2 (en) 2012-12-06 2016-04-26 Medtronic, Inc. Effective capture test
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US9604064B2 (en) 2013-02-21 2017-03-28 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9924884B2 (en) 2013-04-30 2018-03-27 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9789319B2 (en) 2013-11-21 2017-10-17 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9993172B2 (en) 2013-12-09 2018-06-12 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122479A1 (en) * 2002-12-20 2004-06-24 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US20040172079A1 (en) * 2003-02-28 2004-09-02 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
EP1703944A1 (en) * 2003-12-19 2006-09-27 Cardiac Pacemakers, Inc. Adjustment of sequential biventricular pacing parameters
EP2070562A1 (fr) * 2007-12-13 2009-06-17 Ela Medical Dispositif médical pour la caractérisation de l'état cardiaque d'un patient appareillé avec un implant actif à stimulation biventriculaire

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102826A (zh) * 2014-01-16 2016-11-09 美敦力公司 双心房同步左心室心脏起搏
CN106102826B (zh) * 2014-01-16 2019-03-22 美敦力公司 双心房同步左心室心脏起搏
CN113633292A (zh) * 2015-01-29 2021-11-12 美敦力公司 心脏再同步治疗的非侵入式评估
CN107995854A (zh) * 2015-01-29 2018-05-04 美敦力公司 心脏再同步治疗的非侵入式评估
CN107995854B (zh) * 2015-01-29 2021-06-04 美敦力公司 心脏再同步治疗的非侵入式评估
CN107847752B (zh) * 2015-07-31 2021-02-26 美敦力公司 用于在心脏再同步治疗期间递送左心室起搏治疗的医疗设备系统
CN107847752A (zh) * 2015-07-31 2018-03-27 美敦力公司 用于在心脏再同步治疗期间递送左心室起搏治疗的医疗设备系统
CN109069046A (zh) * 2016-04-15 2018-12-21 皇家飞利浦有限公司 Ecg训练和技能提高
CN107480413B (zh) * 2016-06-07 2020-08-04 创领心律管理医疗器械(上海)有限公司 治疗心律失常的医疗设备及其房室间期搜索方法
CN107480413A (zh) * 2016-06-07 2017-12-15 创领心律管理医疗器械(上海)有限公司 治疗心律失常的医疗设备及其房室间期搜索方法
CN109562267A (zh) * 2016-08-11 2019-04-02 心脏起搏器股份公司 用于心力衰竭监视的舒张期心内膜加速度
CN109789309A (zh) * 2016-09-29 2019-05-21 美敦力公司 心内心室起搏器中的心房跟踪
CN110769894A (zh) * 2017-06-16 2020-02-07 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN110769894B (zh) * 2017-06-16 2024-03-22 心脏起搏器股份公司 心力衰竭治疗的动态控制
CN111246910A (zh) * 2017-10-17 2020-06-05 美敦力公司 用于希氏束和束支起搏的无引线起搏设备
CN111246910B (zh) * 2017-10-17 2023-11-28 美敦力公司 用于希氏束和束支起搏的无引线起搏设备
WO2024016202A1 (en) * 2022-07-20 2024-01-25 Medtronic, Inc. Method and apparatus for monitoring conduction system pacing
WO2024032416A1 (zh) * 2022-08-08 2024-02-15 合源医疗器械(上海)有限公司 用于发放脉冲刺激的医疗器械

Also Published As

Publication number Publication date
EP2533853A1 (en) 2012-12-19
JP2013519428A (ja) 2013-05-30
US20120310297A1 (en) 2012-12-06
WO2011099992A1 (en) 2011-08-18
EP2533853A4 (en) 2013-11-06
CN102858405B (zh) 2015-08-19
US9265951B2 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
CN102858405A (zh) 心脏再同步治疗控制参数自动调节的系统和方法
US8805504B2 (en) System and method for cardiac resynchronization therapy control parameter generation using ventricular activation simulation and surface ECG registration
CN103796714B (zh) 用于自动调整心脏再同步治疗控制参数的系统与方法
US9352159B2 (en) Cardiac resynchronization therapy utilizing P-wave sensing and dynamic anticipative left ventricular pacing
US8209010B2 (en) Systems and methods for optimizing multi-site cardiac pacing and sensing configurations for use with an implantable medical device
US7231248B2 (en) Resynchronization method and apparatus based on intrinsic atrial rate
US7171258B2 (en) Method and apparatus for trending a physiological cardiac parameter
US8175693B2 (en) Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
JP5567123B2 (ja) 融合統計データの生成および表示
US8473055B2 (en) Systems and methods for optimizing multi-site cardiac pacing and sensing configurations for use with an implantable medical device
US20070191901A1 (en) Quantifying systolic and diastolic cardiac performance from dynamic impedance waveforms
US7664547B2 (en) Active implantable medical device with biventricular pacing and automatic optimization of pacing configuration
US10405826B2 (en) Methods and system for tracking heart sounds
Marai et al. 115 Patients with right ventricular apical pacing and drug refractory heart failure benefit significantly from cardiac resynchronization therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

CF01 Termination of patent right due to non-payment of annual fee