WO2024032416A1 - 用于发放脉冲刺激的医疗器械 - Google Patents

用于发放脉冲刺激的医疗器械 Download PDF

Info

Publication number
WO2024032416A1
WO2024032416A1 PCT/CN2023/110350 CN2023110350W WO2024032416A1 WO 2024032416 A1 WO2024032416 A1 WO 2024032416A1 CN 2023110350 W CN2023110350 W CN 2023110350W WO 2024032416 A1 WO2024032416 A1 WO 2024032416A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
pulse
sensing
electrocardiogram
myocardial
Prior art date
Application number
PCT/CN2023/110350
Other languages
English (en)
French (fr)
Inventor
王励
Original Assignee
合源医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210944820.0A external-priority patent/CN116943033A/zh
Priority claimed from CN202210944885.5A external-priority patent/CN116943034A/zh
Application filed by 合源医疗器械(上海)有限公司 filed Critical 合源医疗器械(上海)有限公司
Publication of WO2024032416A1 publication Critical patent/WO2024032416A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators

Definitions

  • the present invention relates to the technical field of medical devices, and in particular to a medical device for delivering pulse stimulation.
  • CCM Cardiac Contractility Modulation
  • this medical device can currently only provide CCM therapy, but a considerable number of patients with CCM indications (EF ⁇ 35%) also need primary prevention of SCD (sudden cardiac death) and require ICD (implantable cardiac rhythm) implantation.
  • cardioverter defibrillator Currently, these heart failure patients receive two implantable devices, a CCM device and an ICD (implantable cardioverter defibrillator).
  • CCM device receives two implantable devices
  • ICD implantable cardioverter defibrillator
  • many patients currently receiving ICD therapy also have indications for CCM therapy, and can benefit from CCM therapy by improving heart failure symptoms and hemodynamics through CCM devices.
  • Today, most ICD patients benefit from SCD prevention after ICD implantation without access to CCM for heart failure treatment.
  • current CCM devices do not provide pacing therapy for bradycardia, which may be a therapy needed by some CCM patients.
  • CCM cardiac cardiac contractility
  • LV left ventricular
  • transvenous ICD systems on the market are traditional ICD systems, in which single-chamber ICDs have only one right ventricular (RV) lead, and dual-chamber ICDs have only two leads (one in the RA right atrium and one in the RV right ventricle). ), three leads (one in the RA right atrium, one in the RV right ventricle, and one on the left ventricular epicardial surface) are used in CRT-D (cardiac resynchronization defibrillator) devices.
  • RV right ventricular
  • CRT-D cardiac resynchronization defibrillator
  • the RV lead has a defibrillation coil electrode in the RV, which forms a defibrillation circuit with the ICD housing.
  • ICD itself cannot provide CCM treatment.
  • CCM stimulation in local myocardium is absolutely safe and will not induce malignant ventricular arrhythmias.
  • CCM devices cannot provide pacing therapy, but some heart failure patients can benefit from pacing and increasing their heart rate.
  • One of the technical problems to be solved by the present invention is to overcome the existing technology that can only deliver CCM pulse stimulation when the ventricular electrical activity is transmitted from the atrium.
  • the electrode pairs on the two ventricular electrode leads must be used to sense the right ventricular septal myocardium.
  • the three major limitations of local activation and the time sequence of two sensing events to determine whether pulse stimulation can be delivered, and only sending pulse stimulation in the right ventricular interventricular septum provide a method that can ensure that CCM pulse stimulation is delivered within the ventricular discharge period without any Medical devices subject to the above restrictions.
  • Another technical problem to be solved by the present invention is to provide a medical device for delivering pulse stimulation that can realize the function of CCM therapy by using its own ventricular electrode leads.
  • Another technical problem to be solved by the present invention is to overcome the inability of existing CCM instruments to provide the required Patients who require SCD prevention are provided with ICD treatment, which results in the need to implant both CCM and ICD medical devices in the patient's body, resulting in increased surgical and/or postoperative risks (such as infection), or only one of the treatments can be chosen due to financial burden issues. and other problems, provide a medical device for delivering pulse stimulation.
  • heart failure patients can get the therapy they need (relieve heart failure and prevent sudden death), and can reduce the comfort complexity and the patient's financial burden. , greatly improving the cost-effectiveness of implanted devices.
  • Another technical problem to be solved by the present invention is to overcome the problem in the prior art of issuing CCM pulse stimulation under wrong conditions due to misperception of R waves in far-field electrocardiogram or in vivo near-field electrocardiogram, and provide a safer and more reliable method. pulse stimulation control method.
  • the present invention provides a medical device for delivering pulse stimulation, including at least one ventricular electrode lead and a control device.
  • the ventricular electrode lead is configured to be located at the myocardial position of the ventricle;
  • the control device is configured to execute a
  • a pulse stimulation control method the pulse stimulation control method includes the following steps:
  • the medical device further includes a first electrode pair and a second electrode pair, the first electrode pair is used for sensing, the second electrode pair is used for sensing and stimulating, the second electrode pair includes a head terminal electrode, the head-end electrode is configured on the ventricular electrode lead and is located at the myocardial position of the ventricle; the control device is configured to acquire the far-field electrocardiogram based on the first electrode pair, and based on the The second electrode pair acquires the near-field myocardial electrocardiogram in the body.
  • the second electrode pairs are both configured on the ventricular electrode leads, and the medical device is used to provide cardiac pacing function and/or defibrillation therapy function through the ventricular electrode leads; or,
  • the first electrode pairs are configured on the ventricular electrode leads or are configured as additional electrodes disposed in blood vessels, intracardiac chambers, epicardium, thoracic cavity outside the heart, or subcutaneously.
  • the far-field cardiac electrodes The electrocardiogram is a far-field myocardial electrocardiogram in the body; or, the first electrode pair is configured as a body surface electrode attached to the skin, and the far-field electrocardiogram is a body surface electrocardiogram.
  • the step of determining whether to send CCM pulse stimulation to the myocardial position pair based on the R wave in the far-field electrocardiogram and the R wave in the in-vivo near-field myocardial electrocardiogram specifically includes:
  • the time window that can deliver pulses corresponding to the R wave in the field myocardial electrocardiogram, wherein the time window that can deliver pulses is the CCM stimulation safety window;
  • Whether to deliver CCM pulse stimulation to the myocardial location is determined based on the pulse start delivery time and the pulse deliverable time window.
  • the step of determining the pulse start time according to the first sensing time or the second sensing time specifically includes:
  • the pulse start time is obtained according to the second sensing time and the second preset duration, or the second sensing time and the first sensing time are calculated.
  • the pulse stimulation control method also includes a preset period and a running period.
  • the pulse stimulation control method is based on the difference between the first sensing time and the second sensing time and a third preset period. Assume that the duration is calculated to obtain the first preset duration.
  • the first sensing time is used as the reference zero point, and the pulse start time is obtained based on the first sensing time and the first preset duration. .
  • the second preset time period is greater than or equal to 15ms and less than or equal to 80ms.
  • the steps specifically include:
  • the preset range is greater than or equal to 0 ms and less than or equal to 120 ms;
  • the preset range is greater than or equal to 0 ms and less than or equal to 250 ms.
  • the specific steps also include:
  • the first sensing time is used as a first time point, and the time point corresponding to the first set time period before the first time point is used as the time reference zero point to obtain the internal body temperature after the time reference zero point.
  • the first set duration is greater than or equal to 10 ms and less than or equal to 120 ms;
  • the second sensing time is used as the second time point, and the time point corresponding to the second set time period before the second time point is used as the time reference zero point, and the remote position after the time reference zero point is obtained.
  • the set duration is greater than or equal to 30 ms and less than or equal to 120 ms.
  • the steps also include:
  • the first sensing event in the far-field electrocardiogram corresponds to the second sensing event in the in-vivo near-field myocardial electrocardiogram
  • the first sensing event and the second sensing event are all R waves; if not, the first sensing event in the far-field electrocardiogram does not correspond to the second sensing event in the in-vivo near-field myocardial electrocardiogram, and the first sensing event and One of the second sensing events is not an R wave, and the control device is configured not to deliver CCM pulse stimulation to the myocardial location.
  • the first sensing event is an R wave
  • the determination of whether the second sensing time or the first sensing time falls
  • the step of entering the sensing time window includes: determining whether the second sensing time falls into the sensing time window;
  • the second sensing event is an R wave
  • the determination of whether the second sensing time or the first sensing time falls within the sensing time point is The step of measuring the time window includes determining whether the first sensing time falls within the sensing time window.
  • the starting point of the sensing time window corresponding to the first sensing event in the far-field electrocardiogram is determined based on the first sensing time; if the second sensing time is earlier than the first sensing time, then The starting point of the sensing time window corresponding to the first sensing event in the far-field electrocardiogram is determined based on the second sensing time;
  • the starting point of the sensing time window corresponding to the first sensing event in the far-field electrocardiogram is based on the impact on the ventricle.
  • the issuance time of the pacing pulse is determined, and the issuance time of the pacing pulse is regarded as the first sensing time.
  • the start time of the sensing time window is earlier than or equal to the first sensing time or the second sensing time with a fourth preset duration
  • the pulse-issuable time window has a second Preset length
  • the sensing time window has a first preset length
  • the second preset length is greater than the first preset length
  • the fourth preset duration is greater than or equal to 0ms and less than or equal to 50ms.
  • the sensing time window has a first preset length.
  • the first preset length is The range is greater than or equal to 60m and less than 120ms; when the R wave in the far-field electrocardiogram originates from ventricular activation or ventricular pacing pulse generation, the first preset length is greater than or equal to 160m and less than Equal to 250ms; alternatively, the first preset length is determined through program control.
  • the number of the ventricular electrode leads is multiple and they are arranged at multiple different ventricular myocardial positions, the number of the in vivo near-field myocardial electrocardiogram and the second sensing event is multiple, and the The control device is further configured to perform the following steps:
  • the set sensing parameters corresponding to the R waves at different myocardial positions Preset the set sensing parameters corresponding to the R waves at different myocardial positions, and the set sensing parameters include setting the sensing time and/or setting the sensing occurrence sequence;
  • the remaining second sensing events are set to be R waves.
  • the step of determining whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window specifically includes:
  • CCM pulse stimulation will be delivered to the myocardial location; if not, CCM pulse stimulation will not be delivered to the myocardial location.
  • the number of the ventricular electrode leads is multiple and they are arranged at multiple different myocardial positions, the number of the in vivo near-field myocardial electrocardiogram and the second sensing event is multiple, and the control The device is further configured to perform the following steps:
  • the pulse stimulation delivery sequence corresponding to the R wave at different myocardial locations is set, and CCM pulse stimulation is delivered to the different myocardial locations according to the pulse stimulation delivery sequence.
  • the starting point of the deliverable pulse time window is based on the R wave in the far-field electrocardiogram.
  • the first sensing time is determined, or based on the in-vivo near-field center determined according to the first sensing time.
  • the second sensing time of the corresponding R wave in the myocardial electrocardiogram is determined;
  • the starting point of the deliverable pulse time window is determined based on the delivery time of the pacing pulse received by the ventricle.
  • the delivery time of the pacing pulse is regarded as the first sensing time.
  • the issuable pulse time window has a second preset length, and the range of the second preset length is greater than or equal to 150ms and less than or equal to 300ms, or the second preset length is determined by program control;
  • the starting point of the pulse-emitting time window is earlier than the first sensing time or the second sensing time with a fourth preset time period, and the fourth preset time period is greater than or equal to 0 ms and less than or equal to 50 ms.
  • control device is further configured to perform the following steps:
  • the second sensing time When the second sensing time is earlier than the first sensing time, determine the starting point of the deliverable pulse time window corresponding to the R wave in the near-field myocardial electrocardiogram in the body according to the second sensing time, And determine the pulse start time according to the first sensing time or the second sensing time;
  • the second sensing time When the second sensing time is later than the first sensing time, determine the starting point of the deliverable pulse time window corresponding to the R wave in the near-field myocardial electrocardiogram in the body according to the first sensing time, And determine the pulse starting time according to the first sensing time or the second sensing time.
  • the step of determining whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window specifically includes:
  • CCM pulse stimulation will be delivered to the myocardial location. If not, CCM pulse stimulation will not be delivered to the myocardial location.
  • the step of determining whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window specifically includes:
  • the pulse start time falls into the deliverable pulse time window, and the pulse stop time does not fall into the deliverable pulse time window, then re-determine the pulse parameters so that the pulse can be delivered.
  • the pulse start delivery time and the pulse stop delivery time both fall into the pulse deliverable time window, and CCM pulse stimulation is delivered to the myocardial position according to the redetermined pulse parameters;
  • CCM pulse stimulation will not be delivered to the myocardial location.
  • the step of determining whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window specifically includes:
  • the pulse stop issuance time is determined based on the pulse start issuance time and the preset pulse parameters
  • the CCM pulse stimulation is not delivered, or the pulse parameters are re-determined so that the pulse stop delivery time falls within the pulse-deliverable time window; and the CCM pulse stimulation is delivered according to the re-determined pulse parameters.
  • control device is configured to perform the following steps:
  • the time window is determined based on a first sensing time of the R wave in the far-field electrocardiogram, or based on a second sensing time of the R wave in the in vivo near-field myocardial electrocardiogram.
  • the step of determining whether to capture the ventricle specifically includes: determining whether to capture the ventricle based on the far-field electrocardiogram.
  • the step of issuing CCM pulse stimulation to the myocardial location specifically includes:
  • CCM pulse stimulation is issued to the myocardial position.
  • the CCM pulse stimulation is delivered during at least one of the following ventricular electrical activities:
  • Sinus heartbeat ventricular heartbeat originating from the atria
  • ventricular heartbeat originating from the ventricles ventricular heartbeat originating from the ventricles
  • ventricular heartbeat originating from ventricular pacing Sinus heartbeat, ventricular heartbeat originating from the atria, ventricular heartbeat originating from the ventricles, and ventricular heartbeat originating from ventricular pacing.
  • pulse stimulation is sent after the R wave: it can analyze and process the sensing events in the far-field electrocardiogram or the near-field electrocardiogram in the body in a timely manner, automatically and accurately detect the missensing events, and determine them as not R wave signals, but T Wave and other interference signals, at this time, it is controlled not to deliver CCM pulse stimulation to the corresponding myocardial position, ensuring that CCM pulse stimulation is not delivered under the wrong circumstances, effectively reducing or avoiding the risk of inducing VT or VF, and thus avoiding unnecessary pain to the patient. It can even cause safety hazards to ensure patient safety and improve the reliability of pulse stimulation control; at the same time, it is ensured that CCM pulse stimulation is delivered in time when R wave is determined, that is, CCM pulse stimulation is only delivered under correct circumstances.
  • the far-field myocardial electrocardiogram in the body is acquired through the first electrode pair configured on at least one ventricular electrode lead in the medical device, and the near-field myocardial electrocardiogram in the body is acquired through the second electrode pair configured on at least one ventricular electrode lead in the medical device, combined with The R wave in the far-field myocardial electrocardiogram in vivo and the R wave in the near-field myocardial electrocardiogram in vivo determine whether to send CCM pulse stimulation to the myocardial position, thereby achieving Now has CCM therapy function.
  • the use of the at least one ventricular electrode lead can not only realize the CCM therapy function, but also realize the functions of the original traditional devices (including cardiac pacing function and/or defibrillation therapy function) . Therefore, the medical device provided by the present invention can provide patients with ICD treatment and CCM treatment. For patients who need SCD prevention and heart failure treatment, they only need to implant the medical device provided by the present invention in the patient's body, without the need for implantation. Two medical devices.
  • Figure 1 is a schematic diagram of a first electrode pair and a second electrode pair arranged on a right ventricular electrode lead in a medical device according to an embodiment of the present invention.
  • Figure 2 is another schematic diagram of configuring a first electrode pair and a second electrode pair on a right ventricular electrode lead in the medical device provided by an embodiment of the present invention.
  • Figure 3 is another schematic diagram of configuring a first electrode pair and a second electrode pair on a right ventricular electrode lead in a medical device provided by an embodiment of the present invention.
  • FIG. 4 is a flow chart of a medical device control method provided by an embodiment of the present invention.
  • FIG. 5 is a flow chart of step S2 provided by the embodiment of the present invention.
  • Figure 6 is a flow chart of step S3 provided by the embodiment of the present invention.
  • Figure 7 is another flow chart of step S3 provided by the embodiment of the present invention.
  • Figure 8 is another flow chart of step S3 provided by the embodiment of the present invention.
  • Figure 9 is a partial flow chart of a control method for a medical device provided by an embodiment of the present invention.
  • Figure 10 is another flow chart of step S2 provided by the embodiment of the present invention.
  • Figure 11 is a schematic diagram of an electrocardiogram corresponding to R wave sensing according to an embodiment of the present invention.
  • Figure 12 is a schematic diagram of electrocardiogram corresponding to another type of R wave sensing according to an embodiment of the present invention.
  • Figure 13 is a schematic diagram of electrocardiogram corresponding to yet another R-wave sensing according to an embodiment of the present invention.
  • Figure 14 is a schematic diagram of electrocardiogram corresponding to yet another R-wave sensing according to an embodiment of the present invention.
  • Figure 15 is a flow chart of steps S7 and S8 provided by the embodiment of the present invention.
  • Figure 16 is a flow chart of steps S9 to S11 provided by the embodiment of the present invention.
  • Figure 17 is a schematic diagram of steps S1003 and S1004 provided by the embodiment of the present invention.
  • Figure 18 is a flow chart of steps S1005 to S1008 provided by the embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a control method of a medical device provided in this embodiment.
  • the control method can be executed by a control device of a medical device used to deliver pulse stimulation.
  • the control device can be implemented in the form of software and/or hardware. , the control device can be part of the medical device.
  • the medical device for delivering pulse stimulation in this embodiment includes at least one ventricular electrode lead and a control device.
  • the at least one ventricular electrode lead is configured with a first electrode pair for sensing and a second electrode pair for sensing and stimulation, and at least one electrode of the second electrode pair is located at the myocardial position of the ventricle.
  • the first electrode pair and the second electrode pair may be configured on the same ventricular electrode lead, or the first electrode pair and the second electrode pair may be arranged on different ventricular electrode leads.
  • the function of providing CCM therapy can be achieved by delivering CCM pulse stimulation to the myocardial location.
  • CCM pulse stimulation refers to pulse stimulation used to regulate myocardial contraction.
  • the medical device is used to provide cardiac pacing function and/or defibrillation therapy function through the at least one ventricular electrode lead.
  • the above-mentioned medical device may be a single-chamber ICD or a dual-chamber ICD, and its right ventricular electrode leads can not only realize the cardiac pacing function and/or defibrillation therapy function, but also realize the CCM therapy function.
  • the above-mentioned medical device can also be a CRT-D (cardiac resynchronization therapy defibrillator, cardiac resynchronization therapy defibrillator), through which the right ventricular electrode lead or the left ventricular electrode lead can not only realize the cardiac pacing function and/or defibrillation therapy function, but also CCM therapy function can also be realized.
  • the above-mentioned medical device can also be a CRT-P (cardiac resynchronization therapy pacemaker), which can not only achieve cardiac pacing function through its right ventricular electrode lead and/or left ventricular electrode lead, but also can achieve the cardiac pacing function through its right ventricular electrode lead and/or left ventricular electrode lead.
  • a defibrillation electrode is installed in the right ventricular electrode lead to obtain the far-field myocardial electrocardiogram in the body, thereby realizing the CCM therapy function.
  • the right ventricular electrode leads in a traditional ICD are configured with a pacing electrode pair and at least one defibrillation electrode, single-chamber pacemakers, dual-chamber pacemakers and CRT-P can use the right ventricular electrode in the ICD.
  • the electrode leads realize the function of CCM therapy.
  • the right ventricular electrode leads of CRT devices can provide CCM therapy function in the right ventricle in addition to pacing therapy.
  • the first electrode pair includes E1 electrodes and E2 electrodes for sensing; the second electrode pair includes S1 electrodes and S2 electrodes for sensing and stimulation.
  • the E1 electrode is a spiral defibrillation electrode, the S2 electrode is a ring electrode, the S1 electrode is a head electrode, and the E2 electrode is arranged at the control device 100 of the medical device.
  • the E1 electrode and E2 electrode are both spiral defibrillation electrodes, the S2 electrode is a ring electrode, and the S1 electrode is a head electrode.
  • the E2 electrode is installed at the control device 100 of the medical device.
  • the E1 electrode and the S2 electrode are spiral defibrillation electrodes, and the S1 electrode is the head electrode.
  • the S1 electrode in Figure 1-3 is located at the myocardial position of the ventricle.
  • first electrode pair and the second electrode pair on the ventricular electrode leads is not limited to the form in Figures 1-3, and may also be in other forms.
  • the medical device control method provided in this embodiment may include the following steps S1 to S2:
  • Step S1 Acquire the in-vivo far-field myocardial electrocardiogram based on the first electrode pair, and acquire the in-vivo near-field myocardial electrocardiogram based on the second electrode pair.
  • the in-vivo far-field myocardial electrocardiogram is also called FF-EGM (Far-Field Electrogram)
  • the in-vivo near-field myocardial electrocardiogram is also called L-EGM (Local Electrogram, sometimes also called Near-field Electrogram).
  • Step S2 Determine whether to send CCM pulse stimulation to the myocardial position based on the R wave in the in vivo far-field myocardial electrocardiogram and the R wave in the in vivo near-field myocardial electrocardiogram.
  • the R wave in the in vivo far-field myocardial electrocardiogram and the R wave in the in vivo near-field myocardial electrocardiogram correspond to the same heartbeat.
  • the far-field myocardial electrocardiogram in the body is acquired through the first electrode pair configured on at least one ventricular electrode lead in the medical device
  • the near-field myocardial electrocardiogram in the body is acquired through the second electrode pair configured on at least one ventricular electrode lead in the medical device.
  • the field myocardial electrocardiogram combines the R wave in the far-field myocardial electrocardiogram in the body and the R wave in the near-field myocardial electrocardiogram in the body to determine whether to send CCM pulse stimulation to the myocardial position, thereby realizing the CCM therapy function.
  • the use of the at least one ventricular electrode lead can not only realize the CCM therapy function, but also realize the functions of the original traditional devices (including cardiac pacing function and/or defibrillation therapy function) . Therefore, the medical device provided by this embodiment can provide patients with ICD treatment and CCM treatment. For patients who need SCD prevention and heart failure treatment, they only need to implant the medical device provided by this embodiment into the patient's body. Two medical devices are implanted.
  • single-chamber pacemakers, dual-chamber pacemakers and CRT-P use the right ventricular electrode leads in traditional ICDs to implement CCM therapy functions and can also provide patients with corresponding pacing therapy functions.
  • the above-mentioned pulse stimulation is a CCM stimulation, which can be delivered during at least one of the following ventricular electrical activities: sinus heartbeat, ventricular heartbeat originating from the atrium, ventricular heartbeat originating from the ventricle, ventricular origin originating from the ventricle.
  • the beating ventricular heartbeat Compared with current CCM devices, which only originate from the atrium, Providing CCM pulse therapy a step further by causing a ventricular heartbeat.
  • step S2 includes the following steps S21 to S23:
  • Step S21 Obtain the first sensing time of the R wave in the in-vivo far-field myocardial electrocardiogram and the second sensing time of the R-wave in the in-vivo near-field myocardial electrocardiogram corresponding to the R wave in the far-field electrocardiogram, And the time window that can deliver pulses corresponding to the R wave in the near-field myocardial electrocardiogram in the body, wherein the time window that can deliver pulses is the CCM stimulation safety window.
  • the first sensing time can be called GS (Global Sense)
  • the pulse-emitting time window can be called CCM stimulation safety window (SSW).
  • the pulse-deliverable time window corresponds to a safe period, which corresponds to the CCM pulse-deliverable period of the entire ventricle, and the goal is to cover the absolute refractory period of the entire ventricular myocardium.
  • the time window that can deliver pulses is determined based on the far-field myocardial electrocardiogram in the body, and its starting point and end point are both adjustable. Its starting point approximately corresponds to the "earliest" depolarization zone of the overall ventricular muscle, and its end point corresponds to the "earliest" depolarization zone of the ventricular muscle.
  • the absolute refractory period ends at or slightly before that point.
  • the time window for delivering the pulse can be determined based on the first sensing time GS. starting point.
  • the starting point of the deliverable pulse time window corresponding to the R wave in the in vivo near-field myocardial electrocardiogram is determined based on the first sensing time GS of the first sensing event in the in vivo far-field myocardial electrocardiogram, so that it can correspond to the overall ventricular
  • the first sensing event is an R wave.
  • the second sensing time of the second sensing event in the near-field myocardial electrocardiogram in the body corresponding to the first sensing event can also be determined.
  • the second sensing time can be called LS (Local Sense)
  • the starting point of the pulse-emitting time window is then determined based on the second sensing time LS.
  • it may be due to the delay in capturing the ECG signal that the first sensing time GS lags behind the real time node, or due to other reasons, the second sensing in the in vivo near-field myocardial ECG may occur.
  • the second sensing time LS of the event is slightly earlier than the first sensing time GS of the first sensing event.
  • the releaseable pulse time window corresponding to the R wave in the in vivo near-field myocardial electrocardiogram can also be It is determined based on the second sensing time LS of the R wave in the in vivo near-field myocardial electrocardiogram, which can also correspond to the CCM pulse release period of the entire ventricle.
  • the deliverable pulse time window corresponding to the R wave in the in vivo near-field myocardial electrocardiogram can also be determined by the delivery time of the pacing pulse.
  • the starting point of the pulse time window is the issuance time of the pacing pulse.
  • the pacing The emission time of the pulse is regarded as the first sensing time in various embodiments of the present invention.
  • the second preset length of the deliverable pulse time window can be preset to 200ms, and the optional range includes but is not limited to 150ms to 300ms, as long as the end time point of the deliverable pulse time window does not exceed the absolute limit of the overall ventricular myocardium.
  • the specific situation can be based on the patient's condition (for example, whether antiarrhythmic drugs such as amiodarone are used, antiarrhythmic drugs may prolong the myocardial absolute refractory period), the actual R wave sensing situation (the first sensing time GS and/or the second sensing time). Sensing time LS) and other factors are adaptively adjusted.
  • Step S22 Determine the pulse start time according to the first sensing time GS or the second sensing time LS.
  • the pulse start issuance time is determined only based on the first sensing time GS.
  • the first sensing time GS can be used as the reference zero point, and the first preset time length can be added to this to obtain the pulse start emission time.
  • the first preset duration may be determined based on calculation of the time difference between the first sensing time GS and the second sensing time LS within a preset period before the actual operation period.
  • the reference zero point here represents the starting point of time.
  • the second sensing time LS corresponding to the second sensing event in the near-field myocardial electrocardiogram in the body is determined according to the first sensing time GS; Measure the time to determine the time when the pulse starts to be emitted.
  • the pulse start time is determined only based on the second sensing time, for example, the second sensing time can be used as the reference zero point, and the second preset duration is added to this to obtain the pulse start time.
  • the pulse start time is determined based on the first sensing time and the second sensing time. For example, the time difference between the second sensing time and the first sensing time can be calculated, and then the time difference between the second sensing time and the first sensing time can be calculated.
  • the first sensing time is the reference zero point. On this basis, the time difference and the third preset time length are added to obtain the pulse start time.
  • the setting of the pulse start time ensures that the pulse stimulation time is within the absolute refractory period of the myocardial excitation event contacted by the electrode that sends the pulse.
  • Step S23 Determine whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window.
  • step S23 includes the following steps S231a to S231c:
  • Step S231a Determine whether the pulse start delivery time falls within the pulse-available time window. If yes, step S231b is executed. If not, step S231c is executed.
  • Step S231b Send CCM pulse stimulation to the myocardial position. Specifically, CCM pulse stimulation is started at the myocardial position where the head electrode S1 of the second electrode pair is located at the pulse start time.
  • Step S231c Do not deliver CCM pulse stimulation to the myocardial position.
  • CCM pulse stimulation is only delivered to the myocardium when the pulse start time falls within the pulse-available time window, so that the CCM pulse stimulation must be delivered within the absolute refractory period of the overall ventricular muscle, thereby ensuring that the patient is Safety and reliability of treatment.
  • step S23 includes the following steps S232a to S232d:
  • Step S232a Determine the pulse stop issuance time based on the pulse start issuance time.
  • Step S232b Determine whether the pulse start issuance time and the pulse stop issuance time fall within the pulse-issuable time window. If yes, step S232c is executed. If not, step S232d is executed.
  • Step S232c Send CCM pulse stimulation to the myocardial position. Specifically, the CCM pulse stimulation to the myocardial position is started at the pulse start time, and the CCM pulse stimulation to the myocardial position is stopped at the pulse stop time.
  • Step S232d Do not deliver CCM pulse stimulation to the myocardial position.
  • CCM pulse stimulation is delivered to the myocardium only when both the pulse start time and the pulse stop time fall within the pulse-available time window, so that all CCM pulse stimulation must be within the absolute refractory period of the overall ventricular myocardium. within, thereby fully ensuring the safety and reliability of patient treatment.
  • step S23 whether to deliver CCM pulse stimulation is determined based on whether the pulse start delivery time and the pulse stop delivery time fall within the pulse-deliverable time window. Specifically, as shown in Figure 8, step S23 includes the following steps S233a to S233d:
  • Step S233a Determine the pulse stop issuance time based on the pulse start issuance time and the preset pulse parameters.
  • the pulse parameters may include pulse number, pulse width, etc.
  • Step S233b Determine whether the pulse start issuance time falls within the pulse-issuable time window. If yes, step S233c is executed. If not, step S233f is executed.
  • Step S233c Determine whether the pulse dispensing stop time falls within the pulse-dispensable time window. If yes, step S233e is executed. If not, step S233d is executed.
  • Step S233d Re-determine the pulse parameters so that the pulse stop issuance time falls within the pulse-issuable time window.
  • the pulse cessation time can be made to fall within the dispensable pulse time window by reducing the number of pulses, and the pulse cessation time can be made to fall within the dispensable pulse time window by reducing the pulse width.
  • the pulse cessation time can also be reduced by reducing the number of pulses issued and the pulse width so that the pulse cessation time falls within the pulse-issuable time window.
  • Step S233e Send CCM pulse stimulation to the myocardial position. Specifically, the CCM pulse stimulation to the myocardial position is started at the pulse start time, and the CCM pulse stimulation to the myocardial position is stopped at the pulse stop time.
  • the pulse needs to be re-determined. Parameters are set so that both the pulse start time and the pulse stop time fall within the pulse-available time window, and CCM pulse stimulation is delivered to the myocardial position according to the redetermined pulse parameters.
  • CCM pulse stimulation is delivered to the myocardial location according to the preset pulse parameters.
  • Step S233f Do not send CCM pulse stimulation to the myocardial position.
  • the pulse parameters are redetermined so that the pulse start delivery time and the pulse CCM pulse stimulation will be delivered to the myocardium only when the stop delivery time falls within the pulse-delivery time window, so that all CCM pulse stimulation must be within the absolute refractory period of the overall ventricular myocardium, thereby fully ensuring the safety and safety of patient treatment. reliability, while also providing patients with maximum CCM treatment.
  • step S23 includes the following steps S234a to S234b:
  • Step S234a If the pulse start issuance time falls within the pulse-issuable time window, determine the pulse stop issuance time;
  • Step S234b Determine whether to deliver CCM pulse stimulation based on the pulse stop delivery time and the pulse deliverable time window.
  • the medical device provided by this embodiment when the start time of pulse delivery falls within the time window that can deliver pulses, the time to stop delivering pulses is further determined, and finally whether to deliver CCM is determined based on whether the time when the stop delivery of pulses falls within the time window that can deliver pulses.
  • Pulse stimulation can effectively avoid CCM pulse stimulation occurs outside the absolute refractory period of the body's myocardium.
  • the medical device provided in this embodiment can improve the safety, effectiveness, and reliability of patient treatment.
  • step S234b it is determined whether the pulse stop delivery time falls within the pulse-deliverable time window; if so, CCM pulse stimulation is delivered; if not, CCM pulse stimulation is not delivered.
  • step S234a specifically includes: determining the pulse stop issuance time according to the pulse start issuance time and preset pulse parameters; step S234b specifically includes: determining whether the pulse stop issuance time falls within The pulse-issuable time window; if yes, deliver CCM pulse stimulation; if not, re-determine the pulse parameters so that the pulse stop-issuance time falls within the pulse-issuable time window; and according to the redetermined Pulse parameters deliver CCM pulse stimulation.
  • the above-mentioned steps of issuing CCM pulse stimulation to the myocardial position specifically include: if it is determined that the second sensing in the near-field myocardial electrocardiogram in the body is If the event is an R wave corresponding to the R wave in the far-field myocardial electrocardiogram in the body, CCM pulse stimulation is sent to the myocardial location.
  • the CCM stimulation is triggered by the near-field R wave and not by others (such as T wave, electromyography or other non-myocardial electrocardiogram). Polarized electrical activity, etc.) signal triggering, thereby effectively eliminating the occurrence of false triggering.
  • the safety and effectiveness of CCM pulse stimulation can be effectively improved.
  • control method also includes the following steps S3 to S6:
  • Step S3 Obtain the sensing time window corresponding to the R wave in the in-vivo far-field myocardial electrocardiogram.
  • the sensing time window may be called an R-wave time window (RTW).
  • RCW R-wave time window
  • the sensing time window can be obtained according to the first sensing time and/or the second sensing time.
  • the starting point of the sensing time window may be determined according to the first sensing time and/or the second sensing time, and then the first preset length of the sensing time window may be determined according to the type of current ventricular activation (ventricular activation).
  • ventricular activation a specific example, if the current activation type is atrial conduction ventricular activation, the width of the R wave in the far-field myocardial electrocardiogram in the body is normal, usually greater than or equal to 60 ms and less than 120 ms.
  • the first preview of the sensing time window can be Let the length be determined as 100ms.
  • the width of the R wave in the far-field myocardial electrocardiogram in the body is wider than the normal width, usually between 160 and 250 ms.
  • the first preset length of the sensing time window is determined to be 200ms.
  • the current activation type is ventricular pacing activation
  • the R wave in the far-field myocardial electrocardiogram in the body is wider, usually between 160 and 250 ms.
  • the first part of the sensing time window can also be The default length is determined to be 200ms.
  • the type of ventricular myocardial activation can be determined by conventional methods, such as the method of detecting PVC (premature contraction).
  • the first preset length of the above-mentioned sensing time window can also be obtained in other ways, for example, through an external device (such as a programmer), the doctor inputs to modify the preset value and directly program the length of the time window.
  • the starting points of the above-mentioned pulse-dispensable time window and the above-mentioned sensing time window may be the same or different;
  • the second preset length of the above-mentioned pulse-distributable time window and the first preset length of the above-mentioned sensing time window may be the same, or they may be different.
  • the two time windows of the pulse-emitting time window and the sensing time window can be set in the same way, or they can be set independently, and they do not need to be interrelated or dependent on each other, such as setting different window lengths.
  • different preset time lengths are set after the first sensing time and the second sensing time.
  • the second preset length of the emittable pulse time window is greater than the first preset length of the sensing time window.
  • Step S4 Determine whether the second sensing time falls within the sensing time window. If yes, step S5 is executed. If not, step S6 is executed.
  • Step S5 Determine the second sensing event to be an R wave corresponding to the R wave in the in vivo far-field myocardial electrocardiogram.
  • Step S6 Determine that the second sensing event is not an R wave corresponding to the R wave in the in vivo far-field myocardial electrocardiogram. Specifically, if the second sensing event is not an R wave corresponding to the R wave in the far-field myocardial electrocardiogram in the body, it means that the second sensing event may be a T wave or other interference signal.
  • the R-wave perception in far-field electrocardiogram reflects the relatively early time of ventricular electrical activity.
  • the second sensing time LS of near-field myocardial electrocardiogram in vivo is usually located after the first sensing time GS. Therefore, with the first The sensing time GS obtains the sensing time window and determines whether the second sensing time falls within the sensing time window. In special cases, due to a possible delay in sensing, the first sensing time GS lags slightly behind the second sensing time LS, and the difference between the two falls within a predetermined range (for example, 20ms to 120ms).
  • the sensing time window can be obtained through the second sensing time LS.
  • the second sensing event The measurement time LS must fall within the sensing time window, and it can be directly confirmed that the second sensing event of the near-field myocardial electrocardiogram in the body is the R wave corresponding to the R wave in the far-field electrocardiogram.
  • the medical device control method provided in this embodiment may include the following steps S301 to S304:
  • Step S301 Determine whether to send pacing pulses to the myocardial position. If yes, execute step S302. If not, execute step S303.
  • Step S302 Determine whether to capture the ventricle. If not, execute step S303. If yes, execute step S304.
  • there are several methods to determine whether to capture the ventricle For example, it can be determined based on the in vivo far-field myocardial electrocardiogram to determine whether to capture the ventricle. Of course, if the amplitude of the pacing pulse is high enough and/or the pulse width is long enough, it can be considered that the capture is certain, and there is no need to make a special judgment to determine the capture, and step 304 can be performed directly.
  • Step S303 Determine whether the second sensing event in the in-vivo near-field myocardial electrocardiogram is an R wave corresponding to the R-wave in the in-vivo far-field myocardial electrocardiogram. If yes, execute step S304. If not, end the process. .
  • Step 304 Determine whether or not based on the pulse start issuance time and the pulse-issuable time window. Whether to send CCM pulse stimulation to the myocardial location.
  • the first sensing time of the R wave in the in-vivo far-field myocardial electrocardiogram and the transmittable pulse time window corresponding to the R-wave in the in-vivo near-field myocardial electrocardiogram are obtained, and based on the first sensing Time determines when the pulse begins to be emitted.
  • the step of determining whether to deliver CCM pulse stimulation to the myocardial location based on the pulse start delivery time and the pulse deliverable time window is similar to the above step S23.
  • the pacing pulse is sent to the myocardial position, it means that the medical device is providing the pacing function at this time, and it is necessary to further determine whether to capture the ventricle. If it is determined that the ventricle has not been captured, it is necessary to further determine whether the second sensing event in the near-field myocardial electrocardiogram in the body is the corresponding R wave, and if it is an R wave, it will be determined based on the pulse start time and the possible The pulse delivery time window determines whether to deliver CCM pulse stimulation to the myocardial location. If it is determined that the ventricle is captured, the pacing pulse time is used as the pulse start delivery time, and whether to deliver CCM pulse stimulation to the myocardial location is directly determined based on the pulse start delivery time and the pulse-deliverable time window.
  • the above-mentioned steps of issuing CCM pulse stimulation to the myocardial position specifically include: if it is detected that the current heart rate parameter is within a preset range, then CCM pulse stimulation is delivered to the myocardial location. Among them, if the current heart rate parameters are not within the preset range, it means that the patient's current heart rate parameters are abnormal, and at this time, CCM pulse stimulation will not be issued to the myocardial position.
  • whether the current heart rate parameter is within a preset range can be determined based on two adjacent R waves.
  • the preset range can be set according to the actual situation of the patient, for example, it can be set to [40 beats/min, 120 beats/min]. If the current heart rate parameter is less than 40 beats/min, or greater than 120 beats/min, then it can It is determined that the current heart rate parameters are abnormal.
  • CCM pulse stimulation will be issued to the myocardial position of the patient equipped with the second electrode pair, which can further ensure the treatment of the patient. safety and reliability.
  • Embodiment 2 is similar to Embodiment 1. The similarities will not be repeated here, but the two details will be focused on. differences.
  • the first electrode pair is no longer configured on the ventricular electrode leads, but is configured as an additional electrode disposed in the blood vessel, intracardiac cavity, epicardium, thoracic cavity outside the heart, or subcutaneously, for example , subcutaneous defibrillation electrodes for sub-Q ICD. These electrodes can also obtain far-field myocardial electrocardiogram in the body. It can be understood that various methods described in Embodiment 1 are applicable to the situation in Embodiment 2.
  • Embodiment 3 is similar to Embodiment 1. The similarities will not be repeated here, and the differences between the two will be emphasized.
  • the first electrode pair is no longer configured on the ventricular electrode leads, but is configured as body surface electrodes attached to the skin, for example, commonly used body surface electrocardiogram electrodes, specially designed electrodes,
  • the defibrillation electrodes of an external defibrillator (such as an AED) are used to obtain the body surface electrocardiogram based on the first electrode pair to replace the far-field myocardial electrocardiogram in Embodiment 1, and obtain the first R wave in the body surface electrocardiogram.
  • Sensing time determine the pulse start delivery time based on the first sensing time, and determine whether the pulse start delivery time falls within the pulse-deliverable time window. It can be understood that various methods described in Embodiment 1 are applicable to the situation in Embodiment 3.
  • the body surface electrocardiogram and far-field myocardial electrocardiogram in Embodiments 1, 2, and 3 can be collectively referred to as far-field electrocardiogram.
  • the R wave referred to in the present invention includes QRS complexes and individual R waves.
  • the present invention actually provides a medical device that delivers pulse stimulation, including at least one ventricular electrode lead and a control device.
  • the ventricular electrode lead is configured to be located at the myocardial position of the ventricle;
  • the control device is configured to Implementing a pulse stimulation control method, as shown in Figure 15, includes the following steps:
  • Step S7 Obtain the far-field electrocardiogram and the in-vivo near-field myocardial electrocardiogram corresponding to the myocardial position;
  • Step S8 Determine whether to send CCM pulse stimulation to the myocardial position through the ventricular electrode lead based on the R wave in the far-field electrocardiogram and the R wave in the in-vivo near-field myocardial electrocardiogram.
  • the first sensing time GS is used as the first time point, and the set time period before the first time point (programmable, ranging from but not limited to 10ms to 200ms, preferably 30ms-120ms, for example The time point corresponding to 60 ms) is used as the time reference zero point (starting point); based on the time reference zero point, the second sensing time LS of the R wave of the near-field myocardial electrocardiogram in the body is obtained.
  • GPT Global Pulse Time
  • GS Global Pulse Time
  • the deliverable pulse time window has a first preset length.
  • the first sensing event is the R wave.
  • the control device obtains the first sensing time GS of the R wave in the far-field electrocardiogram, and based on the first sensing time GS and the first preset length, generates the deliverable pulse time window GPT, and further obtains this
  • the second sensing time LS of the R wave of the near-field myocardial electrocardiogram corresponding to the R wave is later than the first sensing time GS.
  • the pulse starting time T is obtained according to the second sensing time LS and the second preset duration LPD.
  • the pulse starting time T falls within the pulse-available time window GPT, then It is determined that the CCM pulse stimulation is issued to the second electrode pair (that is, after the second sensing time LS, the second preset time period is waited until the pulse start time T is reached, and the CCM pulse stimulation is issued).
  • the pulse start time can also be determined through the first sensing time GS.
  • the first sensing time GS is used as the reference zero point, and the difference GLSD between the second sensing time LS and the first sensing time GS (at this time is a positive number) and the third preset duration (here equal to the second preset duration LPD, the range can be 15ms to 80ms, generally the default is 30ms) to obtain the pulse start time T (that is, after the first sensing time GS, After experiencing the length of time that is the sum of the difference GLSD and the third preset duration, to the time T when the pulse starts to be delivered, CCM pulse stimulation is delivered).
  • the first sensing time GS can also be used as the reference zero point to determine the sensing time window corresponding to the R wave of the far-field electrocardiogram.
  • the first preset length of the sensing time window may be equal to or shorter than the second preset length of the transmittable pulse time window GPT, and further determine whether the second sensing time LS falls within the sensing Time Window.
  • the second sensing time LS falls within the sensing time window, it is confirmed that the R wave of the near-field myocardial electrocardiogram in the body corresponding to the R wave of the far-field electrocardiogram is sensed.
  • the measurement time window it is confirmed that what is sensed is not the R wave of the near-field myocardial electrocardiogram in the body corresponding to the R wave of the far-field electrocardiogram, but other sensing events. In this case, no CCM pulse stimulation is delivered.
  • the control device first senses the second sensing time LS of the R wave in the near-field myocardial electrocardiogram in the body, and then senses the second sensing time LS of the R wave in the far-field electrocardiogram.
  • the situation where the first sensing time GS and the second sensing time LS appear slightly earlier than the first sensing time GS may be due to the deviation caused by the R-wave sensing delay.
  • the releaseable pulse time window LSPT is determined.
  • LSPT Local Sense Pulse Time
  • LSPT is a deliverable pulse time window determined based on the second sensing time LS of the R wave in the near-field myocardial electrocardiogram in the body, and has a preset window length.
  • the pulse starting time T is obtained according to the second sensing time LS and the second preset duration LPD. At this time, the pulse starting time T falls within the LSPT, then it is determined Send CCM pulse stimulation to the myocardial position where the second electrode is located (that is, after the second sensing time LS, wait for the second preset time, and when the pulse starts sending time T, send CCM pulse stimulation).
  • the first sensing time GS can also be used as the reference zero point, based on the difference GLSD between the second sensing time LS and the first sensing time GS (a negative number at this time) and the third preset time length (here equal to the second preset time (duration LPD) to obtain the pulse start time T (that is, after the first sensing time GS, the length of time that has gone through the sum of the difference GLSD and the third preset duration, to the pulse start time T, the CCM pulse stimulus is issued) .
  • the second sensing time LS can also be used as the reference zero point to determine the starting point of the sensing time window corresponding to the R wave of the far-field electrocardiogram.
  • the first preset length may be equal to or shorter than the second preset length of the transmittable pulse time window LSPT, and it is further determined whether the second sensing time LS falls into the sensing time window. Since the second sensing time LS must fall within the sensing time window at this time, it can be confirmed that what is sensed is related to the far-field ECG.
  • the R wave in the figure corresponds to the R wave in the in vivo near-field myocardial electrocardiogram.
  • the pulse stimulation delivery method can be further divided into two stages: a set-up period and an operational period.
  • the following parameters need to be measured during the preset period.
  • the second sensing time LS is the second sensing event of the first sensed local electrocardiogram after the time reference zero point determined by the first sensing time GS.
  • the second preset duration LPD is the time length between the second sensing time LS and the pulse start time T; as in the aforementioned embodiment, the first sensing time can be calculated by the difference GLSD and the second preset duration LPD.
  • GPD GLSD+LPD.
  • the GPD calculated during the preset period can be used as the first preset duration.
  • CCM pulse stimulation can be sent to the corresponding myocardial position; at this time, you can After local myocardial electrocardiogram R-wave sensing occurs, the electrical stimulation output time is directly determined according to the first preset duration GPD, without the need to calculate the pulse stimulation far field through the first sensing time GS and the second sensing time LS each time.
  • the myocardial electrocardiogram release time can effectively shorten the data processing time while achieving the stimulation effect, and improve the control efficiency of cardiac pulse stimulation triggering.
  • the pulse delivery time GPD can be updated regularly or irregularly according to actual needs (at this time, the myocardial electrical stimulation can be continued or stopped), and then the myocardial electrical stimulation can be continued according to the updated trigger time to achieve a more flexible electrical stimulation effect. , to meet the needs of more pulse electrical stimulation scenarios.
  • the above parameters are calculated on average over several cardiac cycles. (For example, 6 cardiac cycles are programmable, and can also be other numbers of cardiac cycles); in addition, the preset periods should be performed respectively during sinus electrical activity, ventricular abnormal electrical activity, and ventricular pacing.
  • the start time of the transmittable pulse time window GPT/LSPT may be different from the first sensing time GS or the second sensing time LS, but earlier than the first sensing time.
  • the time GS or the second sensing time LS is the moment of the fourth preset duration A.
  • GPT-s GS-A, GLSD>0 (that is, LS is later than GS);
  • LSPT-s GS+GLSD-A, GLSD ⁇ 0 (that is, LS is earlier than GS or at the same time);
  • 0ms ⁇ A ⁇ 50ms for example, the default value of A is 20ms, and A is programmable and adjustable.
  • the first sensing time GS can be used as the reference zero point
  • the second sensing time LS can be used as the reference zero point
  • the first preset time, the second preset time and the third preset time are all equal.
  • the medical device includes a plurality of ventricular electrode leads, which are respectively arranged at a plurality of different myocardial positions, and a plurality of second electrodes are in contact with the tissues at these myocardial positions.
  • the medical device includes a plurality of ventricular electrode leads, which are respectively arranged at a plurality of different myocardial positions, and a plurality of second electrodes are in contact with the tissues at these myocardial positions.
  • the sensing time window is determined based on the first sensing time of the R wave in the far-field electrocardiogram and the second sensing time corresponding to the closest second sensing event.
  • the patient's three different myocardial positions (A, B, C) are preset.
  • Set the myocardial positions A, B, and C to correspond to the stimulation electrode pairs E1, E2, and E3 respectively.
  • the second sensing times of the corresponding second sensing events are LS1 and LS2 respectively.
  • LS3 among them, the corresponding occurrence times of LS1, LS2, and LS3 move in sequence (that is, the first second sensing event occurs earliest, so it is closest to the first sensing time, and other second sensing events occur in subsequent times) .
  • the second sensing time LS1 corresponding to the second sensing event is obtained. , and determine that the second sensing time LS1 falls into the sensing time window corresponding to the R wave in the far-field electrocardiogram. If it does not fall within, it is determined that the second sensing event does not correspond to the R wave in the far-field electrocardiogram.
  • R wave signal but other interference signals such as T wave, and control not to send CCM pulse stimulation to the stimulation electrode pair E1 at the set myocardial position A; when it falls, it is determined that the second sensing event is related to the remote
  • the R wave signal of the local myocardium corresponding to the R wave in the field electrocardiogram is then timely and accurately calculated at the second sensing time corresponding to the second sensing event to obtain the pulse firing time corresponding to the stimulation electrode corresponding to the set myocardial position A; Then continue to determine whether the pulse issuance time falls within the deliverable pulse time window GPT corresponding to the R wave in the far-field electrocardiogram.
  • the pulse stimulation is controlled to be delivered to the stimulation electrode at the set myocardial position A at the pulse issuance time. , otherwise it is determined not to send CCM pulse stimulation to the stimulation electrode at the set myocardial position A to complete the pulse stimulation control of the set myocardial position A.
  • the pulse stimulation control process for setting myocardial positions B and C is similar to the pulse stimulation control process for setting myocardial position A, so it will not be described again here.
  • the pulse delivery time calculated based on the second sensing time corresponding to the second sensing event falls into the deliverable pulse time corresponding to the R wave in the far-field electrocardiogram.
  • the second sensing time LS1 corresponding to the first second sensing event can also be used as the trigger point (reference zero point) of the pulse emission time window LSPT to ensure subsequent LSn (n>1, such as LS2 and LS3)
  • the pulse delivery time can be within the LSPT window.
  • the different pulse stimulation control processes for setting the myocardial position can be independent of each other. There will be no mutual interference or influence on each other; for example, when the pulse stimulation control of the set myocardial position A is in progress, or the pulse stimulation control of the set myocardial position A has been completed, as long as the set of myocardial position B corresponds to the in vivo
  • the second sensing event LS2 occurs in the near-field myocardial electrocardiogram
  • the above-mentioned pulse stimulation control process can be executed independently, and finally the pulse stimulation control of all set myocardial positions is completed.
  • the control operation is orderly and very effectively guarantees Safety and reliability of CCM pulse stimulation in patients.
  • Different pulse stimulation delivery sequences can also be set for different myocardial positions.
  • each ventricular electrode lead stimulates myocardial positions A, B, and C in their respective time periods.
  • pulse stimulation is only performed on the set myocardial position A, and in another period of time, only pulse stimulation is performed on the set myocardial positions B and C, so as to take into account both safety and effectiveness.
  • the pulse stimulation control method of this embodiment also includes the following: step:
  • the second sensing time LS corresponding to the second sensing event in the in-vivo near-field myocardial electrocardiogram corresponding to each in-vivo myocardial electrocardiogram, so as to obtain the second sensing event with the earliest occurrence time as the first second sensing event;
  • the second sensing event is a local myocardial R wave signal corresponding to the R wave in the far-field electrocardiogram;
  • the second sensing events in the local myocardial electrocardiogram corresponding to the remaining myocardial positions determine whether the second sensing times corresponding to these second sensing events fall within the above-mentioned sensing time window. If so, determine the first
  • the second sensing event is an R wave signal corresponding to the R wave in the far-field electrocardiogram
  • the remaining myocardial position corresponding to the second sensing event in the near-field myocardial electrocardiogram in the body is also the same as the R wave in the far-field electrocardiogram.
  • the corresponding R wave signal at this time, there is no need to judge and analyze the second sensing events in the local myocardial electrocardiogram corresponding to the remaining myocardial position one by one. While accurate judgment can be achieved, the data analysis and processing process is greatly simplified. Effectively shortens data processing It is time-consuming and reduces the computing power requirements of the equipment, further ensuring the timeliness, accuracy and effectiveness of pulse stimulation control for patients.
  • the specific method used to determine whether the second sensing event of multiple local myocardial electrocardiograms is an R wave can be based on actual scene requirements.
  • a single execution plan can be selected or multiple execution plans can be combined to meet the requirements.
  • Higher-demand ECG ventricular conduction scenarios have greatly improved the practicality of pulse stimulation control and greatly improved the safety and effectiveness of patient treatment.
  • the pulse stimulation control method of this embodiment also includes:
  • setting the sensing parameters includes setting the sensing time and/or setting the sensing occurrence sequence.
  • the delivery time of CCM pulse stimulation relative to the respective myocardial locations is after the local myocardial sensing time, such as 40 ms.
  • Embodiment 2 This embodiment is similar to Embodiment 1, and the similarities will not be repeated. The difference is that the first sensing time of the R wave in the far-field electrocardiogram and the in vivo near-field myocardial electrocardiogram corresponding to the R wave in the far-field electrocardiogram are obtained. The method of second sensing time of R wave is different.
  • the second sensing time of the second sensing event in the in vivo near-field myocardial electrocardiogram is used as the second time point, and the time point corresponding to the second set time period before the second time point is used as As the time reference zero point, obtain the first sensing event in the far-field electrocardiogram after the time reference zero point.
  • the second set duration is greater than or equal to 10 ms and less than or equal to 120 ms.
  • the second sensing event in the near-field myocardial electrocardiogram in the body is an R wave.
  • the first sensing event in the far-field electrocardiogram is related to the in vivo
  • the R wave corresponding to the R wave in the near-field myocardial electrocardiogram It can be understood that whether the first sensing event is obtained first or the second sensing event is obtained first, one of them can be used as the first time point, so as to obtain the other corresponding to it, and through the embodiments 1-5
  • the method of establishing a sensing time window is used to determine whether the second sensing event in the near-field myocardial electrocardiogram in the body corresponds to the first sensing event in the far-field electrocardiogram, and as long as one of them is an R wave, this correspondence can be used , to determine whether the other is also an R wave, thereby ensuring that CCM pulse stimulation is not issued in the event of misperception.
  • the present invention also provides a medical device for delivering pulse stimulation.
  • the medical device includes at least one ventricular electrode lead and a control device.
  • the ventricular electrode lead is configured to be located on At the location of the myocardium of the ventricle; as shown in Figure 16, the control device is configured to perform a pulse stimulation control method, including:
  • Step S9 Obtain the far-field electrocardiogram and the in-vivo near-field myocardial electrocardiogram corresponding to the myocardial position;
  • Step S10 Determine whether the first sensing event in the far-field electrocardiogram and the second sensing event in the in-vivo near-field myocardial electrocardiogram are corresponding R waves. If not, execute step S11. If yes, execute Step S12;
  • Step S11 Do not send CCM pulse stimulation to the myocardial position
  • Step S12 Send CCM pulse stimulation to the myocardial position through the ventricular electrode lead.
  • the pulse start issuance time and/or the pulse stop issuance time, and the pulse can be issued time can also be obtained through the first sensing time of the first sensing event and the second sensing time of the second sensing event. Whether the window falls within the time window that can deliver pulses, and determine whether the time when the pulse starts delivering and/or the time when the pulse stops delivering falls within the time window where the pulse can be delivered. The details have been described in detail in Embodiment 1 and will not be described again here.
  • step S10 also includes:
  • first sensing time GS of the first sensing event in the far-field electrocardiogram and the second sensing time LS of the second sensing event in the near-field myocardial electrocardiogram in the body wherein the first sensing At least one of the event and the second sensing event is an R wave;
  • the difference between the first sensing time GS of the first sensing event in the far-field electrocardiogram and the second sensing time LS of the second sensing event in the in-vivo near-field myocardial electrocardiogram is When the absolute value is within the preset range, it is confirmed that the first sensing event in the far-field electrocardiogram corresponds to the second sensing event in the in-vivo near-field myocardial electrocardiogram, and the first sensing event and The second sensing events are all R waves.
  • the preset range is greater than or equal to 0 ms and less than or equal to 120ms; when the R wave in the far-field electrocardiogram originates from ventricular activation or ventricular pacing pulse generation, the preset range is greater than or equal to 0ms and less than or equal to 250ms.
  • the The default range is 100ms.
  • step S10 also includes:
  • Step S1003 Based on the first sensing time, determine the second sensing event in the near-field myocardial electrocardiogram in the body, and obtain the second sensing time corresponding to the second sensing event, wherein the first sensing Time is R wave; or
  • Step S1004 Based on the second sensing time, determine the first sensing event in the far-field electrocardiogram, and obtain the first sensing time corresponding to the first sensing event, where the second sensing time is R wave.
  • the second sensing time when the second sensing time is obtained based on the first sensing time, such as when a new first sensing time occurs, the second sensing time still fails to be obtained; or, when the second sensing time is obtained based on the second sensing time, feel When the first sensing time is obtained by measuring the time, if the first sensing time still fails to be obtained when a new second sensing time occurs, the control device is configured to restart a new round of judgment.
  • step S1003 also includes: using the first sensing time as a first time point, and using a time point corresponding to the first set duration before the first time point as a time reference zero point, and obtaining the time point located at the The second sensing event in the in-vivo near-field myocardial electrocardiogram after the time reference zero point, the first set duration is greater than or equal to 10ms and less than or equal to 120ms; or,
  • step S1004 also includes: using the second sensing time as a second time point, and using a time point corresponding to the second set time period before the second time point as a time reference zero point, and obtaining the time point located at the For the first sensing event in the far-field electrocardiogram after the time reference zero point, the second set duration is greater than or equal to 10 ms and less than or equal to 120 ms.
  • step S10 also includes:
  • Step S1005 Obtain the sensing time window corresponding to the first sensing event in the far-field myocardial electrocardiogram
  • Step S1006 Determine whether the second sensing time falls within the sensing time window. If yes, execute step S1007. If not, execute step S1008;
  • Step S1007 Determine that the first sensing event in the far-field electrocardiogram corresponds to the second sensing event in the in-vivo near-field myocardial electrocardiogram, and that the first sensing event and the second sensing event The events are all R waves.
  • Step S1008 Determine that the first sensing event in the far-field electrocardiogram does not correspond to the second sensing event in the in-vivo near-field myocardial electrocardiogram, and the first sensing event and the second sensing event One of the events was not an R wave.
  • Step S1005 and step S1006 have been described in detail in Embodiments 1 to 7 and will not be described again here.
  • the pulse delivery time window is a new requirement for CCM pulse stimulation delivery time, especially when multiple stimulation sites have CCM pulse stimulation, the delivery time of each stimulation site needs to fall within the pulse delivery time Within the time window, that is, within the firing period of the entire ventricle in the same heartbeat (ventricular activation) (not just the firing period of the local ventricular muscle at the electrode site).
  • the sensing time window is used as a "whole ventricle" or "far-field ventricular” R wave sensing time window, which is used to determine whether the acquired second sensing event is an R wave in the far-field electrocardiogram (i.e., corresponding to the ventricular "Whole-ventricular” or "in vivo far-field” R-wave sensing of depolarization) corresponds to R-wave sensing of local ventricular depolarization.
  • the pulse deliverable time window (as a safe zone for stimulus delivery, corresponding to the deliverable period of the entire ventricular myocardium ("whole ventricle” or "far-field ventricle”)) is used to determine the pulse stimulus corresponding to the second sensing time LS Is the release time safe?
  • the pulse emission time window and the sensing time window are independent, and these two parameters can be programmed separately to meet actual parameter configuration requirements.
  • the doctor can select the same value for both (when appropriate).
  • the system can directly assign the same value to these two parameters in advance, but it needs to maintain the function of separately programmable control of these two parameters.
  • CCM pulse stimulation is only sent during the ventricular release period: by confirming that the pulse stimulation delivery time falls within the pulse delivery window corresponding to the overall ventricular electrical activity (R wave) of the body surface electrocardiogram or the in vivo far-field myocardial electrocardiogram, To ensure the timeliness, safety and effectiveness of CCM pulse stimulation of the patient's heart.
  • using surface electrocardiogram or far-field myocardial electrocardiogram to obtain the release period information of ventricular electrical activity also represents a positive improvement in pulse stimulation technology, further ensuring the CCM of patients. Safety, effectiveness, and therapeutic efficacy of pulse stimulation.
  • the second sensing event in the near-field myocardial electrocardiogram in the body can be analyzed and processed in a timely manner, and the missensing event can be automatically and accurately checked out and determined to be not the same as that in the far-field electrocardiogram.
  • the R wave signal corresponds to the R wave signal, but is an interference signal such as T wave.
  • the control does not send CCM pulse stimulation to the corresponding myocardial position, ensuring that CCM pulse stimulation is not sent out in the wrong situation, effectively avoiding the risk of inducing VT or VF.
  • CCM pulse stimulation is delivered in a timely manner when it is determined to be an R wave, that is, only when the R wave is determined to be correct CCM pulse stimulation is only delivered under certain conditions.
  • the medical device provided by this embodiment includes at least one processor and a memory communicatively connected to the at least one processor.
  • the memory stores a computer program that can be run by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the control method provided by this embodiment.
  • the processor corresponds to the above control device.
  • control method may also be called a pulse stimulation control method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种用于发放脉冲刺激的医疗器械,包括至少一根心室电极导线和控制装置,所述心室电极导线被配置为设于心肌位置处;所述控制装置被配置为执行一种脉冲刺激控制方法,所述脉冲刺激控制方法包括以下步骤:获取远场心电图和所述心肌位置对应的体内近场心肌心电图;根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否对所述心肌位置发放CCM脉冲刺激。本发明提供的用于发放脉冲刺激的医疗器械可以保证对患者心脏的CCM脉冲刺激的及时性、安全性和有效性。

Description

用于发放脉冲刺激的医疗器械
本申请要求申请日为2022年8月8日的中国专利申请CN202210944885.5以及申请日为2022年8月8日的中国专利申请CN202210944820.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及医疗器械技术领域,特别涉及一种用于发放脉冲刺激的医疗器械。
背景技术
现有市场上的具有CCM(Cardiac Contractility Modulation,心肌收缩调节)功能的医疗装置,基本用于慢性心衰患者,一般采用两个双极电极导线植入于右心室室间隔,用于感知局部心肌的电位和在感知后的一定时间发放脉冲刺激,以增加心室心肌收缩力。
另外,该医疗装置目前仅可以提供CCM疗法,但是相当一部分CCM适应症的患者(EF<35%)也需要进行SCD(心源性猝死)的一级预防而需植入ICD(植入式心律转复除颤器)。目前,这些心衰患者同时接受一个CCM设备和一个ICD(埋藏式心脏复律除颤器)这两个植入式器械。相反,目前接受ICD治疗的患者很多也具有CCM疗法的适应症,可以通过CCM设备改善心力衰竭症状和血流动力学等,从而从CCM治疗中获益。如今,大多数ICD患者受益于植入ICD后的SCD预防,而没有获得CCM的心衰治疗。此外,目前CCM器械不提供对于心动过缓的起搏疗法,而这也可能是部分CCM患者所需的疗法。
其中一个原因是当前的CCM系统(器械+至少二根心室电极导线)比较复杂。该系统需要基于右心室室间隔处的两根双极心室电极导线感应心肌的 局部激活和两个感应事件的时间序列,以确保心室激活是来自于心房的,而不是始于心室本身的(包括心室起搏)。其中一条或两条电极导线也用于在局部心肌的绝对不应期中发放CCM脉冲。CCM刺激不是直接发放至左心室(LV)心肌,而LV通常是最需要增强收缩力的腔室。尽管已经证明CCM对心脏收缩力和心功能有整体影响,但研究表明这种影响始于刺激部位,但仅部分影响整体心脏收缩力或LV。
如今,市场上的经静脉ICD系统即传统ICD系统,其中单腔ICD只有一根右心室(RV)导线,对于双腔ICD只有两根导线(一根在RA右心房、一根在RV右心室),三根导线(一根在RA右心房、一根在RV右心室、一根在左心室心外膜表面)用于CRT-D(心脏再同步除颤器)器械。这三个系统有如下共同点:1)RV中只有一根导线,不像CCM器械有两根导线;2)RV导线在RV中有一个除颤线圈电极,同ICD外壳组成除颤回路。有时在对应于SVC(上腔静脉)的部位上有第二个除颤线圈电极,两者都在RV导线上。目前ICD本身无法提供CCM治疗,原因之一是无法确定CCM在局部心肌刺激是绝对安全的,不会诱发恶性室性心律失常。目前CCM器械不能提供起搏疗法,而部分心衰病人能从起搏并提高其心率中获益。
发明内容
本发明要解决的其中一个技术问题是为了克服现有技术中只能在心房下传的心室电活动时发放CCM脉冲刺激,必须用两根心室电极导线上的电极对感应右室室间隔心肌的局部激活和两个感应事件的时间序列以判断是否能发放脉冲刺激,以及只在右室室间隔发送脉冲刺激这三大限制,提供一种能够确保在心室可发放期内发放CCM脉冲刺激且无上述限制的医疗器械。
本发明要解决的另一个技术问题是提供一种利用自身心室电极导线就能够实现CCM疗法功能的用于发放脉冲刺激的医疗器械。
本发明要解决的另一个技术问题是为了克服现有的CCM器械无法为需 要SCD预防的患者提供ICD治疗,导致需要在患者体内植入CCM和ICD两种医疗器而导致手术和/或术后风险增加(比如感染),或由于经济负担问题,只能选择其中一个疗法等问题,提供一种用于发放脉冲刺激的医疗器械,通过这个解决方案,可以使心衰病人获得需要的疗法(减轻心衰,并预防猝死),并能降低舒服复杂度以及病人的经济负担,大大提高植入器械的性价比。
本发明要解决的另一个技术问题是为了克服现有技术中因为远场心电图或体内近场心电图中的R波误感知而在错误的情况下发放CCM脉冲刺激的问题,提供一种更安全可靠的脉冲刺激控制方法。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供一种用于发放脉冲刺激的医疗器械,包括至少一根心室电极导线和控制装置,所述心室电极导线被配置为设于心室的心肌位置处;所述控制装置被配置为执行一种脉冲刺激控制方法,所述脉冲刺激控制方法包括以下步骤:
获取远场心电图和心肌位置对应的体内近场心肌心电图;
根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否通过所述心室电极导线对所述心肌位置发放CCM脉冲刺激。
可选地,所述医疗器械还包括第一电极对及第二电极对,所述第一电极对用于感知,所述第二电极对用于感知和刺激,所述第二电极对包括头端电极,所述头端电极被配置于所述心室电极导线上并设于心室的心肌位置处;所述控制装置被配置为基于所述第一电极对获取所述远场心电图,以及基于所述第二电极对获取所述体内近场心肌心电图。
可选地,所述第二电极对均配置于所述心室电极导线上,所述医疗器械用于通过所述心室电极导线提供心脏起搏功能和/或除颤疗法功能;或者,
所述第一电极对均被配置于所述心室电极导线上或被配置为额外设置于血管内、心腔内、心外膜、心脏以外的胸腔内或皮下的电极,所述远场心 电图为体内远场心肌心电图;或者,所述第一电极对被配置为用于贴在皮肤上的体表电极,所述远场心电图为体表心电图。
可选地,所述根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否对所述心肌位置对发放CCM脉冲刺激的步骤具体包括:
获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间,以及所述体内近场心肌心电图中R波对应的可发放脉冲时间窗,其中,所述可发放脉冲时间窗为CCM刺激安全窗;
根据所述第一感测时间或所述第二感测时间确定脉冲开始发放时间;
根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激。
可选地,所述根据所述第一感测时间或所述第二感测时间确定脉冲开始发放时间的步骤具体包括:
以所述第二感测时间为参考零点,根据第二感测时间和第二预设时长得到所述脉冲开始发放时间,或,计算得到所述第二感测时间和所述第一感测时间之间的时间差值;以所述第一感测时间为参考零点,根据所述第一感测时间、所述时间差值和第三预设时长计算得到脉冲发放时间,其中所述第三预设时长等于所述第二预设时长。
可选地,所述脉冲刺激控制方法还包括预设期和运行期,在所述预设期内,根据所述第一感测时间与所述第二感测时间的差值和第三预设时长计算得到第一预设时长,在所述运行期内,以所述第一感测时间为参考零点,根据所述第一感测时间和第一预设时长得到所述脉冲开始发放时间。
可选地,所述第二预设时长大于等于15ms且小于等于80ms。
可选地,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤具体包括:
获取所述远场心电图中的第一感测事件以及所述远场心电图中的第二感测事件,其中,所述第一感测事件及所述第二感测事件中至少一个为R波;
当所述远场心电图中所述第一感测事件的第一感测时间以及与所述体内近场心肌心电图中的所述第二感测事件的第二感测时间的差值的绝对值在预设范围内时,确认所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件均为R波;当所述远场心电图中所述第一感测事件是源于心房传导的心室激活而产生时,所述预设范围为大于等于0ms且小于等于120ms;当所述远场心电图中所述R波是源于心室的心室激活或源于心室起搏脉冲产生时,所述预设范围为大于等于0ms且小于等于250ms。
可选地,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤具体还包括:
将所述第一感测时间作为第一时间点,并将所述第一时间点之前的第一设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述体内近场心肌心电图中的第二感测事件,所述第一设定时长大于等于10ms且小于等于120ms;
或者,
将所述第二感测时间作为第二时间点,并将所述第二时间点之前的第二设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述远场心电图中的第一感测事件,所述设定时长大于等于30ms且小于等于120ms。
可选地,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤还包括:
获取所述远场心电图中所述第一感测事件对应的感测时间窗;
判断所述第二感测时间或所述第一感测时间是否落入所述感测时间窗;
若是,则确定所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件均为R波;若否,则所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件不对应,且所述第一感测事件和所述第二感测事件中的其中一个不是R波,所述控制装置被配置为不对所述心肌位置发放CCM脉冲刺激。
可选地,当所述第一感测时间作为所述第一时间点时,所述第一感测事件为R波;所述判断所述第二感测时间或第一感测时间是否落入所述感测时间窗的步骤包括:判断所述第二感测时间是否落入所述感测时间窗;
当所述第二感测时间作为所述第二时间点时,所述第二感测事件为R波;所述判断所述第二感测时间或第一感测时间是否落入所述感测时间窗的步骤包括:判断所述第一感测时间是否落入所述感测时间窗。
可选地,当所述远场心电图中所述第一感测事件是源于非心室起搏而发生的心室激活时,如所述第一感测时间早于所述第二感测时间,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于所述第一感测时间确定;如所述第二感测时间早于所述第一感测时间,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于所述第二感测时间确定;
当所述远场心电图中所述第一感测事件是源于心室起搏脉冲产生时,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于心室受到的起搏脉冲的发放时间确定,所述起搏脉冲的发放时间被视为所述第一感测时间。
可选地,所述感测时间窗的开始时间以第四预设时长早于或等于所述第一感测时间或所述第二感测时间,且所述可发放脉冲时间窗具有第二预设长度,所述感测时间窗具有第一预设长度,且所述第二预设长度大于所述第一预设长度,所述第四预设时长大于等于0ms且小于等于50ms。
可选地,所述感测时间窗具有第一预设长度,当所述远场心电图中所述R波是源于心房传导心室激活而发生的心跳产生时,所述第一预设长度的范围为大于等于60m且小于120ms;当所述远场心电图中所述R波是源于心室的心室激活或源于心室起搏脉冲产生时,所述第一预设长度为大于等于160m且小于等于250ms;或者,所述第一预设长度通过程控确定。
可选地,所述心室电极导线的数量为多个且被设置于多个不同的心室心肌位置处,所述体内近场心肌心电图和所述第二感测事件的数量为多个,所述控制装置进一步被配置为执行以下步骤:
预设不同的所述心肌位置处R波对应的设定感测参数,所述设定感测参数包括设定感测时间和/或设定感测发生顺序;
当第一个落入所述感测时间窗的所述第二感测事件为R波时,则设置其他剩余的所述第二感测事件均为R波;或者,
当最后一个落入所述感测时间窗的第二感测事件为R波时,则设置其他剩余的所述第二感测事件均为R波。
可选地,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
若所述脉冲开始发放时间落入所述可发放脉冲时间窗,则对所述心肌位置发放CCM脉冲刺激,若否,则不对所述心肌位置发放CCM脉冲刺激。
可选地,所述心室电极导线的数量为多个且被设置于多个不同的心肌位置处,所述体内近场心肌心电图和所述第二感测事件的数量为多个,所述控制装置进一步被配置为执行以下步骤:
设定不同的所述心肌位置处R波对应的脉冲刺激发放顺序,按所述脉冲刺激发放顺序对不同的所述心肌位置发放CCM脉冲刺激。
可选地,当所述远场心电图中所述R波是源于非心室起搏而发生的心室激活时,所述可发放脉冲时间窗的起点基于所述远场心电图中所述R波的第一感测时间确定,或者,基于根据所述第一感测时间确定的所述体内近场心 肌心电图中对应的R波的第二感测时间确定;
当所述远场心电图中所述R波是源于心室起搏脉冲产生时,所述可发放脉冲时间窗的起点基于心室受到的起搏脉冲的发放时间确定,所述起搏脉冲的发放时间被视为所述第一感测时间。
可选地,所述可发放脉冲时间窗具有第二预设长度,所述第二预设长度的范围为大于等于150ms且小于等于300ms,或所述第二预设长度通过程控确定;所述可发放脉冲时间窗的起点以第四预设时长早于所述第一感测时间或所述第二感测时间,所述第四预设时长大于等于0ms且小于等于50ms。
可选地,所述控制装置被进一步配置为执行以下步骤:
当所述第二感测时间早于所述第一感测时间时,根据所述第二感测时间确定所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗的起点,并根据所述第一感测时间或所述第二感测时间确定所述脉冲开始发放时间;
当所述第二感测时间晚于所述第一感测时间时,根据所述第一感测时间确定所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗的起点,并根据所述第一感测时间或所述第二感测时间确定所述脉冲开始发放时间。
可选地,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
根据所述脉冲开始发放时间确定脉冲停止发放时间;
若所述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,则对所述心肌位置发放CCM脉冲刺激,若否,则不对所述心肌位置发放CCM脉冲刺激。
可选地,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间;
若所述脉冲开始发放时间落入所述可发放脉冲时间窗,且所述脉冲停止发放时间未落入所述可发放脉冲时间窗,则重新确定所述脉冲参数,以使所 述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,根据重新确定的脉冲参数对所述心肌位置发放CCM脉冲刺激;
若所述脉冲开始发放时间未落入所述可发放脉冲时间窗,则不对所述心肌位置发放CCM脉冲刺激。
可选地,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
若所述脉冲开始发放时间落入所述可发放脉冲时间窗,则根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间;
判断所述脉冲停止发放时间是否落入所述可发放脉冲时间窗;
若是,则发放CCM脉冲刺激;
若否,则不发放CCM脉冲刺激,或者,重新确定所述脉冲参数,以使所述脉冲停止发放时间落入所述可发放脉冲时间窗;并根据重新确定的脉冲参数发放CCM脉冲刺激。
可选地,所述控制装置被配置为执行以下步骤:
若确定已向所述心肌位置发放起搏脉冲,则判断是否夺获心室;
若是,则根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激,其中,所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗基于心室受到的起搏脉冲的发放时间确定;
若否,根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置对发放CCM脉冲刺激,其中,所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗基于所述远场心电图中所述R波的第一感测时间确定,或者,基于所述体内近场心肌心电图中的R波的第二感测时间确定。
可选地,所述判断是否夺获心室的步骤具体包括:基于所述远场心电图判断是否夺获心室。
可选地,所述对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
若检测到当前的心率参数在预设范围内,则对所述心肌位置发放CCM脉冲刺激。
可选地,其中,所述CCM脉冲刺激在如下至少一种心室电活动时发放:
窦性心跳、源于心房下传引起的心室心跳、源于心室的心室心跳、源于心室起搏的心室心跳。
在符合本领域常识的基础上,所述可选条件可任意组合,即得本发明各实施例。
本发明的积极进步效果在于:
只在心室可发放期内发放CCM脉冲刺激:通过确认CCM脉冲刺激发放时间落在远场心电图反映整体心室心电活动(R波)对应的可发放期内,以保证对患者心脏的CCM脉冲刺激的及时性、安全性和有效性。其中,为了确保CCM脉冲刺激发放时间的安全性,以远场心电图来获得心室心电活动的可发放期信息也代表了对于CCM脉冲刺激技术的积极改进,进一步地保障了对患者的CCM脉冲刺激的安全性、有效性和治疗效果。
只针对R波后发送脉冲刺激:能够及时对远场心电图或体内近场心电图中的感测事件进行解析处理,自动且准确排查出误感知事件,将之确定为不是R波信号,而属于T波等干扰信号,此时控制不对相应心肌位置发放CCM脉冲刺激,保证了不在错误的情况下发放CCM脉冲刺激,有效地降低或避免诱发VT或VF的风险,继而避免对患者造成不必要的疼痛感甚至造成安全隐患,以确保患者的安全性,提高了脉冲刺激控制的可靠性;同时保证在确定为R波时及时发放CCM脉冲刺激,即只有在正确的情况下才发放CCM脉冲刺激。
通过医疗器械中至少一根心室电极导线上配置的第一电极对获取体内远场心肌心电图,以及通过医疗器械中至少一根心室电极导线上配置的第二电极对获取体内近场心肌心电图,结合体内远场心肌心电图中的R波和体内近场心肌心电图中的R波确定是否对心肌位置发放CCM脉冲刺激,从而实 现CCM疗法功能。
进一步地,与现有医疗器械相比,利用所述至少一根心室电极导线不仅可以实现CCM疗法功能,还可以实现原有传统器械的功能(包括心脏起搏功能和/或除颤疗法功能)。因此,本发明提供的医疗器械可以为患者提供ICD治疗和CCM治疗,对于需要SCD预防和心力衰竭治疗的患者而言,仅需在患者体内植入本发明提供的医疗器械即可,无需植入两种医疗器械。
附图说明
图1为本发明实施例提供的医疗器械中在右心室电极导线上配置第一电极对和第二电极对的一种示意图。
图2为本发明实施例提供的医疗器械中在右心室电极导线上配置第一电极对和第二电极对的另一种示意图。
图3为本发明实施例提供的医疗器械中在右心室电极导线上配置第一电极对和第二电极对的又一种示意图。
图4为本发明实施例提供的一种医疗器械的控制方法的流程图。
图5为本发明实施例提供的步骤S2的一种流程图。
图6为本发明实施例提供的步骤S3的一种流程图。
图7为本发明实施例提供的步骤S3的另一种流程图。
图8为本发明实施例提供的步骤S3的又一种流程图。
图9为本发明实施例提供的医疗器械的控制方法的一种局部流程图。
图10为本发明实施例提供的步骤S2的另一种流程图。
图11为本发明实施例的一种R波感知对应的心电示意图。
图12为本发明实施例的另一种R波感知对应的心电示意图。
图13为本发明实施例的又一种R波感知对应的心电示意图。
图14为本发明实施例的又一种R波感知对应的心电示意图。
图15为本发明实施例提供的步骤S7和S8的流程图。
图16为本发明实施例提供的步骤S9至S11的流程图。
图17为本发明实施例提供的步骤S1003和S1004的示意图。
图18为本发明实施例提供的步骤S1005至S1008的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
应当理解,本发明使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“根据”是“至少部分地根据”,术语“多个”是“两个及两个以上”。
应当理解,虽然术语“第一”、“第二”、“第三”“第四”等可能在本发明中用来描述各种元素,但这些元素不被这些术语所限定,这些术语只是用来将一个元素与另一个元素区分开。
实施例1
图1为本实施例提供的一种医疗器械的控制方法的流程示意图,该控制方法可以由用于发放脉冲刺激的医疗器械的控制装置执行,该控制装置可以通过软件和/或硬件的方式实现,该控制装置可以为医疗器械的一部分。
本实施例中的用于发放脉冲刺激的医疗器械包括至少一根心室电极导线和控制装置。所述至少一根心室电极导线上配置有用于感知的第一电极对以及用于感知和刺激的第二电极对,所述第二电极对中的至少一个电极设于心室的心肌位置处。其中,可以在同一根心室电极导线上配置所述第一电极对和所述第二电极对,也可以在不同根心室电极导线上配置所述第一电极对和所述第二电极对。
在本实施例提供的用于发放脉冲刺激的医疗器械中,通过向所述心肌位置发放CCM脉冲刺激可以实现提供CCM疗法功能。其中,CCM脉冲刺激是指用于心肌收缩调节的脉冲刺激。
可选地,所述医疗器械用于通过所述至少一根心室电极导线提供心脏起搏功能和/或除颤疗法功能。在具体实施中,上述医疗器械可以为单腔ICD或者双腔ICD,通过其右心室电极导线不仅可以实现心脏起搏功能和/或除颤疗法功能,还可以实现CCM疗法功能。上述医疗器械还可以为CRT-D(cardiac resynchronization therapy defibrillator,心脏再同步治疗除颤器),通过其右心室电极导线或者左心室电极导线不仅可以实现心脏起搏功能和/或除颤疗法功能,还可以实现CCM疗法功能。上述医疗器械还可以为CRT-P(cardiac resynchronization therapy pacemaker,心脏再同步治疗起搏器),通过其右心室电极导线和/或左心室电极导线不仅可以实现心脏起搏功能,还可以通过在其右心室电极导线中设置除颤电极以获取体内远场心肌心电图,从而实现CCM疗法功能。在具体实施中,由于传统ICD中的右心室电极导线上配置有起搏电极对和至少一个除颤电极,单腔起搏器、双腔起搏器和CRT-P可以采用ICD中的右心室电极导线实现CCM疗法功能。通过上述设置,CRT器械(包括CRT-P和CRT-D)的右心室电极导线除了提供起搏疗法外,还可以在右心室提供CCM疗法功能。
图1至图3分别用于示出医疗器械中在右心室(RV)导线上配置第一电极对和第二电极对的示意图。如图1-3所示,第一电极对包括E1电极和E2电极,用于感知;第二电极对包括S1电极和S2电极,用于感知和刺激。具体地,如图1所示,E1电极为螺旋式的除颤电极,S2电极为环状电极,S1电极为头端电极,E2电极配在医疗器械的控制装置100处。如图2所示,E1电极和E2电极均为螺旋式的除颤电极,S2电极为环状电极,S1电极为头端电极。如图3所示,E2电极配在医疗器械的控制装置100处,E1电极和S2电极为螺旋式的除颤电极,S1电极为头端电极。其中,图1-3中的S1电极设于心室的心肌位置处。
需要说明的是,第一电极对和第二电极对在心室电极导线上的具体配置不限于图1-3的形式,还可以为其它形式。
如图4所示,本实施例提供的医疗器械的控制方法可以包括以下步骤S1~S2:
步骤S1、基于所述第一电极对获取体内远场心肌心电图,以及基于所述第二电极对获取体内近场心肌心电图。
其中,体内远场心肌心电图又称为FF-EGM(Far-Field Electrogram),体内近场心肌心电图又称为L-EGM(Local Electrogram,有时还可以被称为Near-field Electrogram)。
步骤S2、根据所述体内远场心肌心电图中的R波和所述体内近场心肌心电图中的R波确定是否对所述心肌位置发放CCM脉冲刺激。
需要说明的是,所述体内远场心肌心电图中的R波和所述体内近场心肌心电图中的R波对应同一个心跳。
本实施例中,通过医疗器械中至少一根心室电极导线上配置的第一电极对获取体内远场心肌心电图,以及通过医疗器械中至少一根心室电极导线上配置的第二电极对获取体内近场心肌心电图,结合体内远场心肌心电图中的R波和体内近场心肌心电图中的R波确定是否对心肌位置发放CCM脉冲刺激,从而实现CCM疗法功能。
进一步地,与现有医疗器械相比,利用所述至少一根心室电极导线不仅可以实现CCM疗法功能,还可以实现原有传统器械的功能(包括心脏起搏功能和/或除颤疗法功能)。因此,本实施例提供的医疗器械可以为患者提供ICD治疗和CCM治疗,对于需要SCD预防和心力衰竭治疗的患者而言,仅需在患者体内植入本实施例提供的医疗器械即可,无需植入两种医疗器械。
类似的,单腔起搏器、双腔起搏器和CRT-P采用传统ICD中的右心室电极导线可以实现CCM疗法功能,也能为患者提供相应的起搏疗法功能。
在具体实施中,上述脉冲刺激即为CCM刺激,可以在如下至少一种心室电活动时发放:窦性心跳、源于心房下传引起的心室心跳、源于心室的心室心跳、源于心室起搏的心室心跳。相比目前CCM器械只在源于心房下传 引起的心室心跳提供CCM脉冲疗法又提高了一步。
在可选的一种实施方式中,如图5所示,上述步骤S2包括以下步骤S21~S23:
步骤S21、获取所述体内远场心肌心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间,以及所述体内近场心肌心电图中R波对应的可发放脉冲时间窗,其中,所述可发放脉冲时间窗为CCM刺激安全窗。
其中,第一感测时间可以称为GS(Global Sense),可发放脉冲时间窗可以称为CCM刺激安全窗(stimulation safety window,SSW)。其中,可发放脉冲时间窗对应的是一个安全期,此安全期对应整体心室的CCM脉冲可发放期,目标是覆盖整体心室肌的绝对不应期。具体地,可发放脉冲时间窗根据体内远场心肌心电图确定,其起点和终点均是可调节的,其起点约对应于整体心室肌的“最早”除极区,其终点对应于其心室肌的绝对不应期结束时间点或略早于该点。
在具体实施的一个例子中,当前体内远场心肌心电图中R波是源于非心室起搏而发生的心跳(例如自主心跳)产生时,可以根据第一感测时间GS确定可发放脉冲时间窗的起点。
一般情况下,体内近场心肌心电图中R波对应的可发放脉冲时间窗的起点是基于体内远场心肌心电图中第一感测事件的第一感测时间GS确定的,从而可以对应整体心室的CCM脉冲可发放期,所述第一感测事件为R波。
在特殊情况下,还可以确定与第一感测事件对应的所述体内近场心肌心电图中第二感测事件的第二感测时间,第二感测时间可以称为LS(Local Sense),然后根据第二感测时间LS确定可发放脉冲时间窗的起点。在这种情况下,可能由于对心电信号捕捉上的延迟,从而导致第一感测时间GS落后于真实的时间节点,或由于其他原因,导致所述体内近场心肌心电图中第二感测事件的第二感测时间LS稍早于第一感测事件的第一感测时间GS。此 时,通过以第二感测时间LS作为起算时间,可以更准确地判断局部兴奋事件与整体兴奋事件的对应性,因此,体内近场心肌心电图中R波对应的可发放脉冲时间窗还可以是基于体内近场心肌心电图中R波的第二感测时间LS确定,也可以对应整体心室的CCM脉冲可发放期。
体内近场心肌心电图中R波对应的可发放脉冲时间窗还可以是由起搏脉冲的发放时间决定的。
在具体实施的另一个例子中,当所述远场心电图中R波是源于心室起搏脉冲产生时,可发放脉冲时间窗的起点为起搏脉冲的发放时间,此时,所述起搏脉冲的发放时间被视为本发明各实施例中所称的所述第一感测时间。
具体地,可发放脉冲时间窗的第二预设长度可以预设为200ms,可选范围包括但不限于150ms到300ms,只要使得可发放脉冲时间窗的结束时间点不超出整体心室肌的绝对不应期即可。具体可以根据患者的情况(例如是否使用胺碘酮等抗心律失常药物,抗心律失常药物可能会延长心肌绝对不应期)、实际R波感知情况(第一感测时间GS和/或第二感测时间LS)等因素进行适应性调整。
步骤S22、根据所述第一感测时间GS或所述第二感测时间LS确定脉冲开始发放时间。
在步骤S22可选的一种实施方式中,仅根据第一感测时间GS确定脉冲开始发放时间。具体地,可以以第一感测时间GS为参考零点,在此基础上加上第一预设时长得到脉冲开始发放时间。该第一预设时长可以是根据在实际运行期之前的预设期内对第一感测时间GS和第二感测时间LS的时间差值进行计算而决定的。此处的参考零点代表时间起点。
在步骤S22可选的一种实施方式中,根据所述第一感测时间GS确定所述体内近场心肌心电图中第二感测事件对应的第二感测时间LS;根据所述第二感测时间确定脉冲开始发放时间。
在一个具体的例子中,仅根据第二感测时间确定脉冲开始发放时间,例 如可以以第二感测时间为参考零点,在此基础上加上第二预设时长得到脉冲开始发放时间。
在另一个具体的例子中,根据第一感测时间和第二感测时间确定脉冲开始发放时间,例如可以计算第二感测时间与第一感测时间之间的时间差值,然后以第一感测时间为参考零点,在此基础上加上该时间差值和第三预设时长得到脉冲开始发放时间。
脉冲开始发放时间的设置保证了脉冲刺激的发放时间是在发放脉冲的电极所接触的心肌兴奋事件的绝对不应期里。
步骤S23、根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激。
在可选的一种实施方式中,根据脉冲开始发放时间是否落入可发放脉冲时间窗确定是否发放CCM脉冲刺激。具体地,如图6所示,步骤S23包括以下步骤S231a~S231c:
步骤S231a、判断所述脉冲开始发放时间是否落入所述可发放脉冲时间窗,若是,则执行步骤S231b,若否,则执行步骤S231c。
步骤S231b、对所述心肌位置发放CCM脉冲刺激。具体地,在所述脉冲开始发放时间开始对第二电极对中的头端电极S1所在的所述心肌位置发放CCM脉冲刺激。
步骤S231c、不对所述心肌位置发放CCM脉冲刺激。
本实施方式中,在脉冲开始发放时间落入可发放脉冲时间窗的情况下才对心肌位置发放CCM脉冲刺激,使得CCM脉冲刺激必须在整体心室肌的绝对不应期内发放,从而保证对患者治疗的安全性和可靠性。
在可选的另一种实施方式中,根据脉冲开始发放时间和脉冲停止发放时间是否均落入可发放脉冲时间窗确定是否发放CCM脉冲刺激。具体地,如图7所示,步骤S23包括以下步骤S232a~S232d:
步骤S232a、根据所述脉冲开始发放时间确定脉冲停止发放时间。
步骤S232b、判断所述脉冲开始发放时间和所述脉冲停止发放时间是否均落入所述可发放脉冲时间窗,若是,则执行步骤S232c,若否,则执行步骤S232d。
步骤S232c、对所述心肌位置发放CCM脉冲刺激。具体地,在所述脉冲开始发放时间开始对所述心肌位置发放CCM脉冲刺激,在所述脉冲停止发放时间停止对所述心肌位置发放CCM脉冲刺激。
步骤S232d、不对所述心肌位置发放CCM脉冲刺激。
本实施方式中,在脉冲开始发放时间和脉冲停止发放时间均落入可发放脉冲时间窗的情况下才对心肌位置发放CCM脉冲刺激,使得所有CCM脉冲刺激必须在整体心室肌的绝对不应期内,从而充分保证对患者治疗的安全性和可靠性。
在步骤S23可选的又一种实施方式中,根据脉冲开始发放时间和脉冲停止发放时间是否落入可发放脉冲时间窗确定是否发放CCM脉冲刺激。具体地,如图8所示,步骤S23包括以下步骤S233a~S233d:
步骤S233a、根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间。其中,所述脉冲参数可以包括脉冲发放数量、脉宽等。
步骤S233b、判断所述脉冲开始发放时间是否落入所述可发放脉冲时间窗,若是,则执行步骤S233c,若否,则执行步骤S233f。
步骤S233c、判断所述脉冲停止发放时间是否落入所述可发放脉冲时间窗,若是,则执行步骤S233e,若否,则执行步骤S233d。
步骤S233d、重新确定所述脉冲参数,以使所述脉冲停止发放时间落入所述可发放脉冲时间窗。在具体实施中,可以通过减少脉冲发放数量的方式使得所述脉冲停止发放时间落入所述可发放脉冲时间窗,可以通过降低脉宽的方式使得所述脉冲停止发放时间落入所述可发放脉冲时间窗,还可以通过减少脉冲发放数量和降低脉宽的方式使得所述脉冲停止发放时间落入所述可发放脉冲时间窗。
步骤S233e、对所述心肌位置发放CCM脉冲刺激。具体地,在所述脉冲开始发放时间开始对所述心肌位置发放CCM脉冲刺激,在所述脉冲停止发放时间停止对所述心肌位置发放CCM脉冲刺激。
在具体实施的一个例子中,若所述脉冲开始发放时间落入所述可发放脉冲时间窗,且所述脉冲停止发放时间未落入所述可发放脉冲时间窗,则需要重新确定所述脉冲参数,以使所述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,并根据重新确定的脉冲参数对所述心肌位置发放CCM脉冲刺激。
在具体实施的另一个例子中,若所述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,则根据预设的脉冲参数对所述心肌位置发放CCM脉冲刺激。
步骤S233f、不对所述心肌位置发放CCM脉冲刺激。
本实施方式中,在脉冲开始发放时间落入可发放脉冲时间窗且脉冲停止发放时间未落入所述可发放脉冲时间窗的情况下,重新确定脉冲参数,以使在脉冲开始发放时间和脉冲停止发放时间均落入可发放脉冲时间窗的情况下才对心肌位置发放CCM脉冲刺激,使得所有CCM脉冲刺激必须在整体心室肌的绝对不应期内,从而充分保证对患者治疗的安全性和可靠性,同时还可以为患者提供最大程度的CCM治疗。
在可选的又一种实施方式中,步骤S23包括以下步骤S234a~S234b:
步骤S234a、若所述脉冲开始发放时间落入所述可发放脉冲时间窗,则确定脉冲停止发放时间;
步骤S234b、根据所述脉冲停止发放时间和所述可发放脉冲时间窗确定是否发放CCM脉冲刺激。
本实施例提供的医疗器械中,在脉冲开始发放时间落入可发放脉冲时间窗的情况下,进一步确定脉冲停止发放时间,最后根据脉冲停止发放时间是否落入可发放脉冲时间窗确定是否发放CCM脉冲刺激,可以有效避免在整 体心肌的绝对不应期之外仍然发放CCM脉冲刺激的情况发生。与现有的心脏收缩力调节器相比,本实施例提供的医疗器械可以提高对患者治疗的安全性、有效性和可靠性。
在步骤S234b可选的一种实施方式中,判断所述脉冲停止发放时间是否落入所述可发放脉冲时间窗;若是,则发放CCM脉冲刺激;若否,则不发放CCM脉冲刺激。
在可选的另一种实施方式中,步骤S234a具体包括:根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间;步骤S234b具体包括:判断所述脉冲停止发放时间是否落入所述可发放脉冲时间窗;若是,则发放CCM脉冲刺激;若否,则重新确定所述脉冲参数,以使所述脉冲停止发放时间落入所述可发放脉冲时间窗;并根据重新确定的脉冲参数发放CCM脉冲刺激。
在可选的一种实施方式中,上述对所述心肌位置发放CCM脉冲刺激的步骤,例如上述步骤S231b、S232c、S233e,具体包括:若确定所述体内近场心肌心电图中的第二感测事件为与所述体内远场心肌心电图中R波相对应的R波,则对所述心肌位置发放CCM脉冲刺激。
本实施方式中,通过确定体内近场心肌心电图中的第二感测事件为R波,可以确保CCM刺激是由近场R波触发,而不是其他(例如T波、肌电或其他非心肌去极化电活动等)信号触发,从而有效地排除误触发情况的发生,通过这一关键环节的设计,能够有效地提高CCM脉冲刺激的安全性和有效性。
在可选的一种实施方式中,如图9所示,上述控制方法还包括以下步骤S3~S6:
步骤S3、获取所述体内远场心肌心电图中R波对应的感测时间窗。
其中,感测时间窗可以称为R波时间窗口(R-wave time window,RTW)。具体地,可以根据第一感测时间和/或第二感测时间得到感测时间窗。首先, 可以根据第一感测时间和/或第二感测时间确定感测时间窗的起点,然后,根据当前心室肌激活(ventricular activation)的种类确定感测时间窗的第一预设长度。在一个具体的例子中,若当前激活的种类为心房传导心室激活,则体内远场心肌心电图中R波的宽度正常,通常大于等于60ms且小于120ms,比如可以将感测时间窗的第一预设长度确定为100ms。在另一个具体的例子中,若当前激活的种类为源于心室的心室激活,则体内远场心肌心电图中R波的宽度相较于正常宽度较宽,通常在160~250ms之间,比如可以将感测时间窗的第一预设长度确定为200ms。在又一个具体的例子中,若当前激活的种类为心室起搏激活,则体内远场心肌心电图中的R波较宽,通常在160~250ms之间,同样可以将感测时间窗的第一预设长度确定为200ms。其中,心室肌激活的种类可以通过惯常的方法,比如检测PVC(期前收缩)的方法等。
需要说明的是,还可以其它方式获取上述感测时间窗的第一预设长度,例如通过外部设备(如程控仪)由医生输入以修改预设值而直接程控时间窗长度。其中,上述可发放脉冲时间窗和上述感测时间窗的起点可以相同,也可以不同;上述可发放脉冲时间窗第二预设长度和上述感测时间窗的第一预设长度可以相同,也可以不同;也即可发放脉冲时间窗和感测时间窗这两个时间窗可以相同的方式设置,也可以进行独立设置,相互之间可以没有相互关联性和依赖关系,例如设置不同的窗口长度,在第一感测时间和第二感测时间之后,设置不同的预设时长。优选地,当可发放脉冲时间窗和感测时间窗起点相同时,可发放脉冲时间窗的第二预设长度大于感测时间窗的第一预设长度。
步骤S4、判断所述第二感测时间是否落入所述感测时间窗,若是,则执行步骤S5,若否,则执行步骤S6。
步骤S5、确定所述第二感测事件为与所述体内远场心肌心电图中R波相对应的R波。
步骤S6、确定所述第二感测事件不是与所述体内远场心肌心电图中R波相对应的R波。具体地,若所述第二感测事件不是与体内远场心肌心电图中R波相对应的R波,则说明所述第二感测事件可能是T波或者其它干扰信号。
在一般情况下,远场心电图中的R波感知反映了心室电活动相对早期的时间,体内近场心肌心电图的第二感测时间LS通常位于第一感测时间GS之后,因此,以第一感测时间GS得到感测时间窗并判断第二感测时间是否落入感测时间窗。在特殊情况下,由于感测可能存在延迟,导致第一感测时间GS稍落后于第二感测时间LS,且两者的差值落入一预定范围内(例如,20ms至120ms),为了更准确地确定远场心电图中的R波与体内近场心肌心电图的第二感测事件的对应关系,可通过第二感测时间LS得到感测时间窗,在这种情况下,第二感测时间LS必然落入感测时间窗,可直接确认体内近场心肌心电图的第二感测事件是与远场心电图中的R波对应的R波。
如图10所示,本实施例提供的医疗器械的控制方法可以包括以下步骤S301~S304:
步骤S301、判断是否向所述心肌位置发放起搏脉冲,若是,则执行步骤S302,若否,则执行步骤S303。
步骤S302、判断是否夺获心室,若否,则执行步骤S303,若是,则执行步骤S304。在具体实施中,有数种方法可以判断是否夺获心室,比如可以基于所述体内远场心肌心电图判断是否夺获心室。当然,如果起搏脉冲的幅度足够高和/或脉宽足够长时,可以认为夺获是确定的,无需专门判断确定夺获,直接执行步骤304即可。
步骤S303、确定所述体内近场心肌心电图中的第二感测事件是否为与所述体内远场心肌心电图中R波相对应的R波,若是,则执行步骤S304,若否,则结束流程。
步骤304、根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是 否对所述心肌位置发放CCM脉冲刺激。在具体实施中,获取所述体内远场心肌心电图中R波的第一感测时间,以及所述体内近场心肌心电图中R波对应的可发放脉冲时间窗,并根据所述第一感测时间确定脉冲开始发放时间。根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤与上述步骤S23类似。
本实施方式中,若确定向所述心肌位置发放起搏脉冲,说明此时医疗器械正在提供起搏功能,需要进一步判断是否夺获心室。若判断未夺获心室,则还需要进一步判断体内近场心肌心电图中的第二感测事件是否为对应的R波,并在是R波的情况下根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激。若判断夺获心室,则将起搏脉冲时间作为脉冲开始发放时间,直接根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激。
在可选的一种实施方式中,上述对所述心肌位置发放CCM脉冲刺激的步骤,例如上述步骤S231b、S232c、S233e,具体包括:若检测到当前的心率参数在预设范围内,则对所述心肌位置发放CCM脉冲刺激。其中,若当前的心率参数不在预设范围内,说明患者当前的心率参数存在异常,此时则不对所述心肌位置发放CCM脉冲刺激。
具体地,可以通过相邻的两个R波判断当前的心率参数是否在预设范围内。所述预设范围可以根据患者的实际情况进行设置,例如可以设置为[40次/分,120次/分],若当前的心率参数小于40次/分,或者大于120次/分,则可以确定当前的心率参数存在异常。
本实施方式中,在当前的心率参数在预设范围内即当前的心率参数正常的情况下,才会对设有第二电极对的患者的心肌位置发放CCM脉冲刺激,可以进一步保证对患者治疗的安全性和可靠性。
实施例2
实施例2与实施例1相似,对于相同之处,此处不再赘述,重点阐述两 者的不同之处。在本实施例中,第一电极对不再是配置于心室电极导线上,而是被配置为额外设置于血管内、心腔内、心外膜、心脏以外的胸腔内或皮下的电极,例如,sub-Q ICD的皮下除颤电极,这些电极同样可以获得体内远场心肌心电图。可以理解,在实施例1中描述的各种方法皆适用于实施例2中的情况。
实施例3
实施例3与实施例1相似,对于相同之处,此处不再赘述,重点阐述两者的不同之处。在本实施例中,第一电极对不再是配置于心室电极导线上,而是被配置为用于贴在皮肤上的体表电极,例如,常用的体表心电图电极、特殊设计的电极、体外除颤器(如AED)的除颤电极等,从而基于所述第一电极对获取体表心电图,以替代实施例1中的远场心肌心电图,并获取体表心电图中R波的第一感测时间,根据第一感测时间确定脉冲开始发放时间,并判断脉冲开始发放时间是否落入所述可发放脉冲时间窗。可以理解,在实施例1中描述的各种方法皆适用于实施例3中的情况。
在本发明中,实施例1、2、3中的体表心电图和远场心肌心电图可以统称为远场心电图。本领域技术人员可以理解的是,本发明中所称的R波包括QRS波群和单独的R波。
综上所述,本发明实际上提供了一种发放脉冲刺激的医疗器械,包括至少一根心室电极导线和控制装置,心室电极导线被配置为设于心室的心肌位置处;控制装置被配置为执行一种脉冲刺激控制方法,如图15所示,包括以下步骤:
步骤S7:获取远场心电图和所述心肌位置对应的体内近场心肌心电图;
步骤S8:根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否通过所述心室电极导线对所述心肌位置发放CCM脉冲刺激。
下面以R波感知对应的心电示意图为例,进一步具体介绍本发明实施例 中脉冲刺激控制方法。
可选地,将第一感测时间GS作为第一时间点,并将第一时间点之前的设定时长(可程控,范围包括但不限于10ms到200ms,较佳地,30ms-120ms,例如为60ms)对应的时间点作为时间参考零点(起点);基于时间参考零点,获取体内近场心肌心电图的R波的第二感测时间LS。
在一种实施方式中,GPT(Global Pulse Time)是基于远场心电图(既可以是体表心电图,也可以是体内远场心肌心电图)中的第一感测事件的第一感测时间GS确定的可发放脉冲时间窗,具有第一预设长度。第一感测事件为R波。如图11所示,首先,控制装置获取远场心电图中R波的第一感测时间GS,基于第一感测时间GS和第一预设长度,生成可发放脉冲时间窗GPT,进一步获取这个R波对应的近场心肌心电图的R波的第二感测时间LS,第二感测时间LS晚于第一感测时间GS。以第二感测时间LS作为参考零点,根据第二感测时间LS和第二预设时长LPD得到脉冲开始发放时间T,由于脉冲开始发放时间T落入了可发放脉冲时间窗GPT内,则确定对第二电极对发放CCM脉冲刺激(也即在第二感测时间LS之后,又等待了第二预设时长,到脉冲开始发放时间T,发放CCM脉冲刺激)。
也可以通过第一感测时间GS确定脉冲开始发放时间,具体地,以第一感测时间GS作为参考零点,根据第二感测时间LS与第一感测时间GS的差值GLSD(此时为正数)和第三预设时长(此处等于第二预设时长LPD,范围可以是15ms至80ms,一般默认30ms)得到脉冲开始发放时间T(也即在第一感测时间GS之后,经历了差值GLSD和第三预设时长之和的时间长度,到脉冲开始发放时间T,发放CCM脉冲刺激)。
为了防止对体内近场心肌心电图的R波的误感知,例如将T波误认为R波,还可以以第一感测时间GS为参考零点,确定远场心电图的R波对应的感测时间窗的起点,感测时间窗的第一预设长度可以等于或短于可发放脉冲时间窗GPT的第二预设长度,并进一步判断第二感测时间LS是否落入感测 时间窗。当第二感测时间LS落入感测时间窗,则确认感测到的是与远场心电图的R波对应的体内近场心肌心电图的R波,当第二感测时间LS未落入感测时间窗,则确认感测到的不是与远场心电图的R波对应的体内近场心肌心电图的R波,而是其他感测事件。在这种情况下,则不发放CCM脉冲刺激。
在另一种实施方式中,如图12所示,控制装置先感测到体内近场心肌心电图的R波的第二感测时间LS,后感测到远场心电图的中的R波的第一感测时间GS,第二感测时间LS稍早于第一感测时间GS出现的情况,可能是由于R波感知延迟引起的偏差,在这种情况下,确定可发放脉冲时间窗LSPT。LSPT(Local Sense Pulse Time)是基于体内近场心肌心电图中的R波的第二感测时间LS确定的可发放脉冲时间窗,具有预设窗口长度。进一步地,以第二感测时间LS作为参考零点,根据第二感测时间LS和第二预设时长LPD得到脉冲开始发放时间T,此时脉冲开始发放时间T落入了LSPT内,则确定对第二电极所在的心肌位置发放CCM脉冲刺激(也即在第二感测时间LS之后,又等待了第二预设时长,到脉冲开始发放时间T,发放CCM脉冲刺激)。
还可以第一感测时间GS作为参考零点,根据第二感测时间LS与第一感测时间GS的差值GLSD(此时为负数)和第三预设时长(此处等于第二预设时长LPD)得到脉冲开始发放时间T(也即在第一感测时间GS之后,经历了差值GLSD和第三预设时长之和的时间长度,到脉冲开始发放时间T,发放CCM脉冲刺激)。
为了防止对体内近场心肌心电图的R波的误感知,还可以以第二感测时间LS为参考零点,确定在远场心电图的R波对应的感测时间窗的起点,感测时间窗的第一预设长度可以等于或短于可发放脉冲时间窗LSPT的第二预设长度,并进一步判断第二感测时间LS是否落入感测时间窗。由于此时第二感测时间LS必然落入感测时间窗,因此可以确认感测到的是与远场心电 图的R波对应的体内近场心肌心电图的R波。
实施例4
针对上述实施例1、2、3,还可以进一步将脉冲刺激发放方法分为两个阶段:预设期(set-up period)和运行期(operational period)。
对于单一心肌点的电极的脉冲刺激系统,在预设期需要对如下参数进行测量。
请参见图11或图12,第二感测时间LS是由第一感测时间GS确定的时间参考零点后第一个感测到的局部心电图的第二感测事件。
GLSD为第二感测时间LS与第一感测时间GS的差值;当第二感测时间LS晚于第一感测时间GS时,差值GLSD为正数,当第二感测时间LS早于第一感测时间GS时,差值GLSD为负数。第二预设时长LPD为第二感测时间LS与脉冲开始发放时间T之间的时间长度;如前述实施方式,可以通过差值GLSD与第二预设时长LPD计算的得到第一感测时间GS与脉冲开始发放时间T之间的时间长度GPD。
即,GPD=GLSD+LPD。
在运行期内,可以将预设期内计算得到的GPD作为第一预设时长,根据第一感测时间GS和第一预设时长GPD,发放CCM脉冲刺激至对应的心肌位置;此时可以在发生局部心肌心电图R波感知后,根据第一预设时长GPD直接确定电刺激输出时间,而不需要每次都通过第一感测时间GS和第二感测时间LS来计算脉冲刺激远场心肌心电图发放时间,从而在达到刺激效果的同时,有效地缩短了数据处理耗时,提高了心脏脉冲刺激触发的控制效率。
另外,还可以根据实际需求定期或不定期的更新脉冲发放时间GPD(此时可以继续或停止心肌电刺激),然后根据更新后的触发时间继续进行心肌电刺激,以实现更灵活的电刺激效果,满足更多的脉冲电刺激场景需求。
需要说明的是,较佳地,上述参数都是在几个心动周期下平均计算得到 (比如6个心动周期,可编程,还可以为其他数量次数下的心动周期);另外,预设期应分别在窦性心电活动,心室异博电活动,和心室起搏等期间分别进行。
在另一种实施方式中,如图13所示,可发放脉冲时间窗GPT/LSPT的开始时间可以与第一感测时间GS或第二感测时间LS不同,而是早于第一感测时间GS或第二感测时间LS一第四预设时长A的时刻,通过设置第四预设时长A,可以补偿因感测滞后而产生的误差,进一步提高R波判断的准确性和脉冲刺激发放的安全性。
具体地,如可发放脉冲时间窗GPT/LSPT的开始时间为GPT-s/LSPT-s,则
GPT-s=GS-A,GLSD>0(即LS晚于GS);
LSPT-s=GS+GLSD-A,GLSD≤0(即LS早于GS或同时);
其中,0ms<A≤50ms,例如A的默认值为20ms,且A为可编程设置与调整的。
在其他实施例中,第二感测时间LS还可以等于第一感测时间GS,第一感测时间与第二感测时间的差值等于0ms,即A=0ms。此时,即可以第一感测时间GS作为参考零点,也可以第二感测时间LS作为参考零点,第一预设时间、第二预设时间及第三预设时间皆相等。
实施例5
本实施例与上述实施例不同之处在于,医疗器械包括多根心室电极导线,分别设置于多个不同心肌位置,多个第二电极与这些心肌位置的组织相接触,根据实施例1、2和3中描述的控制装置,及时且有效地向每个心肌位置发放CCM脉冲刺激,保证对患者治疗的安全性、有效性和可靠性。
其中,感测时间窗根据远场心电图中R波的第一感测时间和最接近的第二感测事件对应的第二感测时间确定。
例如,如图14,以预先在患者的3个不同设定心肌位置(A、B、C)处 分别设置一个脉冲刺激电极为例进行说明,设定心肌位置A、B、C处分别对应刺激电极对E1、E2、E3,对应的第二感测事件的第二感测时间分别为LS1、LS2、LS3;其中,LS1、LS2、LS3对应的发生时间依次推移(即第一个第二感测事件最早发生,因此最接近第一感测时间,其他第二感测事件依次在后续时间发生)。
具体地,在基于设定心肌位置A处的电极对E1获取该心肌位置对应的体内近场心肌心电图中的第二感测事件时,获取该第二感测事件对应的第二感测时间LS1,并判断该第二感测时间LS1落入远场心电图中R波对应的感测时间窗,在其未落入时,则确定该第二感测事件不是与远场心电图中R波相对应的R波信号,而是T波等其他的干扰信号,并控制不对设定心肌位置A处的刺激电极对E1发放CCM脉冲刺激;在其落入时,则确定该第二感测事件与远场心电图中R波相对应的局部心肌的R波信号,然后在该第二感测事件对应的第二感测时间及时且准确计算得到设定心肌位置A对应的刺激电极对应的脉冲发放时间;进而继续判断脉冲发放时间是否落入远场心电图中R波对应的可发放脉冲时间窗GPT,若其落入时,则控制在脉冲发放时间将脉冲刺激发放至设定心肌位置A处的刺激电极,否则确定不向设定心肌位置A处的刺激电极发放CCM脉冲刺激,以完成对设定心肌位置A处的一次脉冲刺激控制。
依次类推,对于设定心肌位置B、C的脉冲刺激控制过程与设定心肌位置A的脉冲刺激控制过程类似,因此在此就不再赘述。
在确定每个第二感测事件为R波感知后,在根据该第二感测事件对应的第二感测时间计算得到的脉冲发放时间落入远场心电图中R波对应的可发放脉冲时间窗GPT时,还可以使用第一个第二感测事件对应的第二感测时间LS1作为脉冲发放时间窗LSPT的触发点(参考零点),确保后续LSn(n>1,例如LS2和LS3)的脉冲发放时间在LSPT窗口内即可。
需要说明的是,不同的设定心肌位置的脉冲刺激控制过程可以相互独立, 彼此不会造成相互干扰或影响;例如,在对设定心肌位置A处正在进行脉冲刺激控制过程中,或者已经完成设定心肌位置A处的脉冲刺激控制,只要设定心肌位置B对应的体内近场心肌心电图中出现第二感测事件LS2,则就可以单独执行上述的脉冲刺激控制过程,最终完成对所有设定心肌位置处的脉冲刺激控制,控制操作井然有序,非常有效地保障了对患者的CCM脉冲刺激的安全性和可靠性。还可以针对不同的设定心肌位置,设定不同的脉冲刺激发放顺序,例如在三个连续的时间段内,各心室电极导线分别对心肌位置A、B、C在各自的时间段内进行刺激,又例如,在一段时间内,仅对设定心肌位置A处进行脉冲刺激,另一段时间内,仅对设定心肌位置B和C处进行脉冲刺激,以同时兼顾安全性和有效性的需求。
在一可实施的方案中,当多个体内近场心肌心电图的第二感测事件对应的感测时间发生非常紧凑(即时间跨度较小)时,本实施例的脉冲刺激控制方法还包括如下步骤:
获取每个体内心肌心电图对应的体内近场心肌心电图中的第二感测事件对应的第二感测时间LS,以获取发生时间最早的第二感测事件为第一个第二感测事件;获取第一个第二感测事件对应的第二感测时间LS1,并判断该第二感测时间LS1是否落入远场心电图中R波对应的感测时间窗,并在其落入时确定该第二感测事件为与远场心电图中R波相对应的本地心肌R波信号;
对于剩余的心肌位置对应的局部心肌心电图中的第二感测事件,判断这些第二感测事件对应的第二感测时间是否落入上述感测时间窗内,若是,则在确定第一个第二感测事件为与远场心电图中R波相对应的R波信号时,则直接确定剩余的心肌位置对应的体内近场心肌心电图中的第二感测事件也是与远场心电图中R波相对应的R波信号;此时,无需对剩余的心肌位置对应的局部心肌心电图中的第二感测事件进行逐一判断分析,在达到能够准确判断的同时,大大地简化了数据分析处理过程,有效地缩短了数据处理 耗时,也降低了对设备的算力要求,进一步地保证了对患者的脉冲刺激控制的及时性、准确性和有效性。
需要说明的是,具体采用何种方式对多个局部心肌心电图的第二感测事件是否为R波进行判断,可以根据实际场景需求选择单一的执行方案或者将多种执行方案进行组合,以满足更高要求的心电心室传导场景,大大地提高了脉冲刺激控制的实用性,非常大地程度上提高了对患者治疗的安全性和效果。
因此,有多个所述设定心肌位置时,本实施例的脉冲刺激控制方法还包括:
(1)预设不同的设定心肌位置处R波对应的设定感测参数;
其中,设定感测参数包括设定感测时间和/或设定感测发生顺序。
(2)当对应感测时间窗第一个出现的体内近场心肌心电图中第二感测事件为R波时,则设置其他剩余的局部心肌心电图中第二感测事件均为R波;或,
(3)当对应感测时间窗最后一个出现的体内近场心肌心电图中第二感测事件为R波时,则设置其他剩余的局部心肌心电图中第二感测事件均为R波。
需要说明的是:对于单电极和多电极的脉冲刺激系统中,相对于各自心肌位置的CCM脉冲刺激的发放时间是在局部心肌感知时间后,比如40ms后发放。
实施例6
本实施例与实施例1相似,对于相同之处不再赘述,不同之处在于,获取远场心电图中R波的第一感测时间以及与远场心电图中R波对应的体内近场心肌心电图中的R波的第二感测时间的方法不同。
在本实施例中,将体内近场心肌心电图中第二感测事件的第二感测时间作为第二时间点,并将所述第二时间点之前的第二设定时长对应的时间点作 为时间参考零点,获取位于时间参考零点之后的远场心电图中的第一感测事件,可选地,所述第二设定时长大于等于10ms且小于等于120ms。其中,体内近场心肌心电图中所述第二感测事件为R波,进而通过上述方式找到第一感测事件之后,即可判断所述远场心电图中的第一感测事件是否是与体内近场心肌心电图中R波对应的R波。可以理解,无论是先获得第一感测事件还是先获得第二感测事件,都可以以其中一者作为第一时间点,从而获得与其对应的另一者,并通过实施例1-5中设立感测时间窗的方法来判断体内近场心肌心电图中第二感测事件是否与远场心电图中的第一感测事件相对应,且只要其中一个为R波,就可以通过这种对应性,判断另一者是否也是R波,从而确保不在发生误感知的情况下发放CCM脉冲刺激。
根据上述实施例1-6可知,本发明还提供了一种用于发放脉冲刺激的医疗器械,所述医疗器械包括至少一根心室电极导线和控制装置,所述心室电极导线被配置为设于心室的心肌位置处;如图16所示,所述控制装置被配置为执行一种脉冲刺激控制方法,包括:
步骤S9:获取远场心电图和所述心肌位置对应的体内近场心肌心电图;
步骤S10:判断所述远场心电图中的第一感测事件和所述体内近场心肌心电图中的第二感测事件是否为对应的R波,若否,则执行步骤S11,若是,则执行步骤S12;
步骤S11:不对所述心肌位置发放CCM脉冲刺激;
步骤S12:通过所述心室电极导线对所述心肌位置发放CCM脉冲刺激。
其中,还可以在步骤S12之前通过第一感测事件的第一感测时间和第二感测事件的第二感测时间获得脉冲开始发放时间和/或脉冲停止发放时间,以及可发放脉冲时间窗是否落入可发放脉冲时间窗,并判断脉冲开始发放时间和/或脉冲停止发放时间是否落入可发放脉冲时间窗。具体已在实施例1中详述,此处不再赘述。
本领域的技术人员可以理解,在现有技术中,可能由于信号干扰而产生 误感知事件,导致感测到的并不是R波,而是其他事件,例如T波,这样会显著增加诱发恶性室性心律失常VT或VF的风险,从而增加患者的生命危险性,且给患者造成额外的疼痛刺激。通过本发明提供的脉冲刺激控制方法,可以有效地识别这种误感知,从而防止不当地发放CCM脉冲刺激。
可选地,步骤S10还包括:
获取所述远场心电图中第一感测事件的第一感测时间GS以及与所述体内近场心肌心电图中的第二感测事件的第二感测时间LS;其中所述第一感测事件及所述第二感测事件中至少一个为R波;以及
当所述远场心电图中所述第一感测事件的第一感测时间GS以及与所述体内近场心肌心电图中的所述第二感测事件的第二感测时间LS的差值的绝对值在预设范围内时,确认所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件皆为R波,当所述远场心电图中所述第一感测事件是源于心房传导的心室激活而产生时,所述预设范围为大于等于0ms且小于等于120ms;当所述远场心电图中所述R波是源于心室的心室激活或源于心室起搏脉冲产生时,所述预设范围为大于等于0ms且小于等于250ms,较佳地,所述预设范围为100ms。
可选地,如图17所示,步骤S10还包括:
步骤S1003:基于所述第一感测时间,确定体内近场心肌心电图中的第二感测事件,并获取所述第二感测事件对应的第二感测时间,其中所述第一感测时间为R波;或者
步骤S1004:基于所述第二感测时间,确定远场心电图中的第一感测事件,并获取所述第一感测事件对应的第一感测时间,其中所述第二感测时间为R波。
可以理解,当基于所述第一感测时间获取第二感测时间时,如在出现新的第一感测时间时,仍然未能获取第二感测时间;或者,当基于所述第二感 测时间获取第一感测时间时,如在出现新的第二感测时间时,仍然未能获取第一感测时间,则控制装置备配置为重新启动新一轮的判断。
可选地,步骤S1003还包括:将所述第一感测时间作为第一时间点,并将所述第一时间点之前的第一设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述体内近场心肌心电图中的第二感测事件,所述第一设定时长大于等于10ms且小于等于120ms;或者,
可选地,步骤S1004还包括:将所述第二感测时间作为第二时间点,并将所述第二时间点之前的第二设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述远场心电图中的第一感测事件,所述第二设定时长大于等于10ms且小于等于120ms。
可选地,如图18所示,步骤S10还包括:
步骤S1005:获取所述远场心肌心电图中所述第一感测事件对应的感测时间窗;
步骤S1006:判断所述第二感测时间是否落入所述感测时间窗,若是,则执行步骤S1007,若否,则执行步骤S1008;
步骤S1007:确定所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件均为R波。
步骤S1008:确定所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件不对应,且所述第一感测事件和所述第二感测事件中的其中一个不是R波。
步骤S1005和步骤S1006已在实施例1至7中详述,此处不再赘述。
本发明各实施例中,脉冲发放时间窗口是针对CCM脉冲刺激发放时间的新的要求,特别是对多个刺激部位有CCM脉冲刺激发放的情况,各个刺激部位的发放时间都需要落在脉冲发放时间窗口里,即在同一心跳(心室激动)的整体心室的可发放期里(不光是电极部位的局部心室肌的可发放期)。
感测时间窗是作为一个“全心室“或”远场心室“R波感知时间窗,是是用于判断所获取的第二感测事件是否是远场心电图中的R波(即对应于心室去极化的“全心室”或“体内远场”的R波感知)对应的局部心室去极化所对应的的R波感知。脉冲可发放时间窗(作为刺激发放的安全区,对应于心室肌整体(“全心室“或”远场心室“)的可发放期),是用于判断对应于第二感知时间LS的脉冲刺激发放时间是否安全。
脉冲发放时间窗口和感测时间窗为独立的,可分别程控的这两个参数,以满足实际的参数配置需求。当然,为了减少程控复杂度,医生可以对于二者选择同样的数值(合适时)。或者,系统可以直接预先赋予这两个参数同样的数值,但需保持这两个参数分别程控的功能。这两个步骤可以共同使用,也可各自单独使用。
本实施例中,只在心室可发放期内发送CCM脉冲刺激:通过确认脉冲刺激发放时间落在体表心电图或体内远场心肌心电图整体心室心电活动(R波)对应的脉冲发放窗口内,以保证对患者心脏的CCM脉冲刺激的及时性、安全性和有效性。其中,为了脉冲刺激发送时间的安全性,以体表心电图或远场心肌心电图来获得心室心电活动的可发放期信息也代表了对于脉冲刺激技术的积极改进,进一步地保障了对患者的CCM脉冲刺激的安全性、有效性和治疗效果。
另外,只针对R波后发送CCM脉冲刺激,能够及时对体内近场心肌心电图中的第二感测事件进行解析处理,自动且准确排查出误感知事件,将之确定为不是与远场心电图中R波相对应的R波信号,而属于T波等干扰信号,此时控制不对相应心肌位置发放CCM脉冲刺激,保证了不在错误的情况下发放CCM脉冲刺激,有效地避免诱发VT或VF的风险,继而避免对患者造成不必要的疼痛感甚至造成安全隐患,以确保患者的安全性,提高了脉冲刺激控制的可靠性;同时保证在确定为R波时及时发放CCM脉冲刺激,即只有在正确的情况下才发放CCM脉冲刺激。
在具体实施中,本实施例提供的医疗器械包括至少一个处理器以及与所述至少一个处理器通信连接的存储器。其中,所述存储器存储有可被所述至少一个处理器运行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本实施例提供的控制方法。其中,所述处理器对应上述控制装置。
需要说明的是,上述控制方法也可以称为脉冲刺激控制方法。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (27)

  1. 一种用于发放脉冲刺激的医疗器械,其特征在于,包括至少一根心室电极导线和控制装置,所述心室电极导线被配置为设于心肌位置处;所述控制装置被配置为执行一种脉冲刺激控制方法,所述脉冲刺激控制方法包括以下步骤:
    获取远场心电图和所述心肌位置对应的体内近场心肌心电图;
    根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否通过所述心室电极导线对所述心肌位置发放CCM脉冲刺激。
  2. 如权利要求1所述的医疗器械,其特征在于,所述医疗器械还包括第一电极对及第二电极对,所述第一电极对用于感知,所述第二电极对用于感知和刺激,所述第二电极对包括头端电极,所述头端电极被配置于所述心室电极导线上并设于心室的心肌位置处;所述控制装置被配置为基于所述第一电极对获取所述远场心电图,以及基于所述第二电极对获取所述体内近场心肌心电图。
  3. 如权利要求2所述的医疗器械,其特征在于,所述第二电极对均配置于所述心室电极导线上,所述医疗器械用于通过所述心室电极导线提供心脏起搏功能和/或除颤疗法功能;或者,
    所述第一电极对均被配置于所述心室电极导线上或被配置为额外设置于血管内、心腔内、心外膜、心脏以外的胸腔内或皮下的电极,所述远场心电图为体内远场心肌心电图;或者,所述第一电极对被配置为用于贴在皮肤上的体表电极,所述远场心电图为体表心电图。
  4. 如权利要求1所述的医疗器械,其特征在于,所述根据所述远场心电图中的R波和所述体内近场心肌心电图中的R波确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中 R波对应的所述体内近场心肌心电图中的R波的第二感测时间,以及所述体内近场心肌心电图中R波对应的可发放脉冲时间窗,其中,所述可发放脉冲时间窗为CCM刺激安全窗;
    根据所述第一感测时间或所述第二感测时间确定脉冲开始发放时间;
    根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激。
  5. 如权利要求4所述的医疗器械,其特征在于,所述根据所述第一感测时间或所述第二感测时间确定脉冲开始发放时间的步骤具体包括:
    以所述第二感测时间为参考零点,根据第二感测时间和第二预设时长得到所述脉冲开始发放时间,或,计算得到所述第二感测时间和所述第一感测时间之间的时间差值;以所述第一感测时间为参考零点,根据所述第一感测时间、所述时间差值和第三预设时长计算得到脉冲发放时间,其中所述第三预设时长等于所述第二预设时长。
  6. 如权利要求4所述的医疗器械,其特征在于,所述脉冲刺激控制方法还包括设置预设期和运行期,在所述预设期内,根据所述第一感测时间与所述第二感测时间的差值和第三预设时长计算得到第一预设时长,在所述运行期内,以所述第一感测时间为参考零点,根据所述第一感测时间和所述第一预设时长得到所述脉冲开始发放时间。
  7. 如权利要求5所述的医疗器械,其特征在于,所述第二预设时长大于等于15ms且小于等于80ms。
  8. 如权利要求4所述的医疗器械,其特征在于,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤具体包括:
    获取所述远场心电图中的第一感测事件以及所述远场心电图中的第二感测事件,其中,所述第一感测事件及所述第二感测事件中至少一个为R波;
    当所述远场心电图中所述第一感测事件的第一感测时间以及与所述体 内近场心肌心电图中的所述第二感测事件的第二感测时间的差值的绝对值在预设范围内时,确认所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件均为R波;
    当所述远场心电图中所述第一感测事件是源于心房传导的心室激活而产生时,所述预设范围为大于等于0ms且小于等于120ms;当所述远场心电图中所述R波是源于心室的心室激活或源于心室起搏脉冲产生时,所述预设范围为大于等于0ms且小于等于250ms。
  9. 如权利要求8所述的医疗器械,其特征在于,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤具体还包括:
    将所述第一感测时间作为第一时间点,并将所述第一时间点之前的第一设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述体内近场心肌心电图中的第二感测事件,所述第一设定时长大于等于10ms且小于等于120ms;
    或者,
    将所述第二感测时间作为第二时间点,并将所述第二时间点之前的第二设定时长对应的时间点作为时间参考零点,获取位于所述时间参考零点之后的所述远场心电图中的第一感测事件,所述第二设定时长大于等于10ms且小于等于120ms。
  10. 如权利要求9所述的医疗器械,其特征在于,所述获取所述远场心电图中R波的第一感测时间以及与所述远场心电图中R波对应的所述体内近场心肌心电图中的R波的第二感测时间的步骤还包括:
    获取所述远场心电图中所述第一感测事件对应的感测时间窗;
    判断所述第二感测时间或所述第一感测时间是否落入所述感测时间窗;
    若是,则确定所述远场心电图中所述第一感测事件与所述体内近场心肌 心电图中的第二感测事件相对应,且所述第一感测事件和所述第二感测事件均为R波;若否,则所述远场心电图中所述第一感测事件与所述体内近场心肌心电图中的第二感测事件不对应,且所述第一感测事件和所述第二感测事件中的其中一个不是R波,所述控制装置被配置为不对所述心肌位置发放CCM脉冲刺激。
  11. 如权利要求10所述的医疗器械,其特征在于,
    当所述第一感测时间作为所述第一时间点时,所述第一感测事件为R波;所述判断所述第二感测时间或第一感测时间是否落入所述感测时间窗的步骤包括:判断所述第二感测时间是否落入所述感测时间窗;
    当所述第二感测时间作为所述第二时间点时,所述第二感测事件为R波;所述判断所述第二感测时间或第一感测时间是否落入所述感测时间窗的步骤包括:判断所述第一感测时间是否落入所述感测时间窗。
  12. 如权利要求10所述的医疗器械,其特征在于,
    当所述远场心电图中所述第一感测事件是源于非心室起搏而发生的心室激活时,如所述第一感测时间早于所述第二感测时间,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于所述第一感测时间确定;如所述第二感测时间早于所述第一感测时间,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于所述第二感测时间确定;
    当所述远场心电图中所述第一感测事件是源于心室起搏脉冲产生时,所述远场心电图中所述第一感测事件对应的感测时间窗的起点基于心室受到的起搏脉冲的发放时间确定,所述起搏脉冲的发放时间被视为所述第一感测时间。
  13. 如权利要求10所述的医疗器械,其特征在于,所述感测时间窗的开始时间以第四预设时长早于或等于所述第一感测时间或所述第二感测时间,且所述可发放脉冲时间窗具有第二预设长度,所述感测时间窗具有第一预设长度,且所述第二预设长度大于所述第一预设长度,所述第四预设时长大于 等于0ms且小于等于50ms。
  14. 如权利要求10所述的医疗器械,其特征在于,所述感测时间窗具有第一预设长度,当所述远场心电图中所述R波是源于心房传导的心室激活而产生时,所述第一预设长度的范围为大于等于60m且小于120ms;当所述远场心电图中所述R波是源于心室的心室激活或源于心室起搏脉冲产生时,所述第一预设长度为大于等于160m且小于等于250ms;或者,所述第一预设长度通过程控确定。
  15. 如权利要求10所述的医疗器械,其特征在于,所述心室电极导线的数量为多个且被设置于多个不同的心室心肌位置处,所述体内近场心肌心电图和所述第二感测事件的数量为多个,所述控制装置进一步被配置为执行以下步骤:
    预设不同的所述心肌位置处R波对应的设定感测参数,所述设定感测参数包括设定感测时间和/或设定感测发生顺序;
    当第一个落入所述感测时间窗的所述第二感测事件为R波时,则设置其他剩余的所述第二感测事件均为R波;或者,
    当最后一个落入所述感测时间窗的第二感测事件为R波时,则设置其他剩余的所述第二感测事件均为R波。
  16. 如权利要求4所述的医疗器械,其特征在于,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    若所述脉冲开始发放时间落入所述可发放脉冲时间窗,则对所述心肌位置发放CCM脉冲刺激,若否,则不对所述心肌位置发放CCM脉冲刺激。
  17. 如权利要求16所述的医疗器械,其特征在于,所述心室电极导线的数量为多个且被设置于多个不同的心肌位置处,所述体内近场心肌心电图和所述第二感测事件的数量为多个,所述控制装置进一步被配置为执行以下步骤:
    设定不同的所述心肌位置处R波对应的脉冲刺激发放顺序,按所述脉冲刺激发放顺序对不同的所述心肌位置发放CCM脉冲刺激。
  18. 如权利要求16所述的医疗器械,其特征在于,
    当所述远场心电图中所述R波是源于非心室起搏而发生的心室激活时,所述可发放脉冲时间窗的起点基于所述远场心电图中所述R波的第一感测时间确定,或者,基于根据所述第一感测时间确定的所述体内近场心肌心电图中对应的R波的第二感测时间确定;
    当所述远场心电图中所述R波是源于心室起搏脉冲产生时,所述可发放脉冲时间窗的起点基于心室受到的起搏脉冲的发放时间确定,所述起搏脉冲的发放时间被视为所述第一感测时间。
  19. 如权利要求18所述的医疗器械,其特征在于,所述可发放脉冲时间窗具有第二预设长度,所述第二预设长度的范围为大于等于150ms且小于等于300ms,或所述第二预设长度通过程控确定;所述可发放脉冲时间窗的起点以第四预设时长早于所述第一感测时间或所述第二感测时间,所述第四预设时长大于等于0ms且小于等于50ms。
  20. 如权利要求18所述的医疗器械,其特征在于,所述控制装置被进一步配置为执行以下步骤:
    当所述第二感测时间早于所述第一感测时间时,根据所述第二感测时间确定所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗的起点,并根据所述第一感测时间或所述第二感测时间确定所述脉冲开始发放时间;
    当所述第二感测时间晚于所述第一感测时间时,根据所述第一感测时间确定所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗的起点,并根据所述第一感测时间或所述第二感测时间确定所述脉冲开始发放时间。
  21. 如权利要求4所述的医疗器械,其特征在于,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    根据所述脉冲开始发放时间确定脉冲停止发放时间;
    若所述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,则对所述心肌位置发放CCM脉冲刺激,若否,则不对所述心肌位置发放CCM脉冲刺激。
  22. 如权利要求4所述的医疗器械,其特征在于,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间;
    若所述脉冲开始发放时间落入所述可发放脉冲时间窗,且所述脉冲停止发放时间未落入所述可发放脉冲时间窗,则重新确定所述脉冲参数,以使所述脉冲开始发放时间和所述脉冲停止发放时间均落入所述可发放脉冲时间窗,根据重新确定的脉冲参数对所述心肌位置发放CCM脉冲刺激;
    若所述脉冲开始发放时间未落入所述可发放脉冲时间窗,则不对所述心肌位置发放CCM脉冲刺激。
  23. 如权利要求4所述的医疗器械,其特征在于,所述根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    若所述脉冲开始发放时间落入所述可发放脉冲时间窗,则根据所述脉冲开始发放时间和预设的脉冲参数确定脉冲停止发放时间;
    判断所述脉冲停止发放时间是否落入所述可发放脉冲时间窗;
    若是,则发放CCM脉冲刺激;
    若否,则不发放CCM脉冲刺激,或者,重新确定所述脉冲参数,以使所述脉冲停止发放时间落入所述可发放脉冲时间窗;并根据重新确定的脉冲参数发放CCM脉冲刺激。
  24. 如权利要求4所述的医疗器械,其特征在于,所述控制装置被配置为执行以下步骤:
    若确定已向所述心肌位置发放起搏脉冲,则判断是否夺获心室;
    若是,则根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置发放CCM脉冲刺激,其中,所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗基于心室受到的起搏脉冲的发放时间确定;
    若否,根据所述脉冲开始发放时间和所述可发放脉冲时间窗确定是否对所述心肌位置对发放CCM脉冲刺激,其中,所述体内近场心肌心电图中所述R波对应的可发放脉冲时间窗基于所述远场心电图中所述R波的第一感测时间确定,或者,基于所述体内近场心肌心电图中的R波的第二感测时间确定。
  25. 如权利要求24所述的医疗器械,其特征在于,所述判断是否夺获心室的步骤具体包括:基于所述远场心电图判断是否夺获心室。
  26. 如权利要求1所述的医疗器械,其特征在于,所述对所述心肌位置发放CCM脉冲刺激的步骤具体包括:
    若检测到当前的心率参数在预设范围内,则对所述心肌位置发放CCM脉冲刺激。
  27. 如权利要求1所述的医疗器械,其特征在于,
    其中,所述CCM脉冲刺激在如下至少一种心室电活动时发放:
    窦性心跳、源于心房下传引起的心室心跳、源于心室的心室心跳、源于心室起搏的心室心跳。
PCT/CN2023/110350 2022-08-08 2023-07-31 用于发放脉冲刺激的医疗器械 WO2024032416A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210944885.5 2022-08-08
CN202210944820.0 2022-08-08
CN202210944820.0A CN116943033A (zh) 2022-08-08 2022-08-08 植入性医疗器械及脉冲刺激的发放装置
CN202210944885.5A CN116943034A (zh) 2022-08-08 2022-08-08 用于发放脉冲刺激的植入性医疗器械

Publications (1)

Publication Number Publication Date
WO2024032416A1 true WO2024032416A1 (zh) 2024-02-15

Family

ID=89850824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110350 WO2024032416A1 (zh) 2022-08-08 2023-07-31 用于发放脉冲刺激的医疗器械

Country Status (1)

Country Link
WO (1) WO2024032416A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073347A1 (en) * 2005-09-28 2007-03-29 Giorgio Corbucci Telemetry of combined endocavitary atrial and ventricular signals
CN102858405A (zh) * 2010-02-12 2013-01-02 布里格姆女子医院有限公司 心脏再同步治疗控制参数自动调节的系统和方法
CN109247012A (zh) * 2017-05-10 2019-01-18 美敦力公司 在不使用右心室(rv)引线的情况下根据使用ddd/vdd lv起搏进行的自适应心脏再同步治疗的左心室(lv)感测时间来估算rv计时
CN110382042A (zh) * 2017-03-03 2019-10-25 美敦力公司 用于确定起搏电极附近的局部组织延迟的标准
CN112004575A (zh) * 2018-04-20 2020-11-27 美敦力公司 用于在心室起搏器中增强心房同步起搏的频率平滑
CN217472580U (zh) * 2021-08-05 2022-09-23 合源医疗器械(上海)有限公司 脉冲刺激装置及医疗设备
CN115957445A (zh) * 2021-08-05 2023-04-14 合源医疗器械(上海)有限公司 脉冲刺激装置、方法及医疗设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073347A1 (en) * 2005-09-28 2007-03-29 Giorgio Corbucci Telemetry of combined endocavitary atrial and ventricular signals
CN102858405A (zh) * 2010-02-12 2013-01-02 布里格姆女子医院有限公司 心脏再同步治疗控制参数自动调节的系统和方法
CN110382042A (zh) * 2017-03-03 2019-10-25 美敦力公司 用于确定起搏电极附近的局部组织延迟的标准
CN109247012A (zh) * 2017-05-10 2019-01-18 美敦力公司 在不使用右心室(rv)引线的情况下根据使用ddd/vdd lv起搏进行的自适应心脏再同步治疗的左心室(lv)感测时间来估算rv计时
CN112004575A (zh) * 2018-04-20 2020-11-27 美敦力公司 用于在心室起搏器中增强心房同步起搏的频率平滑
CN217472580U (zh) * 2021-08-05 2022-09-23 合源医疗器械(上海)有限公司 脉冲刺激装置及医疗设备
CN115957445A (zh) * 2021-08-05 2023-04-14 合源医疗器械(上海)有限公司 脉冲刺激装置、方法及医疗设备

Similar Documents

Publication Publication Date Title
US11389100B2 (en) Multi-chamber intracardiac pacing system
US9950176B2 (en) Modifying atrioventricular delay based on activation times
US8027719B2 (en) Method and apparatus for delivering defibrillation shock therapy while reducing electrical dispersion due to ventricular conduction disorder
EP2782638B1 (en) Apparatus for adaptive cardiac resynchronization therapy employing a multipolar left ventricular lead
EP2919853B1 (en) Capture threshold measurement for selection of pacing vector
US7697977B2 (en) Method and apparatus for determining relative depolarization at multiple cardiac sensing sites
EP3773887B1 (en) Feature based sensing for leadless pacing therapy
JP2007507321A (ja) 期外収縮刺激ペーシングエンジンのための安全且つ有効な治療送出
US20240188885A1 (en) Multi-chamber intracardiac pacing system
WO2024032416A1 (zh) 用于发放脉冲刺激的医疗器械
WO2023227101A1 (zh) 植入式心衰治疗装置
WO2023143602A1 (zh) 脉冲刺激控制方法、装置、医疗系统、电子设备及介质
JP2021520888A (ja) 抗頻拍ペーシングを送達するための方法および装置
WO2024083085A1 (zh) 心脏治疗装置
CN116943034A (zh) 用于发放脉冲刺激的植入性医疗器械
US9144685B2 (en) Using focal myocardial stimulation to distinguish supraventricular tachycardia from ventricular tachycardia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851637

Country of ref document: EP

Kind code of ref document: A1