CN102844891A - 制造基于硅的薄膜太阳能电池的方法 - Google Patents

制造基于硅的薄膜太阳能电池的方法 Download PDF

Info

Publication number
CN102844891A
CN102844891A CN2010800415724A CN201080041572A CN102844891A CN 102844891 A CN102844891 A CN 102844891A CN 2010800415724 A CN2010800415724 A CN 2010800415724A CN 201080041572 A CN201080041572 A CN 201080041572A CN 102844891 A CN102844891 A CN 102844891A
Authority
CN
China
Prior art keywords
layer
vacuum
semiconductor layer
atmosphere
technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800415724A
Other languages
English (en)
Inventor
J·拜拉特
E·瓦拉特-绍瓦因
D·博雷洛
S·贝纳格利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEL Solar AG
TEL Solar Services AG
Original Assignee
Oerlikon Solar IP AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Solar IP AG filed Critical Oerlikon Solar IP AG
Publication of CN102844891A publication Critical patent/CN102844891A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

在一种制造基于硅的薄膜太阳能电池的方法中,提供基板;在所述基板上沉积透明导电氧化物的第一电极层。在第一时间间隔期间处理所述透明导电氧化物层的表面。之后在第二时间间隔期间在所处理的表面上沉积掺杂层。在包含气态掺杂物的气氛中执行对透明导电氧化物表面的处理,该气态掺杂物与在用于沉积掺杂层的所述气氛中包含的量不同。除此不同之外,用于执行对透明导电氧化物表面的处理的工艺与用于沉积掺杂层的工艺相同。然而,第一时间间隔比用于沉积掺杂层的时间间隔短得多。

Description

制造基于硅的薄膜太阳能电池的方法
技术领域
本发明涉及改善用于基于硅的薄膜太阳能电池或模块的制造工艺。更具体地,该发明涉及用于在薄膜硅太阳能电池及用于这样的薄膜硅太阳能电池的层结构中的所谓窗层的制造工艺。本发明更特别地涉及对在太阳能电池结构中的电极层的表面处理,该电极层包含透明导电氧化物(TCO)。
背景技术
光伏器件、光电转换器件或太阳能电池是转换光,特别是将太阳光转换为直流(DC)电能的器件。对低成本大量生产而言,薄膜太阳能电池令人感兴趣,这是因其允许使用玻璃、玻璃陶瓷或其它刚性或柔性基板作为基底材料(基板),以代替晶硅或多晶硅。该太阳能电池结构,即负责或能起光伏效应的该层序列沉积在薄层中。这沉积可发生在大气或真空条件下。在本领域沉积技术诸如PVD、CVD、PECVD、APCVD...为人熟知,这些全都用在半导体技术中。
太阳能电池的转换效率是对太阳能电池性能的常见量度,且其由输出功率密度(=开路电压Voc,填充因子FF及电流密度Jsc的积)与1000W/m2的输入功率密度的比来确定。
薄膜太阳能电池一般包含第一电极、一个或多个半导体薄膜p-i-n或n-i-p结,及第二电极,它们顺序堆叠在基板上。每个p-i-n结或薄膜光电转换单元包含夹在正掺杂或p型层及负掺杂或n型层之间的本征或i-型层。该本征半导体层占该薄膜p-i-n结的绝大部分厚度。光电转换主要发生在该i型层中;因此其亦称为有源或吸收体层。
根据该i型层太阳能电池的结晶性,或光电(转换)器件被表征为非晶(a-Si)或微晶(μc-Si)太阳能电池,而不管相邻p及n层的结晶性种类为何。微晶层被认为是在非晶基体中包含至少15%微晶结晶度的拉曼结晶性的层。
p-i-n结中的掺杂层也经常称为窗层。由于该掺杂p/n层所吸收的光会因有源层而损耗,因此,高度透明的窗层期望获得高电流密度(Jsc)。而且,窗层有助于在构成太阳能电池的半导体结中建立电场,该电场协助收集光产生的电荷载流子并获得高Voc及FF值。除此的外,前透明导电氧化物(TCO)与窗层之间的接触应为欧姆的,其具有低电阻率,以便得到好FF值。
现有技术的图1示出基本、简单光伏电池40,该光伏电池40包含透明基板41,其例如为玻璃,在其上沉积有一层透明导电氧化物(TCO)42。该层亦称为前接触,并且作为用于光伏组件的第一电极。下一层43作为有源光伏层,并包含形成p-i-n结的三“子层”。该层43包含氢化微晶(亦称纳米晶体)硅或非晶硅或其组合。子层44(邻近TCO前接触42)是正掺杂的,该邻近子层45是本征的,及该最后子层46是负掺杂的。在替代实施例中,如所述的该层序列p-i-n可以反转为n-i-p,那么,层44被识别为n层,层45再度为本征的,层46为p层。最后,该电池包含可由氧化锌、氧化锡或铟锡氧化物(ITO)制成的背后接触层47(亦称背接触),以及反射层48。替代地,可实现金属背接触,其能结合背反射体48及背接触47的物理特性。为说明,箭头指出照射光。
通常了解,当例如太阳辐射的光照射在光伏器件上时,在i层中产生电子空穴对。来自所产生的对的空穴被导向p区域,而该电子被导向n区域。一般该接触直接或间接地接触p或n区域。只要光继续产生电子空穴对,电流将流经连接这些接触的外部电路。
现有技术的缺点
该窗(p/n型)层一般是由非晶或微晶硅(也叫纳米晶体)或其任何混合物及其与氧、碳、锗等的合金制成。因p/n型层是有很大缺陷的(混乱的),该光产生的电子空穴以高概率复合;因此其无助于器件的光电流,而会造成吸收损耗。因此,该掺杂层的厚度应最小化,以减少这些光学的损耗。然而,当该掺杂层厚度过度减少时,填充因子的值及该开路电压大幅降低。
发明内容
根据所提议的该发明,在用于薄膜硅层堆叠的窗层成长前,应当执行短暂的表面处理,这分别造成非常薄,连续或不连续成核层或TCO表面制备。其示出此种处理改善了稍后的电池的电特性。因此,本发明是有关制造基于硅的薄膜太阳能电池的方法,该太阳能电池包括:
●基板;
●该基板上的第一电极层,其包含透明导电氧化物;
●该第一电极层上的堆叠层,其包含正掺杂半导体层、本征半导体层及负掺杂半导体层以及第二电极层;
由此该方法包含以下步骤:
●提供该基板;
●在该基板上沉积该第一电极层,该第一电极层包含该透明导电氧化物并具有表面;
●在第一时间间隔期间由第一真空处理工艺处理该提及(addressed)的表面;
●由在第二时间间隔期间在包含气态掺杂物的工艺气氛中执行的第二真空工艺在由第一真空处理工艺所处理的提及表面上沉积该正掺杂半导体层及该负掺杂半导体层之一;
●在包含气态掺杂物的工艺气氛中执行该第一真空处理工艺,该气态掺杂物与在该第二真空工艺的气氛中包含的量不同,但是在其它方面执行与第二真空工艺相同的第一真空处理工艺,并选择比该第二时间间隔短的第一时间间隔。
在一个实施例中,根据本发明的方法包括在包含SiH4及H2以及气态掺杂物的气氛中,作为真空等离子体处理工艺执行该第一真空处理工艺,该气态掺杂物浓度介于存在于该第二真空工艺的气氛中的气态掺杂物浓度的0%到80%之间,优选是介于0%到20%之间,由此,优选地由该第二真空工艺沉积该正掺杂半导体层。正如该第一真空处理工艺是在包含SiH4及H2的气氛中的真空等离子体处理工艺,这对于该第二真空工艺也一样是有优势的。
在一个实施例中,根据本发明的方法包括由该第二真空工艺沉积氢化硅的正掺杂半导体层,由此为微晶材料沉积执行该第二真空工艺,及在无气态掺杂物的气氛中执行该第一真空处理工艺,以及优选地在包含氢化碳化硅的工艺气氛中在氢化硅的正掺杂半导体层上沉积硅与碳的合金的非晶正掺杂层,其中进一步优选地该第二真空工艺是真空等离子体工艺并且由此也是第一真空处理工艺。
在根据本发明的方法的一个实施例中,该第二真空工艺(并且由此也是该第一真空处理工艺)是真空等离子体工艺。
在根据本发明的方法的一个实施例中,有优势的是:该第一时间间隔被选择成介于该第一及第二时间间隔的和的5%到20%之间,及其中优选地该第二真空工艺是真空等离子体工艺,及下列至少之一是有效的:
●由该第二真空工艺所沉积的该一个掺杂层是该正掺杂半导体层;
●该一个掺杂半导体层是在包含SiH4对H2的浓度为0.1%至10%,优选为1%至5%的气氛中沉积的;
●该一个掺杂半导体层是在包含SiH4的气氛中沉积的,并且在该气氛中该掺杂物对SiH4的浓度是0.1%到10%,优选为0.05%到0.5%;
●该一个掺杂半导体层是在功率密度为10mW/cm2到1W/cm2,优选地是介于50mW/cm2到300mW/cm2之间沉积的;
●该一个掺杂半导体层是在0.5mbar到12mbar的总压力下沉积的;
●该一个掺杂半导体层是在介于150℃到280℃之间的工艺温度下沉积的;
●该一个掺杂半导体层是以频率为13.56MHz到82MHz的Rf功率沉积的。
具体实施方式
一般,再参考图1,薄膜光伏器件光伏电池40包含基板41,优选为透明玻璃的基板,通常具有0.4mm至5mm的厚度,优选为2mm至4mm;在基板41上作为接触的导电氧化物42;一个或多个半导体层43-46,在曝露于光时,该半导体层产生电荷分离;以及第二导电接触47。
根据本发明的该表面处理包含提供在其上具有TCO接触层42的基板41;提供SiH4、H2的等离子体以及任选地提供气相浓度介于用于沉积后续子层44=p掺杂窗层的浓度的0至80%之间,优选地0至20%之间的掺杂气体(例如,三甲基硼,乙硼烷...)。
在以下例子中,在P层前,以如表1中的参数实施的该表面处理将该太阳能电池的效率增加了2.09%(表3),在电流密度方面(见图4的EQE)达到此增益的一半。
对于标准p层的例子,这里由两个步骤(表1的上部)组成:
1.pμc-Si:H-以适于微晶硅材料的条件沉积p层。
2.p a-SiC:H-沉积非晶硅与碳的合金的p掺杂层。
根据本发明的硅层堆叠,其表面处理包含3个步骤(表1的下部):
1.表面处理:将该TCO层42短暂曝露(5秒)于具有pμc条件的等离子体中,而无掺杂气体,该等离子体条件被选择为与后续步骤2相同,但无任何掺杂气体。
2.pμc-Si:H-在用于微晶材料的条件下,沉积p层65秒。
3.p a-SiC:H-沉积非晶硅和碳的合金的p掺杂层。
Figure BPA00001522654500061
表2示出具有“标准p”及本发明的“表面处理+标准p层”的单结非晶太阳能电池的绝对值及该相对增益。
  Jsc QE   Voc   FF   效率
  (mA/cm2)   (mV)   (%)   (%)
  标准<p>   16.81   903.03   70.67   10.73
  表面处理+<p>   16.98   911.00   70.80   10.95
  相对增益(%)   1.02   0.88   0.18   2.09
表2
表2及图2所述该例子将展示结果,但不是限制性的。该处理温度可在150与280℃间变化,这不包含本发明的要旨。介于13.56MHz与82MHz(13.56MHz的谐波)之间的频率可以顺利地被使用。对该沉积工艺,SiH4、H2与掺杂物(若有)CH4、TMB、PH3间的比率是相关的并且能从表1容易地得到。施加到该工艺腔体中的功率将影响期望的沉积速率,但也将影响该层的结晶性及其稳定性。因在此例中该电池具有1cm2的尺寸,每cm2的相应功率密度能从表1容易地得到。
将了解,该发明工艺应为用于在TCO表面上沉积掺杂硅层的工艺,其包含在第一组工艺参数下执行的第一等离子体处理工艺步骤,以及接在其后的第二等离子体沉积工艺步骤,该第二等离子体沉积工艺步骤具有实质上相同(第一)组的工艺掺数,但包含掺杂气体或前驱物。例如,该p-μc层是以如下条件沉积的:硅烷浓度(SiH4/H2)介于0.1%与10%之间,优选地介于1%与5%之间,掺杂物浓度(掺杂物/硅烷)介于0.01%至1%之间,优选地介于0.05%与0.5%之间,功率密度为10mW/cm2至1W/cm2,优选地介于50mW/cm2与300mW/cm2之间,压力介于0.5与12mbr之间。相对于第一加第二工艺步骤的持续时间的第一工艺步骤所占的时间分数应该是介于5%与20%之间,及/或,以绝对值计,介于3与15秒之间,优选地介于5与10秒之间。该上述参数对于在40MHZ下操作的、具有近似3000cm2的电极表面的KAI-M PECVD反应器是典型的。
此制造工艺可以在从Oerlikon Solar商业获得的KAI 1200或相似的工业反应器中得到提升。该TCO(ZnO)层可在也来自Oerlikon Solar的、称为TCO 1200的系统上沉积。
本发明方法可以有益的方式应用在所有类型的薄膜硅光伏层堆叠上,其中掺杂窗层应被沉积在TCO前接触上。该硅光伏层堆叠可为单结非晶的、串联结非晶/微晶堆叠的(micromorph)、串联结非晶的等。

Claims (5)

1.一种制造基于硅的薄膜太阳能电池的方法,该太阳能电池包括:
●基板;
●所述基板上的第一电极层,其包含透明导电氧化物;
●所述第一电极层上的堆叠层,其包含正掺杂半导体层、本征半导体层及负掺杂半导体层以及第二电极层;
所述方法包含以下步骤:
●提供所述基板;
●在所述基板上沉积所述第一电极层,该第一电极层包含所述透明导电氧化物并具有表面;
●在第一时间间隔期间由第一真空处理工艺处理所述表面;
●由在第二时间间隔期间在包含气态掺杂物的工艺气氛中执行的第二真空工艺在由所述第一真空处理工艺所处理的所述表面上沉积所述正掺杂层及所述负掺杂层之一;
●在包含气态掺杂物的工艺气氛中执行所述第一真空处理工艺,该气态掺杂物与在所述第二真空工艺的所述气氛中包含的量不同,但是在其它方面执行与所述第二真空工艺相同的所述第一真空处理工艺,并选择比所述第二时间间隔短的所述第一时间间隔。
2.如权利要求1的方法,其包含在包含SiH4及H2以及气态掺杂物的气氛中,作为真空等离子体处理工艺执行所述第一真空处理工艺,该气态掺杂物浓度介于存在于所述第二真空工艺的气氛中的气态掺杂物浓度的0%到80%之间,优选是介于0%到20%之间,由此,优选地由所述第二真空工艺沉积所述正掺杂半导体层。
3.如权利要求1的方法,其包含由所述第二真空工艺沉积微晶氢化硅的正掺杂层作为所述一个层,由此执行适于微晶材料沉积的所述第二真空工艺,以及在无气态掺杂物的气氛中执行所述第一真空处理工艺,以及优选地在包含氢化碳化硅的工艺气氛中在所述氢化微晶硅的正掺杂层上沉积硅与碳的合金的非晶正掺杂层,其中进一步优选地所述第二真空工艺是真空等离子体工艺。
4.如权利要求1的方法,其中所述第二真空工艺是真空等离子体工艺。
5.如权利要求1的方法,其中所述第一时间间隔被选择成介于该第一及第二时间间隔的和的5%到20%之间,并且其中优选地所述第二真空工艺是真空等离子体工艺,并且下列至少之一是有效的:
●由所述第二真空工艺所沉积的所述一个掺杂半导体层是所述正掺杂半导体层;
●所述一个掺杂半导体层是在包含SiH4对H2的浓度为0.1%至10%,优选为1%至5%的气氛中沉积的;
●所述一个掺杂半导体层是在包含SiH4的气氛中沉积的,并且在所述气氛中该掺杂物对SiH4的浓度是0.1%到10%,优选为0.05%到0.5%;
●所述一个掺杂半导体层是在功率密度为10mW/cm2到1W/cm2,优选地是介于50mW/cm2到300mW/cm2之间沉积的;
●所述一个掺杂半导体层是在0.5mbar到12mbar的总压力下沉积的;
●所述一个掺杂半导体层是在介于150℃到280℃之间的工艺温度下沉积的;
●所述一个掺杂半导体层是以频率为13.56MHz到82MHz的Rf功率沉积的。
CN2010800415724A 2009-09-18 2010-09-09 制造基于硅的薄膜太阳能电池的方法 Pending CN102844891A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24364609P 2009-09-18 2009-09-18
US61/243,646 2009-09-18
PCT/EP2010/063208 WO2011032879A2 (en) 2009-09-18 2010-09-09 Method for manufacturing a thin-film, silicon-based solar cell

Publications (1)

Publication Number Publication Date
CN102844891A true CN102844891A (zh) 2012-12-26

Family

ID=43759090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800415724A Pending CN102844891A (zh) 2009-09-18 2010-09-09 制造基于硅的薄膜太阳能电池的方法

Country Status (3)

Country Link
CN (1) CN102844891A (zh)
TW (1) TW201126741A (zh)
WO (1) WO2011032879A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052480A1 (de) * 2011-08-08 2013-02-14 Roth & Rau Ag Solarzelle und Verfahren zur Herstellung einer Solarzelle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242686B1 (en) * 1998-06-12 2001-06-05 Sharp Kabushiki Kaisha Photovoltaic device and process for producing the same
CN101499497A (zh) * 2008-01-29 2009-08-05 东捷科技股份有限公司 一种具有多能阶的硅基薄膜太阳能电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352081A (ja) * 2000-06-05 2001-12-21 Sanyo Electric Co Ltd 光起電力装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242686B1 (en) * 1998-06-12 2001-06-05 Sharp Kabushiki Kaisha Photovoltaic device and process for producing the same
CN101499497A (zh) * 2008-01-29 2009-08-05 东捷科技股份有限公司 一种具有多能阶的硅基薄膜太阳能电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARINDAM SARKER, ET AL.: "Lowering of thickness of boron-doped microcrystalline hydrogenated silicon film by seeding technique", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
E.BÖHMER, ET AL.: "New insights into the ZnO/a-SiC:H(B) interface using XPS analysis", 《 FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY》 *

Also Published As

Publication number Publication date
TW201126741A (en) 2011-08-01
WO2011032879A3 (en) 2012-06-28
WO2011032879A2 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
Rath et al. Fabrication of thin film silicon solar cells on plastic substrate by very high frequency PECVD
US20090272435A1 (en) Compositionally-graded and structurally-graded photovoltaic devices and methods of fabricating such devices
AU2008200051A1 (en) Method and apparatus for a semiconductor structure forming at least one via
CN109449227B (zh) 叠层本征层的晶硅异质结太阳能电池电极结构及其制备方法
US20110068367A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
De Nicolas a-Si: H/c-Si heterojunction solar cells: back side assessment and improvement
CN111883621A (zh) 一种高效晶硅异质结太阳能电池的tco镀膜工艺方法
CN100338781C (zh) 半导体器件及其制造方法
Fang et al. Amorphous silicon/crystal silicon heterojunction double-junction tandem solar cell with open-circuit voltage above 1.5 V and high short-circuit current density
WO2009055388A1 (en) Nip-nip thin-film photovoltaic structure
US8652871B2 (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
WO2010023991A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
CN217182188U (zh) 一种钙钛矿/钙钛矿/硅-锗基三结叠层太阳能电池
US20130291933A1 (en) SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION
CN210156405U (zh) 具有氢退火tco导电膜的异质结电池结构
CN102844891A (zh) 制造基于硅的薄膜太阳能电池的方法
CN103107236B (zh) 异质结太阳能电池及其制作方法
US20110277823A1 (en) System and Method for High Yield Deposition of Conductive Materials onto Solar Cells
CN103107240A (zh) 多晶硅薄膜太阳能电池及其制作方法
Schropp Amorphous and microcrystalline silicon solar cells
CN102782881A (zh) 高效率非晶硅光伏器件
CN202977493U (zh) 多晶硅薄膜太阳能电池
EP2612367A1 (en) Improved a-si:h absorber layer for a-si single- and multijunction thin film silicon solar cells
CN102144296A (zh) 光伏电池及光伏电池制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Swiss Te Lui Bach

Applicant after: Oerlikon Solar AG, Truebbach

Address before: Swiss Te Lui Bach

Applicant before: Oerlikon Solar IP AG. Truebbach

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: OERLIKON SOLAR AG (TRUBBACH) TO: OERLIKON SOLAR AG

C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121226