CN102824641A - 一种两相释药的多层载药纳米纤维垫及其制备方法 - Google Patents

一种两相释药的多层载药纳米纤维垫及其制备方法 Download PDF

Info

Publication number
CN102824641A
CN102824641A CN2012103312114A CN201210331211A CN102824641A CN 102824641 A CN102824641 A CN 102824641A CN 2012103312114 A CN2012103312114 A CN 2012103312114A CN 201210331211 A CN201210331211 A CN 201210331211A CN 102824641 A CN102824641 A CN 102824641A
Authority
CN
China
Prior art keywords
drug
ketoprofen
spinning
multilayer
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103312114A
Other languages
English (en)
Inventor
朱利民
黄丽娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN2012103312114A priority Critical patent/CN102824641A/zh
Publication of CN102824641A publication Critical patent/CN102824641A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种两相释药的多层载药纳米纤维垫及其制备方法,该纤维垫为一种水溶性聚合物、水不溶性聚合物、药物组成的多层载药纳米纤维膜,纳米纤维结构有两种:壳层为含药物的水溶性高分子聚合物、芯层为含药物的水不溶性高分子聚合物;壳层为含药物的水不溶性高分子聚合物、芯层为含药物的水溶性高分子聚合物。该纳米镇痛剂的制备方法,包括:(1)制备含镇痛药物酮洛芬的纺丝原液;(2)将上述所得的纺丝原液通过同轴静电纺丝法制备多层纤维膜,干燥后可得到载药纳米镇痛剂。本发明的纳米镇痛剂能快速、持久镇痛,易于携带、给药方便,且可以靶向定位给药于肠道之中;本发明的制备方法简单,成本低,对设备无特殊要求,可大规模生产。

Description

一种两相释药的多层载药纳米纤维垫及其制备方法
技术领域
本发明属于载药纳米纤维垫制备领域,特别涉及一种两相释药的多层载药纳米纤维垫及其制备方法。
背景技术
同轴静电纺丝技术是在静电纺丝的基础上发展而来的,主要的改进措施是喷丝口改进为同心轴的复合毛细管,解决了传统静电纺丝法的局限性,即:将两种或两种以上原料进行混纺时,混合体系必须是均一的。这种新型的加工方法操作简单并且由该技术制备的纤维在均匀性和连续性方面都要好于其他加工方法。同轴静电纺技术制备的芯-壳结构的复合纳米纤维,能够弥补将药物与载体材料简单混合纺丝的不足,在药物传输和控制释放领域具有良好的应用前景。
在临床治疗中,通常希望维持相对平稳的血药浓度。然而,这并不容易实现。许多药物在胃里的吸收比较缓慢,在接近肠的位置吸收较快,在肠末端吸收迅速减少。因此,可以设想这样一个两相释药系统:使药物浓度在初始阶段迅速升高以发挥药效,之后进入缓释阶段以减少用药次数。
两相释药系统是药剂研发中颇具潜力的一个领域,这是由于该系统既能够控制释药速率,也可以灵活调节药物释放量。已经发展出纳米高分子液晶系统、水凝胶给药系统、溶剂自乳化扩散技术制备的纳米颗粒等,它们能够实现两相释药,但存在着包封率低、安全性不高、成本较高、技术复杂等问题。纳米技术和静电纺丝技术正日益受到欢迎和重视。纳米技术被广泛用于提高难溶性药物的溶解性和生物利用度。同轴静电纺丝技术是对传统静电纺丝技术的改良,它能够方便快捷的制备纳米纤维。
采用不同的高聚物、运用连续的同轴静电纺技术可以制备多层载药纳米纤维垫以实现药物的两相释放乃至多相释放。通过这种技术制备的产品兼具纳米给药系统的优点和两相释药系统的优势,这将满足特殊的医疗需求。
发明内容
本发明所要解决的技术问题是提供一种两相释药的多层载药纳米纤维垫及其制备方法,本发明的纤维垫能够实现药物的两相释放,具有快速、持久镇痛功能,易于携带、给药方便,且可以靶向定位给药于肠道之中;本发明的制备方法简单,成本低,对设备无特殊要求,可大规模生产。
本发明的一种两相释药的多层载药纳米纤维垫为一种水溶性高分子聚合物、水不溶性高分子聚合物、药物组成的多层载药纳米纤维膜,水溶性聚合物、水不溶性聚合物、药物的质量比为4:4:1,纳米纤维膜的结构由壳层含药物的水溶性高分子聚合物、芯层含药物的水不溶性高分子聚合物以及壳层含药物的水不溶性高分子聚合物、芯层含药物的水溶性高分子聚合物的纳米纤维组成。
所述水溶性高分子聚合物为聚乙烯吡咯烷酮K30。
所述水不溶性高分子聚合物为乙基纤维素。
所述药物为镇痛药物。
所述镇痛药物为非甾体消炎药NSAIDs。
所述非甾体消炎药为酮洛芬。
本发明的一种两相释药的多层载药纳米纤维垫的制备方法,包括:
(1)配制纺丝液:
a.酮洛芬加入含乙基纤维素的无水乙醇溶液中;
b.酮洛芬加入含聚乙烯吡咯烷酮的无水乙醇溶液中;
以上溶液机械搅拌12-24h并在50±1℃下持续加热8-12h以使酮洛芬均匀分散于其中;
(2)制备多层载药纳米纤维垫:将酮洛芬-聚乙烯吡咯烷酮作为外层,酮洛芬-乙基纤维素作为内层,运用同轴电纺技术制备芯-壳结构的同轴结构1,将酮洛芬-乙基纤维素作为外层,酮洛芬-聚乙烯吡咯烷酮作为内层,运用同轴电纺技术制备芯-壳结构的同轴结构2,运用连续电纺技术,将同轴结构1和同轴结构2相叠在一起。
所述步骤(1)中的纺丝液中聚乙烯吡咯烷酮K30浓度为35%,乙基纤维素浓度为24%,步骤a中酮洛芬与乙基纤维素的质量比为1:4;步骤b中酮洛芬与聚乙烯吡咯烷酮的质量比为1:4。
所述步骤(2)中的静电纺丝的工艺条件为:酮洛芬-乙基纤维素纺丝液的流速为1.5ml/h,酮洛芬-聚乙烯吡咯烷酮纺丝液的流速为0.5ml/h,接受板离喷丝口距离为15cm,电压12kV。环境温度为21±1℃,环境湿度为57±3%。
所述步骤(2)中的同轴结构1的纤维外层和内层的电纺所需时间分别为1h,2h;同轴结构2的纤维外层和内层的电纺所需时间分别为2h,1h;
本发明使用一种药物和两种不同的高聚物,酮洛芬作为模型药物分别载入不同的高聚物纤维层中;乙基纤维素和聚乙烯吡咯烷酮作为调节释药速率的高聚物,通过连续两次运用同轴静电纺丝的方法制备。
本发明所使用的水溶性聚合物-聚乙烯吡咯烷酮,是一种水溶性酰胺类高分子聚合物,它可以构成速释给药系统的基材,能够提高难溶性药物的溶解性,在口服给药系统方面有一定应用。发明中使用的水不溶性聚合物-乙基纤维素,是一种惰性、疏水的高聚物,因其无毒无害、具有良好的储存稳定性,故成为优良的药物缓释载体。水溶性聚合物可快速溶解,故能够速溶给药;水不溶性聚合物不溶解,故能够缓释药物。通过使用不同的聚合物,并将其先后用于外层或内层可实现快速镇痛并减少用药次数、延长药物作用时间的目的。
本发明的载药纤维垫是纳米级别,从而使得该镇痛药剂可以实现对炎症部位的靶向给药。本发明利用炎症部位的某些病理学变化,即EPR效应(enhanced permeability and retentioneffect),来实现上述目的。EPR效应指的是,炎症部位毛细血管壁的通透性较炎症前大幅度提高,允许透过的粒子的粒径上限从炎症前的20nm扩大到炎症时的200nm,小于200nm的粒子可渗出并长时间滞留。本发明将药物制备为纳米级,就有可能实现对炎症部位的靶向给药,而通过靶向给药可以降低全身用药剂量,从而减轻副作用。
能够实现两相释药,即:先迅速给药,然后延长药效,最终强化药物释放以巩固药效;
与传统的静电纺丝装置相比,现有的同轴静电纺丝装置是把毛细管喷丝口改进为同心轴的复合毛细管,这样能制备出具有特殊结构和功能的复合纳微米纤维。另外,普通静电纺丝法制备多层纤维垫时需要在特定的时间点变换纺丝液,每变换一次可制备新的一层;而同轴静电纺丝技术可一次制备双层纤维垫,减少了变换纺丝液的次数,并且内外层的纺丝时间可同时分别调控,比普通静电纺丝法操作简便、可控。(注:流速可以预先设定,纺丝时间在纺丝过程中分别控制。)
有益效果
(1)本发明的纤维垫能够实现药物的两相释放,具有快速、持久镇痛功能,易于携带、给药方便,且可以靶向定位给药于肠道之中;
(2)本发明使用的同轴静电纺丝装置是把毛细管喷丝口改进为同心轴的复合毛细管,这样能制备出具有特殊结构和功能的复合纳微米纤维;同轴静电纺丝技术可一次制备双层纤维垫,减少了变换纺丝液的次数,并且内外层的纺丝时间可同时分别调控,比普通静电纺丝法操作简便、可控;(注:流速可以预先设定,纺丝时间在纺丝过程中分别控制。)
(3)本发明的制备方法简单,成本低,对设备无特殊要求,可大规模生产。
附图说明
图1是同轴静电纺丝工艺;
图2是同轴多层载药纤维垫的效果图;
图3是同轴多层载药纤维扫描电镜照片;
图4是同轴多层载药纤维溶出度曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
制备同轴结构1
(1)制备纺丝原液:将0.875g酮洛芬混悬于含聚乙烯吡咯烷酮PVP K303.5g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液1;将0.6g酮洛芬混悬于含乙基纤维素2.4g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液2;
(2)制备同轴结构1:将上述配好的纺丝原液1,2分别倒入溶液储存器1,2(5mL注射器)中,分别连接削平的7号注射针头,两支针头再连接于同轴装置上(聚乙烯吡咯烷酮纺丝液为外层,乙基纤维素纺丝液为内层),该装置与高压电源的正极相连,先采用放有载玻片的铝箔纤维接受平板作接负极,接受10分钟的纺丝纤维,用于偏光显微镜观察,然后再采用铝箔接受平板连接负极,接受纤维;静电纺丝工艺条件:外层流速为0.5mL·h-1,纺丝时间为1h,内层流速为1.5mL·h-1,纺丝时间为2h,接受板离喷丝口距离为15cm,电压12kV。环境温度为(21±1)℃,环境湿度为57±3%。待注射器中纺丝液电纺完毕后,取下纤维膜,常温下真空干燥24小时。
实施例2
制备同轴结构2
(1)制备纺丝原液:将0.875g酮洛芬混悬于含聚乙烯吡咯烷酮PVP K303.5g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液1;将0.6g酮洛芬混悬于含乙基纤维素2.4g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液2;
(2)制备同轴结构2:将上述配好的纺丝原液1,2分别倒入溶液储存器1,2(5mL注射器)中,分别连接削平的7号注射针头,两支针头再连接于同轴装置上(乙基纤维素纺丝液为外层,聚乙烯吡咯烷酮纺丝液为内层),该装置与高压电源的正极相连,先采用放有载玻片的铝箔纤维接受平板作接负极,接受10分钟的纺丝纤维,用于偏光显微镜观察,然后再采用铝箔接受平板连接负极,接受纤维;静电纺丝工艺条件:外层流速为1.5mL·h-1,纺丝时间为2h,内层流速为0.5mL·h-1,纺丝时间为1h,接受板离喷丝口距离为15cm,电压12kV。环境温度为(21±1)℃,环境湿度为57±3%。待注射器中纺丝液电纺完毕后,取下纤维膜,常温下真空干燥24小时。
实施例3
制备多层同轴结构载药纤维垫
(1)制备纺丝原液:将0.875g酮洛芬混悬于含聚乙烯吡咯烷酮PVPK303.5g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液1;将0.6g酮洛芬混悬于含乙基纤维素2.4g的10mL无水乙醇中,机械搅拌(12h)并持续加热(50±1℃,8h),配成纺丝原液2;
(2)制备多层同轴结构载药纤维垫:
同轴结构1的电纺(第一、二层电纺):将上述配好的纺丝原液1,2分别倒入溶液储存器1,2(5mL注射器)中,分别连接削平的7号注射针头,两支针头再连接于同轴装置上(聚乙烯吡咯烷酮纺丝液为外层,乙基纤维素纺丝液为内层),该装置与高压电源的正极相连,采用铝箔接受平板连接负极,接受纤维;静电纺丝工艺条件:外层流速为0.5mL·h-1,纺丝时间为1h,内层流速为1.5mL·h-1,纺丝时间为2h,接受板离喷丝口距离为15cm,电压12kV。环境温度为(21±1)℃,环境湿度为57±3%。
同轴结构2的电纺(第三、四层电纺):将上述配好的纺丝原液1,2分别倒入溶液储存器1,2(5mL注射器)中,分别连接削平的7号注射针头,两支针头再连接于同轴装置上(乙基纤维素纺丝液为外层,聚乙烯吡咯烷酮纺丝液为内层),该装置与高压电源的正极相连,采用同轴结构1的同一片铝箔接受平板连接负极,接受纤维;静电纺丝工艺条件:外层流速为1.5ml·h-1,纺丝时间为2h,内层流速为0.5ml·h-1,纺丝时间为1h,接受板离喷丝口距离为15cm,电压12kV。环境温度为(21±1)℃,环境湿度为57±3%。
合计收集4h后的载药纤维垫,用扫描电镜观察,结果如图3所示。纤维结构均匀。纤维表面光滑无药物颗粒。聚合物与药物相容性良好,形成稳定的复合纳米纤维膜。溶出结果显示(如图4),药物先速溶、再缓释、最后快速释放,实现了两相释药的效果。

Claims (10)

1.一种两相释药的多层载药纳米纤维垫,其特征在于:所述多层载药纳米纤维垫为一种水溶性高分子聚合物、水不溶性高分子聚合物、药物组成的多层载药纳米纤维膜,水溶性聚合物、水不溶性聚合物、药物的质量比为4:4:1,纳米纤维膜的结构由壳层含药物的水溶性高分子聚合物、芯层含药物的水不溶性高分子聚合物以及壳层含药物的水不溶性高分子聚合物、芯层含药物的水溶性高分子聚合物的纳米纤维组成。
2.根据权利要求1所述的一种两相释药的多层载药纳米纤维垫,其特征在于:所述水溶性高分子聚合物为聚乙烯吡咯烷酮K30。
3.根据权利要求1所述的一种两相释药的多层载药纳米纤维垫,其特征在于:所述水不溶性高分子聚合物为乙基纤维素。
4.根据权利要求1所述的一种两相释药的多层载药纳米纤维垫,其特征在于:所述药物为镇痛药物。
5.根据权利要求4所述的一种两相释药的多层载药纳米纤维垫,其特征在于:所述镇痛药物为非甾体消炎药NSAIDs。
6.根据权利要求5所述的一种两相释药的多层载药纳米纤维垫,其特征在于:所述非甾体消炎药为酮洛芬。
7.一种两相释药的多层载药纳米纤维垫的制备方法,包括:
(1)配制纺丝液:
a.酮洛芬加入含乙基纤维素的无水乙醇溶液中;
b.酮洛芬加入含聚乙烯吡咯烷酮的无水乙醇溶液中;
以上溶液机械搅拌12-24h并在50±1℃下持续加热8-12h以使酮洛芬均匀分散于其中;
(2)制备多层载药纳米纤维垫:将酮洛芬-聚乙烯吡咯烷酮作为外层,酮洛芬-乙基纤维素作为内层,运用同轴电纺技术制备芯-壳结构的同轴结构1,将酮洛芬-乙基纤维素作为外层,酮洛芬-聚乙烯吡咯烷酮作为内层,运用同轴电纺技术制备芯-壳结构的同轴结构2,运用连续电纺技术,将同轴结构1和同轴结构2相叠在一起。
8.根据权利要求7所述的一种两相释药的多层载药纳米纤维垫的制备方法,其特征在于:所述步骤(1)中的纺丝液中聚乙烯吡咯烷酮K30浓度为35%,乙基纤维素浓度为24%,步骤a中酮洛芬与乙基纤维素的质量比为1:4;步骤b中酮洛芬与聚乙烯吡咯烷酮的质量比为1:4。
9.根据权利要求7所述的一种两相释药的多层载药纳米纤维垫的制备方法,其特征在于:所述步骤(2)中的静电纺丝的工艺条件为:酮洛芬-乙基纤维素纺丝液的流速为1.5ml/h,酮洛芬-聚乙烯吡咯烷酮纺丝液的流速为0.5ml/h,接受板离喷丝口距离为15cm,电压12kV。环境温度为21±1℃,环境湿度为57±3%。
10.根据权利要求7所述的一种两相释药的多层载药纳米纤维垫的制备方法,其特征在于:所述步骤(2)中的同轴结构1的纤维外层和内层的电纺所需时间分别为1h,2h;同轴结构2的纤维外层和内层的电纺所需时间分别为2h,1h。
CN2012103312114A 2012-09-07 2012-09-07 一种两相释药的多层载药纳米纤维垫及其制备方法 Pending CN102824641A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103312114A CN102824641A (zh) 2012-09-07 2012-09-07 一种两相释药的多层载药纳米纤维垫及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103312114A CN102824641A (zh) 2012-09-07 2012-09-07 一种两相释药的多层载药纳米纤维垫及其制备方法

Publications (1)

Publication Number Publication Date
CN102824641A true CN102824641A (zh) 2012-12-19

Family

ID=47328086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103312114A Pending CN102824641A (zh) 2012-09-07 2012-09-07 一种两相释药的多层载药纳米纤维垫及其制备方法

Country Status (1)

Country Link
CN (1) CN102824641A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074734A (zh) * 2013-01-31 2013-05-01 东华大学 静电纺丝法制备抗菌性纳米银复合纳米纤维毡的制备方法
WO2015159305A1 (en) 2014-04-13 2015-10-22 Council Of Scientific And Industrial Research Bioactive oil based polyesteramide nanofibers for wound healing applications
CN106048902A (zh) * 2016-07-15 2016-10-26 东华大学 一种乙基纤维素载药纳米纤维膜及其制备方法和应用
CN106591966A (zh) * 2016-11-21 2017-04-26 上海理工大学 丝粒并列微纳米结构的电流体动力学制备方法
CN106801261A (zh) * 2017-01-06 2017-06-06 上海理工大学 一种具有药物梯度分布特征的电纺纳米纤维及其制备方法
CN106821954A (zh) * 2017-01-11 2017-06-13 上海理工大学 一种具有鞘含双芯结构特征的载药纳米纤维及其制备方法
CN106860433A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物两相脉冲释放功能的纳米纤维及制备方法
CN106860432A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物二级脉冲释放功能的纳米纤维及其制备方法
CN106860426A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物两级控释功能的核壳纳米颗粒及制备方法
CN106880585A (zh) * 2017-01-17 2017-06-23 上海理工大学 一种能提供药物脉冲后缓慢控释的纳米纤维及制备方法
CN106902096A (zh) * 2017-01-17 2017-06-30 上海理工大学 一种具有药物两相脉冲控释功能的核壳纳米颗粒及制备方法
US20180243232A1 (en) * 2015-09-03 2018-08-30 Case Western Reserve University Polymer fiber scaffolds and uses thereof
CN113944007A (zh) * 2021-10-19 2022-01-18 陕西师范大学 食品防腐保鲜电纺纤维衬垫及其制备方法和应用
CN116005290A (zh) * 2022-12-30 2023-04-25 华南理工大学 一种含功能蛋白的高疏水复合纳米纤维及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509153A (zh) * 2009-03-23 2009-08-19 东华大学 以同轴静电纺丝技术制备壳-芯结构药物纳米纤维的方法
CN102178663A (zh) * 2011-05-03 2011-09-14 东华大学 一种纳米镇痛剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509153A (zh) * 2009-03-23 2009-08-19 东华大学 以同轴静电纺丝技术制备壳-芯结构药物纳米纤维的方法
CN102178663A (zh) * 2011-05-03 2011-09-14 东华大学 一种纳米镇痛剂及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074734B (zh) * 2013-01-31 2015-07-08 东华大学 静电纺丝法制备抗菌性纳米银复合纳米纤维毡的制备方法
CN103074734A (zh) * 2013-01-31 2013-05-01 东华大学 静电纺丝法制备抗菌性纳米银复合纳米纤维毡的制备方法
WO2015159305A1 (en) 2014-04-13 2015-10-22 Council Of Scientific And Industrial Research Bioactive oil based polyesteramide nanofibers for wound healing applications
US10195158B2 (en) 2014-04-13 2019-02-05 Council Of Scientific & Industrial Research Bioactive oil based polyesteramide nanofibers for wound healing applications
US20180243232A1 (en) * 2015-09-03 2018-08-30 Case Western Reserve University Polymer fiber scaffolds and uses thereof
US10751293B2 (en) * 2015-09-03 2020-08-25 Case Western Reserve University Polymer fiber scaffolds and uses thereof
CN106048902A (zh) * 2016-07-15 2016-10-26 东华大学 一种乙基纤维素载药纳米纤维膜及其制备方法和应用
CN106591966A (zh) * 2016-11-21 2017-04-26 上海理工大学 丝粒并列微纳米结构的电流体动力学制备方法
CN106591966B (zh) * 2016-11-21 2020-11-24 上海理工大学 丝粒并列微纳米结构的电流体动力学制备方法
CN106801261A (zh) * 2017-01-06 2017-06-06 上海理工大学 一种具有药物梯度分布特征的电纺纳米纤维及其制备方法
CN106801261B (zh) * 2017-01-06 2019-05-24 上海理工大学 一种具有药物梯度分布特征的电纺纳米纤维及其制备方法
CN106821954A (zh) * 2017-01-11 2017-06-13 上海理工大学 一种具有鞘含双芯结构特征的载药纳米纤维及其制备方法
CN106880585A (zh) * 2017-01-17 2017-06-23 上海理工大学 一种能提供药物脉冲后缓慢控释的纳米纤维及制备方法
CN106902096A (zh) * 2017-01-17 2017-06-30 上海理工大学 一种具有药物两相脉冲控释功能的核壳纳米颗粒及制备方法
CN106860426A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物两级控释功能的核壳纳米颗粒及制备方法
CN106860432A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物二级脉冲释放功能的纳米纤维及其制备方法
CN106860433A (zh) * 2017-01-17 2017-06-20 上海理工大学 一种具有药物两相脉冲释放功能的纳米纤维及制备方法
CN113944007A (zh) * 2021-10-19 2022-01-18 陕西师范大学 食品防腐保鲜电纺纤维衬垫及其制备方法和应用
CN116005290A (zh) * 2022-12-30 2023-04-25 华南理工大学 一种含功能蛋白的高疏水复合纳米纤维及其制备方法和应用
CN116005290B (zh) * 2022-12-30 2024-04-05 华南理工大学 一种含功能蛋白的高疏水复合纳米纤维及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN102824641A (zh) 一种两相释药的多层载药纳米纤维垫及其制备方法
Yang et al. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning
Reda et al. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis
Abid et al. Current applications of electrospun polymeric nanofibers in cancer therapy
Hai et al. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile
Meng et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system
Yang et al. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites
Zhou et al. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers
CN102251317B (zh) 一种药物释放可控的电纺纤维的制备方法
CN108969470B (zh) 缓释药物纳米纤维及其制备方法
CN101336885B (zh) 一种中药纳米纤维毡的制备方法
CN104337755A (zh) 一种pH敏感性的同轴纳米载药纤维膜的制备方法
Almukainzi et al. Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats
CN105031739B (zh) 一种载盐酸多西环素的gtr/gbr复合膜片及其制备方法
CN104382883B (zh) 一种具有温敏性释药性能的纳米载药纤维膜的制备方法
CN101570917B (zh) 生物黏附载药纳米纤维膜的电纺制备方法
WO2010106063A2 (de) Mit therapeutika und diagnostika beladene kompositmaterialien umfassend polymernanopartikel und polymerfasern
Krysiak et al. Nano-and microfiber PVB patches as natural oil carriers for atopic skin treatment
Li et al. Functional nanofibrous biomaterials of tailored structures for drug delivery—a critical review
CN101327182A (zh) 一种水难溶性药物的纳米晶体纤维毡的制备
Cheng et al. Exploring the potential of a polyvinyl alcohol/chitosan-based nanofibrous matrix for erythromycin delivery: fabrication, in vitro and in vivo evaluation
KR20100092545A (ko) 생분해성 폴리머의 전기방사를 이용한 신규 약물 전달 시스템
CN102178663B (zh) 一种纳米镇痛剂及其制备方法
CN101536994B (zh) 一种可以载药的混杂纳米纤维膜的制备方法
CN108464967A (zh) 一种用于皮下药物可控释放的生物针及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121219